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Introduction: Core psychopathy is characterized by grandiosity, callousness,
manipulativeness, and lack of remorse, empathy, and guilt. It is often comorbid with
conduct disorder and antisocial personality disorder (ASPD). Psychopathy is present in
forensic as well as prison and general populations. In recent years, an increasing amount
of neuroimaging studies has been conducted in order to elucidate the obscure
neurobiological etiology of psychopathy. The studies have yielded heterogenous
results, and no consensus has been reached.

Aims: This study systematically reviewed and qualitatively summarized functional and
structural neuroimaging studies conducted on individuals with psychopathic traits.
Furthermore, this study aimed to evaluate whether the findings from different MRI
modalities could be reconciled from a neuroanatomical perspective.

Materials and Methods: After the search and auditing processes, 118 neuroimaging
studies were included in this systematic literature review. The studies consisted of
structural, functional, and diffusion tensor MRI studies.

Results: Psychopathy was associated with numerous neuroanatomical abnormalities.
Structurally, gray matter anomalies were seen in frontotemporal, cerebellar, limbic, and
paralimbic regions. Associated gray matter volume (GMV) reductions were most
pronounced particularly in most of the prefrontal cortex, and temporal gyri including the
fusiform gyrus. Also decreased GMV of the amygdalae and hippocampi as well the
cingulate and insular cortices were associated with psychopathy, as well as abnormal
morphology of the hippocampi, amygdala, and nucleus accumbens. Functionally,
psychopathy was associated with dysfunction of the default mode network, which was
also linked to poor moral judgment as well as deficient metacognitive and introspective
abilities. Second, reduced white matter integrity in the uncinate fasciculus and dorsal
cingulum were associated with core psychopathy. Third, emotional detachment was
associated with dysfunction of the posterior cerebellum, the human mirror neuron system
and the Theory of Mind denoting lack of empathy and persistent failure in integrating
affective information into cognition.
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Conclusions: Structural and functional aberrancies involving the limbic and paralimbic
systems including reduced integrity of the uncinate fasciculus appear to be associated
with core psychopathic features. Furthermore, this review points towards the idea that
ASPD and psychopathy might stem from divergent biological processes.
Keywords: psychopathy, neuroimaging, review, antisocial, callous-unemotional, emotional detachment
INTRODUCTION

Psychopathy is linked to biological processes in the brain, and is
a highly heritable disorder (1). Structural and functional
magnetic resonance imaging (MRI) have provided means to
investigate these processes, but both the results and the definition
of psychopathy have been heterogenic (2–4). Features and
behaviors, such as lack of empathy, remorse, and guilt as well
as manipulativeness, callousness, and grandiosity comprise the
core psychopathic traits. Antisocial conduct is often comorbid
with these core traits, which together are referred as to
psychopathy (5–7).

The display of psychopathic behaviors is a reliable predictor
for poor academic achievement, criminality, behavioral
problems, and for adverse psychosocial consequences and
mental health (8, 9). The prevalence of psychopathy is
approximately 1% in the general population (10, 11), 3% in
forensic population (12), 4% amongst corporate managers (13),
and 20% in prison population (14). Furthermore, conduct
disorder (CD) is often present amongst the majority of
offenders with clinical psychopathy before the age of fifteen,
and antisocial personality disorder (ASPD) after the age of
eighteen (15). The PCL-R superordinate interpersonal-affective
factor of psychopathy is not a prerequisite for CD and ASPD, but
they are, however, often comorbid (16). Moreover, psychopaths
having successfully avoided criminal conviction are sometimes
referred to as successful psychopaths (17). However, in this
context, the word “successful” does not imply success in other
aspects of life (17).

Psychopathy is believed to have a neurobiological origin (18),
and, in the past years, various neuroimaging studies have tried to
resolve the perplexing etiology behind psychopathy (2, 4, 19).
The structure, connectivity, and white matter tracts of brains of
individuals displaying psychopathic traits have been visualized
with numerous methods including conventional MRI, functional
MRI, diffusion tensor MRI (DTI) voxel-based morphometry
(VBM), (19), single photon emission computed tomography
(SPECT), positron emission tomography (PET), and
electroencephalogram (EEG) (20).

Despite an increase in neuroimaging studies in this field, there is
no systematic review summarizing structural MRI, functional MRI,
and DTI findings to date. Previous reviews have yielded
inconsistent results [see e.g. (2, 3, 18)]. Diversity in sample
demographics and characteristics as well as variation in task
designs and imaging techniques make the interpretation and
generalization of neuroimaging results difficult (3). Put differently,
the functions, structures, and interconnections of brain regions
associated with psychopathy remain unclear. A qualitative
g 2
summary covering the three radiological submodalities might
facilitate our understanding of psychopathy, and give insight to
its neurobiological correlates and obscure neurobiological etiology.
AIM

The aim of this study was to conduct a systematic literature
review on MRI neuroimaging of psychopathic traits, to
summarize findings from different MRI modalities that cover
different aspects of neural function and structure, and to examine
whether these aspects were consistent.
MATERIALS AND METHODS

Study Design
This study is a systematic literature review onMRI neuroimaging
of psychopathic traits, conducted per the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
Statement (21).

Inclusion and Exclusion Criteria
For inclusion in the study, the record must have been published
in a peer-reviewed journal in English, Finnish or Swedish.
Because psychopathy is prevalent in various populations and
both genders, we also included community samples in addition
to prison and forensic populations. Consequently, both genders
were included in our study. Furthermore, most records use PCL-
R (5–7) as the measure of psychopathy, but records with PCL-R
derived instruments were also included.

If the sample mean age was less than 17.50 years, the
record was excluded. This criterion applied to both affected
subjects and control groups. This criterion resulted in
exclusion of early adolescence studies, but allowed room for
late adolescence studies.

Data Collection
The following databases were accessed to acquire records for
study: PubMed (NCBI), Medline (Ovid), PsycINFO (Ovid),
PsycARTICLES (Ovid), Embase, and Criminal Justice
Abstracts (EBSCO). The search was executed on the 4th of
February 2019. Apart from categorical psychopathy, search
strings, such as callous-unemotional traits, conduct disorder,
and antisocial behavior, were used in order to encapsulate the
dimensional continuum of psychopathy. The search strings and
methods are available in Supplementary Materials.
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The screened records (n = 526) were rated for either
inclusion or exclusion by three independent assessors at the
Niuvanniemi Hospital (BM Mika Johanson and forensic
psychiatrics MD Olli Vaurio, and MD, PhD Markku
Lähteenvuo). The initial interrater reliability for inclusion
and exclusion was estimated with Fleiss' Kappa, reaching a
Kappa value of 0.942 and an initial agreement percent across
the raters of 97.34%. All articles with initial disagreement
were re-rated within the group, and a decision for either
inclusion or exclusion was made in consensus. As a result, a
total of 118 records were included in the study and 408
excluded (Figure 1). The characteristics and key findings of
each included study are summarized in the Review Matrix
(Table S1). Excluded records with reasons for exclusion are
available in Table S2.

Coding and Analysis
Data from the included records (n = 118) were extracted and
coded to form the review matrix (Table S1). The coded data
included author and year of the record, type, and design of the
study, sample characteristics, exclusion criteria, covariates,
behavioral measures, MRI modality and method, and key
findings. Every record was assigned with a unique and
corresponding number. Type and design of the study included
also the mean psychopathy score for the sample. Sample
characteristics included sample size, mean age, and percentage
of females. Based on the data in the review, matrix, functional,
structural, and diffusion tensor MRI findings that correlated with
psychopathy dimensionally or categorically, were compiled to
Table 1. Findings that correlated with core psychopathy only
were compiled to Table 2.

Apart from the review matrix, the records were divided into
three groups based on whether they aimed to investigate the
Frontiers in Psychiatry | www.frontiersin.org 3
neural correlates of (i) psychopathy or psychopathic traits,
(ii) ASPD, or (iii) CD. The included studies were further
divided into structural, functional, and diffusion tensor MRI
studies (Figure 2). Due to the great number of functional
neuroimaging studies of psychopathy, these studies were
grouped according to task or setting into six groups (Table
S3), in order to simplify the summarization process. The six
groups were (i) fairness, (ii) moral issue, (iii) viewing affective
content, (iv) reward, (v) lying and deception, and (vi) default
mode network. The default mode network refers to
interconnected areas in the brain, the activity of which
reduces in goal-oriented tasks. The areas comprise of ventro-
and dorsomedial prefrontal cortex, posterior cingulate cortex,
precuneus, and lateral parietal cortex (103). Normal function of
the default mode network is associated with self-referential
(104), affective (105), and moral cognitive abilities (106, 107).
RESULTS

Several aberrancies were reported in the psychopathic brain
in structural, functional, and diffusion tensor imaging studies.
The neuroanatomical regions with most reported aberrancies
in individuals with psychopathic traits categorically or
dimensionally as a function of total psychopathy score are
summarized in Table 1. Further, findings correlating with core
psychopathy, i.e. interpersonal-affective dimensions only, are
summarized in Table 2. These areas comprised to great extent
of frontotemporal and limbic regions. These areas are also
illustrated in Figure 3. The prefrontal correlates marked in
Table 2 are divided into functional and anatomical subregions
in Table S4.

Findings regarding psychopathy are presented first in order of
modality. Thereafter, findings related to ASPD and CD are
presented and compared to those of psychopathy.

Structural Gray Matter Findings
in Psychopathy
Structurally, aberrancies were described mostly in terms of
gray matter volume (GMV) reductions. For a brief summary of
implicated brain regions, please see Table S5. Moreover and
intriguingly, “successful psychopaths” did not show any
significant GMV loss compared to healthy controls, whereas
their “unsuccessful” counterparts showed prominent
losses (17).

Prefrontal Cortex
Decreased GMV was reported in several areas of the prefrontal
cortex: orbitofrontal cortex (17, 25, 29, 30, 37, 46), dorsomedial
prefrontal cortex (23, 33, 38, 39), frontal gyri (25, 33, 37, 39, 41),
frontopolar cortex (25, 29, 46), precentral gyri supplementary
motor area, sensory motor cortex (25), ventromedial prefrontal
cortex, lateral prefrontal cortex (27), and dorsolateral prefrontal
cortex (37). However, a few studies reported a positive
association between orbitofrontal cortex GMV and degree of
psychopathy (28, 36, 47).
FIGURE 1 | A flowchart of the screening process.
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TABLE 1 | Key neuroanatomical areas affected in psychopathy categorically and dimensionally. The records are grouped by method. Dimensional correlations in terms
of total psychopathy score are shown.

No Record Method AMY HIP INS CG PFC TEMP FUSI PAR OCC CAU PUT CB VS WMT

52 Baskin-Sommers et al. (22) S g- g-
17 Bertsch et al. (23) S ↓g ↓g ↓g ↓g
1 Boccardi et al. (24) S m

↓g-
22 Boccardi et al. (25) S m

↑g
↓g ↓g ↓g ↓g ↓g ↓g

11 Boccardi et al. (26) S m m ↓g
m

40 Contreras-Rodríguez et al. (27) S ↓g ↓g ↓g ↓g ↓g ↓g ↓g ↓g
38 Cope et al. (28) S g- g- g+ g+ g- g- g+
85 de Oliveira-Souza et al. (29) S ↓g g- ↓g- ↓g-
51 Ermer et al. (30) S ↓g- ↓g- ↓g- ↓g- ↓g-
16 Fairchild et al. (31) S ↓g ↓g ↓g ↑g ↓g ↓g ↓g
48 Glenn et al. (32) S ↑g+ ↑g+
95 Gregory et al. (33) S ↓g ↓g ↓g ↓g
105 Howner et al. (34) S ↓g-
45 Korponay et al. (35) S ↑g+ ↑g+
46 Korponay et al. (36) S ↑g+
75 Laakso et al. (37) S ↓g
12 Leutgeb et al. (38) S ↓g ↑g ↑g
24 Ly et al. (39) S ↓g ↓g ↓g ↓g ↓g ↓g
53 Miskovich et al. (40) S m- m- m-
41 Müller et al. (41) S ↓g ↓g ↓g
60 Pardini et al. (42) S ↓g-
21 Raine et al. (43) S ↑w CR, CC
42 Raine et al. (44) S m
43 Sato et al. (45) S ↓g- ↓g- ↓g-
13 Tiihonen et al. (46) S ↓g ↓g ↓g ↓g ↓g ↓g

↑w
↑w ↑g

↑w
78 Vieira et al. (47) S ↓g- ↑g+ ↑g+ ↓g-
59 Yang et al. (48) S ↓g
62 Yang et al. (17) S ↓g

m
↓g ↓g ↓g

28 Anderson et al. (49) F a+ a+ a+/−
76 Bjork et al. (50) F a+
30 Contreras-Rodríguez et al. (51) F ↓a

↓c
↑a
↓c

↓c ↓c ↑a
↓c

40 Contreras-Rodríguez et al. (27) F ↓c ↓c ↑c
↓c

83 Cope et al. (52) F ↑a ↑a ↑a ↑a− a− a− ↑a ↑a− ↑a
6 Decety et al. (53) F ↑a+/−

↑↓c
↑a
↓c

↑a+/−
↓c

↑a
↓c

↑a

14 Decety et al. (54) F ↑a+ ↑a− ↑a+/− ↑a+/− ↑a+/−
71 Decety et al. (55) F ↑a ↑a+ ↑a− a− ↑a− a− ↑a− a−
39 Deeley et al. (56) F ↑a ↑a ↑a ↑a ↑a ↑a ↑a
82 Deming et al. (57) F ↑a ↑↓a ↑a ↑↓a
81 Ewbank et al. (58) F ↓a

c−
c−

33 Fede et al. (59) F a− a−
63 Geurts et al. (60) F ↑c ↑a

↑c
9 Glenn et al. (61) F a+ a+/− a+/− a+/−
87 Gregory et al. (62) F ↑a+ ↓a ↑a
56 Harenski et al. (63) F a− a− ↑a
64 Harenski et al. (64) F a− av
31 Hosking et al. (65) F cv c−

a+
4 Hyde et al. (66) F a−
50 Juárez et al. (67) F c− c+/− c+/− c+/− c+/− c−
58 Kiehl et al. (68) F ↓a ↓a ↓a ↓a ↓a ↓a
45 Korponay et al. (35) F c− c−
96 Larson et al. (69) F ↓a ↑a

(Continued)
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Temporal Cortex
Decreases in GMV were seen in the temporal regions (17, 110).
Most prominent areas of decreased GMV were the superior
temporal gyrus (39, 41), middle temporal gyrus (27, 46), superior
temporal sulcus (29, 45), fusiform gyrus (25, 27), and the temporal
poles (30, 33, 39).

Parietal Cortex
A decrease in GMV in the parietal cortices were reported in two
notable areas: the precuneus (23, 25, 27) and the postcentral
gyrus (23, 33, 46). Moreover, increased white matter volume
(WMV) was observed in the occipital and parietal lobes as well as
in the left cerebellum (46).

Occipital Cortex
The reported GMV reductions in the occipital cortex appeared to
be of general nature (23, 39). Areas that were specified include
Frontiers in Psychiatry | www.frontiersin.org 5
the cuneus (25) and peristriate cortex (45) of the visual
processing areas.

Limbic Structures
Several regions of the limbic system, the orbitofrontal cortex
included (111), showed decreased GMV or abnormal morphology
in psychopathy. In particular, the PCL-R superordinate
psychopathy was related with decreased GMV across the
paralimbic and limbic regions (22).

The amygdalae showed decreased GMV in psychopathy (17,
30, 42, 47, 48, 51). Somewhat contradictory to these findings,
Boccardi and colleagues (25) reported larger global amygdalar
volumes in a group of psychopathic subjects compared to healthy
control group. Further, the amygdalae of psychopathic subjects
showed aberrant morphology in the basolateral nuclei (17, 25).

In addition to the amygdalae, the hippocampi (24, 27, 30, 44)
and the parahippocampal gyri (30, 46) showed reduced GMV.
TABLE 1 | Continued

No Record Method AMY HIP INS CG PFC TEMP FUSI PAR OCC CAU PUT CB VS WMT

10 Lindner et al. (70) F c+ c+ c+ c+
99 Marsh & Cardinale (71) F a− a− a+ a−
57 Mier et al. (72) F ↓c ↓c ↓a
89 Motzkin et al. (73) F ↓a ↓a ↓a
55 Müller et al. (74) F ↑a ↓a ↑↓a ↑↓a ↑↓a ↑↓a ↑↓a ↑↓a ↑a
3 Osumi et al. (75) F c−

a−
c− a−

c−
a− c−

a−
c−

15 Pera-Guardiola et al. (76) F ↓g
54 Philippi et al. (77) F ↓c− ↓c− ↓c−
66 Pujara et al. (78) F a+/−

g+
18 Pujol et al. (19) F ↓a ↓a−

↓c
↓a
↓c

a− ↓a

67 Rilling et al. (79) F ↓a− a+/−
8 Shao and Lee (80) F ↓a ↓a ↓a
47 Sommer et al. (81) F ↑a ↑a ↑a
32 Vieira et al. (82) F ↑a ↑a
70 Yoder et al. (83) F ↓a−

↓c−
↓a− ↑a+ ↑a+

↑↓c+/−
↑↓a+/−
↓c−

↑a+
↓c−

↓a− ↓a− ↓a− ↓a−
↓c−

↑a+
↓c−

↓a−

65 Zijlmans et al. (84) F a+ a+
102 Hoppenbrouwers et al. (85) DTI ↓FA UF

↓FA IFOF
↓FA ATR
↓FA CG

89 Motzkin et al. (73) DTI ↓FA UF
37 Sethi et al. (86) DTI ↓FA CG-
84 Sobhani et al. (87) DTI ↓FA UF-
103 Sundram et al. (88) DTI ↓FA & ↑MD CC

↓FA IC
↓FA & ↑MD IFOF
↓FA & ↑MD ACR
↓FA & ↑MD UF
↓FA ILF
↓FA PTR

49 Wolf et al. (89) DTI ↓FA UF-
Febru
ary 20
20 | V
olume
AMY, amygdala; HIP, hippocampus including parahippocampal gyri; INS, insula; CG, cingulate gyrus including cingulate cortex; PFC, prefrontal cortex; TEMP, temporal cortex; FUSI,
fusiform gyrus; PAR, parietal cortex; OCC, occipital cortex; PUT, putamen; CAU, caudate; CB, cerebellum; VS, ventral striatum including nucleus accumbens; WMT, white matter tract;
ATR, anterior thalamic radiation; CC, corpus callosum; CG, cingulum; CR, corona radiata; IC, internal capsule; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus;
PTR, posterior thalamic radiation; UF, uncinate fasciculus; S, structural; F, functional; DTI, diffusion tensor imaging; up-and down-arrow denote increase or decrease, respectively; c,
functional connectivity; a, activity; g, gray matter volume; w, white matter volume; plus and minus signs denote direction of relationship with psychopathy.
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Further, two studies reported abnormal morphologies in the
hippocampi. First, Boccardi and colleagues (24) found that the
hippocampi of psychopathic individuals had a double convex
morphology in comparison to the normal single convex form.
Secondly, Raine et al. (44) found that unsuccessful psychopathic
individuals had a volumetric asymmetry in the anterior
hippocampi with the right side being larger than the left
compared to both successful psychopathic individuals and
healthy controls.
Frontiers in Psychiatry | www.frontiersin.org 6
Decreased GMV was reported in the subdivisions of the
cingulate cortex including the anterior cingulate cortex (25,
39), middle cingulate cortex (41) and posterior cingulate cortex
(23, 27, 30, 45, 46). Moreover, psychopathy was associated with
abnormal gyrification of the middle cingulate cortex extending
into the dorsomedial prefrontal cortex and right parietal cortex
in a study by Miskovich and colleagues (40). With respect to the
anterior cingulate cortex, divergent results were reported by
Glenn, Yang, Raine, and Colletti (112) who did not find
TABLE 2 | Key neuroanatomical regions and their correlation to interpersonal-affective dimensions of psychopathy only.

No Record Method AMY HIP INS ACC PFC TEMP CB DS WMT

52 Baskin-Sommers et al. (22) S g- g-
93 Cohn et al. (90) S g- g-
40 Contreras-Rodríguez et al. (27) S g- g- g- g- g-
38 Cope et al. (28) S g+ g- g- g+
85 de Oliveira-Souza et al. (29) S g- g- g-
16 Fairchild et al. (31) S g-
48 Glenn et al. (32) S g+
105 Howner et al. (34) S g-
45 Korponay et al. (35) S g+
86 Lam et al. (91) S g- g-
12 Leutgeb et al. (38) S g- g+
53 Miskovich et al. (40) S m-
60 Pardini et al. (42) S g-
78 Vieira et al. (43) S g- g+
59 Yang et al. (48) S g-
28 Anderson et al. (49) F a+ a+
79 Anderson et al. (92) F a− a− a− a− a− a− a−
27 Cohn et al. (93) F c+
30 Contreras-Rodríguez et al. (51) F a+
40 Contreras-Rodríguez et al. (27) F c+
83 Cope et al. (52) F a+ a+ a+ a+
6 Decety et al. (53) F a− a− a+/− a+
14 Decety et al. (54) F a+ a+ a+/− a+/−
71 Decety et al. (55) F a+ a+/− a−
97 Freeman et al. (94) F a+
77 Fullam et al. (95) F av
9 Glenn et al. (61) F a+ a+/−
56 Harenski et al. (63) F a−
64 Harenski et al. (64) F a−
31 Hosking et al. (65) F c−
10 Lindner et al. (16) F c+ c+
94 Murray et al. (96) F a−
54 Philippi et al. (77) F c−
69 Schiffer et al. (97) F a−
72 Seara-Cardoso et al. (98) F a−
7 Seara-Cardoso et al. (99) F a−
35 Vieira et al. (100) F a−
5 Yoder et al. (101) F c− c− a− a−
70 Yoder et al. (83) F a− a+ a+ a− a+
65 Zijlmans et al. (84) F a− a−
102 Hoppenbrouwers et al. (85) DTI FA UF-

FA IFOF-
FA ATR-

80 Pape et al. (102) DTI AD CT+
37 Sethi et al. (86) DTI FA CG-
49 Wolf et al. (89) DTI FA UF-
February 20
20 | Volum
e 10 | Ar
AMY, amygdala; HIP, hippocampus including parahippocampal gyri; INS, insula; ACC, anterior cingulate cortex (including parts of middle and posterior cingulate cortex); PFC, prefrontal
cortex; TEMP, temporal cortex including fusiform gyrus; CB, cerebellum; DS, dorsal striatum; WMT, white matter tract; ATR, anterior thalamic radiation; CG, cingulum; CT, corticospinal
tract; IFOF, inferior fronto-occipital fasciculus; UF, uncinate fasciculus; S, structural; F, functional; DTI, diffusion tensor imaging; c, functional connectivity; a, activity; g, gray matter volume;
plus and minus signs denote direction of relationship with core psychopathy.
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differences in volumes between psychopathic individuals and
controls. Of note, the control group in this study had a PCL-R
mean score of 11.5. Furthermore, a positive correlation between
the anterior cingulate cortex volume and psychopathic traits was
reported by Cope and colleagues (28).

Also, the insular cortex showed reduced GMV in
psychopathy (27, 29, 33, 39, 46, 76).

Basal Ganglia
Psychopathy may be accompanied by increased total striatum
volume (32, 35). Glenn, Raine, Yaralian, and Yang (32) noted an
increase in GMV bilaterally in the globus pallidus, putamen, and
in the right caudate body. Similarly, Leutgeb and colleagues (38)
showed increased GMV in the left globus pallidus and caudate.
The enlarged striatum has also been attributed to bilateral
nucleus accumbens and putamen (35). Converging evidence
was provided by a positive correlation between GMV in the
Frontiers in Psychiatry | www.frontiersin.org 7
nucleus accumbens (78), putamen, and caudate (28), and the
degree of psychopathy. There are, however, also contradictory
results. Firstly, Vieira et al. (47) found increased GMV in the left
caudate, but decreased GMV in the left putamen. Secondly,
Boccardi et al. (26) did not find any differences in putamen
and caudate volumes in psychopathy, albeit the structures
manifested aberrant morphology. Moreover, the nucleus
accumbens showed a considerable 13% GMV reduction and
abnormal morphology (26).

Cerebellum
Increased GMV (38, 46) and a positive association between
lifestyle-antisocial dimensions of the PCL-R (27) were reported
with respect to the cerebellum (38, 46). However, negative
associations between cerebellar GMV and interpersonal traits
(28) and interpersonal-affective (27) dimensions were also found.
Furthermore, decreased cerebellar WMV correlated with
psychopathy (113), providing contradictory results to findings
mentioned above.

Functional MRI Findings in Psychopathy
Fairness
In functional MRI studies with game-related tasks, psychopathic
subjects exhibited reduced amygdalar activity in unfair versus
fair conditions (75, 79, 82). Psychopathic subjects showed
decreased amygdalar activity when rejecting an unfair offer,
and decreased connectivity between amygdala and the limbic
regions (75). Osumi and colleagues (75) argue further that
amygdalar hypoactivity is indicative of attenuated reactive
aggression, allowing the psychopathic subjects to adapt their
behavior in order to pursuit personal gain. Furthermore, Viera
and colleagues (82) noted that psychopathic subjects showed
increased activity in the ventromedial prefrontal cortex and right
rostral anterior cingulate cortex in response to unfair offers,
whereas the control group showed increased activity in the left
dorsolateral prefrontal cortex, which according to Viera et al.
(82) implies divergent neural circuitries in decision making.

Morality
Several studies implicated dysfunction of the limbic system in
psychopathy in the context of moral evaluations (59, 63, 99, 101,
114). Activity in the anterior insular cortex, which modulates
anticipated guilt, was attenuated in psychopathic subjects, and
the activity negatively correlated with interpersonal psychopathic
traits (98). Psychopathic subjects also showed diminished
functional connectivity in regions associated with empathetic
and emotional processing, specifically between the anterior
insular cortex and right temporoparietal junction as well as
between the ventromedial prefrontal cortex and amygdala (101).
Moreover, hypoactivity in the dorsolateral prefrontal cortex was
shown (100). In a similar vein, Pujol et al. (114) found attenuated
functional connectivity within the default mode network,
particularly between the posterior cingulate cortex and nearby
visual areas and medial prefrontal cortex, extending to
ventrolateral prefrontal cortex and dorsolateral prefrontal
cortex. Psychopathic subjects also demonstrated decreased
activity in the hippocampi, posterior cingulate cortex, and
FIGURE 2 | Coding and analyzing processes. ASPD, antisocial personality
disorder; CD, conduct disorders; DTI, diffusion tensor MRI; fMRI, functional
MRI; sMRI, structural MRI.
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medial prefrontal cortex (114). Consistently, Marsh and
Cardinale (71) found decreased activity in the right amygdala,
parahippocampal gyrus, and precunei.

Moral severity ratings were correlated with increased activity
in the right posterior temporal cortex in psychopathic subjects,
whereas in the control group ratings were associated with
increased activity in the amygdala (63). Furthermore, the
control group showed increased activity in the ventromedial
prefrontal cortex and anterior temporal cortex during neutral
and moral versus non-moral picture recognition (63).
This setting was replicated in a female sample, and the results
were mostly in line with those of the male sample with
temporoparietal hypoactivity being more pronounced in female
psychopathic individuals (64). Further, attenuated activity in the
posterior cingulate cortex and temporoparietal junction were
also seen in psychopathic subjects when judging traits of self and
others (57).

Default Mode Network
In a great number of studies, the focus lay on investigating
connectivity changes of the default mode network. The studies
argued further that dysfunction of the default mode network is a
key element in psychopathy (27, 67, 70, 73, 77, 92–94, 115).
Firstly, decreased functional connectivity was shown between
Frontiers in Psychiatry | www.frontiersin.org 8
medial-dorsal frontal cortices and limbic regions including the
amygdala (27, 73), posterior cingulate cortex (67, 73, 77), insula,
and hypothalamus (27). Further supporting limbic and
paralimbic dysfunction, Anderson, Maurer, Steele, and Kiehl
(92) discovered that core psychopathy was associated with
reduced activity in the dorsal anterior cingulate cortex (dACC),
posterior cingulate cortex, amygdalae, temporoparietal junction,
insula, and parahippocampal gyri, thus also indicative of a
dysfunctional salience network. Furthermore, psychopathy was
associated with decreased connectivity between the posterior
cingulate cortex and parietal cortex (77). Secondly, the medial
prefrontal cortex, a subregion of the default mode network, failed
to attenuate below baseline in psychopathic subjects at task (94).
Somewhat contrariwise, a positive correlation between
psychopathic traits and mPFC attenuation was found by Sheng
and colleagues (115) in a non-categorial community sample. The
researchers did not, however, report the mean or total
psychopathy score for the non-categorical sample, leaving the
interpretation of the result difficult. Providing further evidence
with respect to prefrontal connectivity bias in psychopathy,
psychopathic traits were associated with increased functional
connectivity between the dorsolateral prefrontal cortex and the
medial-dorsal frontal cortices (27), increased connectivity in the
frontopolar cortex within the default mode network (93) and
FIGURE 3 | A heuristic anatomical map of brain regions correlating with interpersonal-affective dimensions of psychopathy with lateral and medial views (Table 2).
The purpose of the figure is to provide an insight into anatomical localizations. To preserve readability, some of the regions are omitted or are present only on the
other hemisphere. The visualization was done with the BrainNet Viewer [(107) http://www.nitrc.org/projects/bnv/]. The regions of interest were obtained from the
Automated Anatomic Labeling Atlas (108).
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more generally in the PFC (36). Thirdly, the correlation between
dysfunctional default mode network and psychopathic traits was
recently reported in females alike (70).

Lying and Deception
Psychopathic subjects showed increased performance in
deception and lying (61, 80, 95). Particularly, lying related
reductions in activity were seen in the dorsolateral prefrontal
cortex, suggestive of prior cognitive training (61, 80). Fullam,
McKie, and Dolan (95) did not find activity changes in the
dorsolateral prefrontal cortex, but rather increased activity in the
ventrolateral prefrontal cortex in all groups. The researchers did,
however, conclude similarly that deception is prominent in
psychopathy, and it engages more executive cognitive regions
of the brain (95).

Emotional Detachment
Psychopathic subjects showed decreased ability to recognize and
process emotions (51, 72, 74, 76). From a structural viewpoint,
emotion recognition was ascribed to the dorsomedial prefrontal
cortex, orbitofrontal cortex, anterior insular cortex, and posterior
cerebellum in psychopathic subjects, whereas this was attributed
to the temporal cortex and amygdala in the control group (76).
Functionally, increased activity in the medial prefrontal cortex
and visual cortices were seen in psychopathic subjects in emotion
recognition, whereas increased amygdalar activity was seen in
healthy controls (51). In a similar vein, Volman et al. (116) found
decreased functional connectivity between the prefrontal cortex
and amygdala in psychopathic subjects in a facial emotion
recognition task. Moreover, psychopathic subjects exhibited
decreased functional connectivity between bilateral visual
prefrontal cortices and the left amygdala, indicative of
persistent failure in incorporating emotion into cognition (51).

Somewhat divergent from these findings, firstly, PCL-R score
positively correlated with success rate in identifying certain
emotions in a study by Decety, Chen, Harenski, and Kiehl
(117). Secondly, Anderson et al. (49) found that interpersonal-
affective traits correlated with decreased activity in visual
cortices. Nonetheless, the researchers did concur with respect
to increased activity in the medial prefrontal cortex. Thirdly, no
groupwise differences regarding amygdalar activity was found by
Deeley and colleagues (56), but they discovered reduced activity
in the fusiform gyrus in facial processing in psychopathic
subjects. Decety and colleagues (55) discovered similar findings
with respect to activity in the amygdala and fusiform gyrus, but
noted additionally decreased activity in other areas associated
with facial processing, that is, in the superior temporal sulcus,
orbitofrontal cortex, inferior occipital gyrus, inferior frontal
gyrus (IFG), and ventromedial prefrontal cortex across all
emotion ranges. Furthermore, psychopathic subjects showed an
increase in activity in the anterior insular cortex in this setting
(55). Thirdly, Müller et al. (74) discovered an increase in activity
in the right amygdala, anterior cingulate cortex, and left superior
temporal gyrus in psychopathic subjects that were exposed to
emotional images with negative valence. However, Zijlmans et al.
(84) could not find evidence of amygdalar involvement, but
Frontiers in Psychiatry | www.frontiersin.org 9
showed that callous-emotional (CU) traits positively correlated
with activity in the left superior temporal gyrus and cingulate
cortex. Of note, the healthy control group had a greater total
psychopathy score than the multi-problem group they were
compared to in this study.

The role of amygdala in emotion processing in psychopathy
appears inconsistent. Community samples showed that
amygdalar hypoactivity was associated with CU traits in
processing both positive and negative emotions (100, 118). In
contrast, Sadeh and colleagues (119) discovered that impulsive-
antisocial dimension of psychopathy positively correlated with
amygdalar activity. Moreover, Larson and colleagues (69) found
that amygdalar activity did not differ between psychopathic
subjects and control group when explicitly attending to a
threat. However, psychopathic subjects exhibited decreased fear
potentiated startle in terms of reduced amygdalar activity and
concomitant increase in activity in the ventrolateral prefrontal
cortex and dorsolateral prefrontal cortex when the subjects were
engaged in an attentive task prior to presenting the threat (69).

Mier and colleagues (72) investigated the recognition of
affective mental states, and found a prominent and widespread
hypoactivity in the mirror neuron system of psychopathic
subjects, more specifically in the amygdala, inferior prefrontal
gyrus, and superior temporal sulcus. Furthermore, psychopathic
subjects lacked connectivity between the superior temporal
sulcus and amygdala (72). Consistent with a dysfunctional
mirror neuron system, Sommer and colleagues (81) discovered
that psychopathic subjects exhibited increased activity in
attention- and outcome-related areas, including the
orbitofrontal cortex, temporoparietal junction, and medial
prefrontal cortex, whereas the control group exhibited
increased activity in areas associated with empathy and the
mirror neuron system including the superior frontal gyrus and
supramarginal gyrus. Converging results were found by Reniers
and colleagues (120) showing that higher degree of psychopathic
traits entailed similar activity changes in areas involved in
empathy and moral decision making including the inferior
parietal lobule, supramarginal gyrus, precuneus, dorsolateral
prefrontal cortex, and medial prefrontal cortex.

In response to pain depicting scenarios, psychopathic subjects
showed attenuated activation of also other empathy-related
regions inc luding ventromedia l pre fronta l cor tex ,
periaqueductal gray matter (PAG), posterior superior temporal
sulcus (pSTS), and lateral orbitofrontal cortex (54). However,
they showed increased activation of mentalizing-related regions
including anterior insular cortex, dorsomedial prefrontal cortex,
and dorsal striatum (54). Decety, Chen, Harenski, and Kiehl (53)
discovered that in psychopathic subjects empathy-eliciting
circuits such as the anterior middle cingulate cortex, anterior
insular cortex, supplementary motor area, IFG, amygdala, and
somatosensory cortex were activated when imaging oneself in
pain. However, these circuits were not activated during a third
person perspective, i.e. when imagining others in pain.
Furthermore, in the third person perspective, psychopathic
subjects exhibited an increase in activity in the ventral striatum
(53). In fact, activity in the ventral striatum correlated with core
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psychopathic traits in a similar setting (117). Moreover, Seara-
Cardoso, Viding, Lickley, and Sebastian (98) showed that neural
responses to imagining others in pain depended on the
dimension of psychopathy. More specifically, interpersonal-
affective traits negatively correlated with activity in the bilateral
anterior insular cortex, IFG, and middle cingulate cortex,
whereas antisocial lifestyle traits positively correlated with
activity in these areas (98). Molenberghs and colleagues (120)
discovered somewhat convergent neural correlates in a
punishment setting by showing that a higher degree of
psychopathic traits correlated with less activity in brain areas
involved in perceiving others in pain, including the anterior
insular cortex, orbitofrontal cortex, and dACC. Sitaram and
colleagues (122) conducted a pilot study on volitional
regulation of the anterior insular cortex by employing negative
emotional imageries in conjunction with contingent feedback.
They found that one of the four psychopathic subjects learned to
regulate the anterior insular cortex.

Reward Circuitry
A number of studies reported aberrancies in the reward circuitry
in psychopathy. Hosking and colleagues (65) showed that
increased subjective value-related activity in the right nucleus
accumbens was associated with psychopathy. Furthermore,
psychopathic subjects exhibited decreased functional
connectivity between ventromedial prefrontal cortex and
nucleus accumbens, and this functional connectivity was
inversely associated with the frequency of criminal convictions.
These findings were ascribed to the interpersonal-affective
dimension of psychopathy in particular (65). In contrast,
Korponay and colleagues (35) discovered several resting-state
functional connectivity aberrancies driven by the lifestyle-
antisocial dimension including striato-midbrain, striatostriatal,
and corticostriatal connectivities with the latter including
increased connectivity between the dorsolateral prefrontal
cortex and nucleus accumbens. In a similar vein, Geurts and
colleagues (60) found that psychopathic subjects showed
increased reward expectancy related activity in the ventral
striatum, attributed to impulsive-antisocial traits. Psychopathic
subjects also exhibited decreased reward expectancy related
activity in the PAG, and increased functional connectivity
between the dorsomedial prefrontal cortex and ventral
striatum (60). Pujara and colleagues (78) discovered, however,
that all dimensions of psychopathy were associated with
increased activity in the ventral striatum in a gain versus loss
condition. Convergently, reward anticipation in psychopathy
correlated with activity in the nucleus accumbens and anterior
mesofrontal cortex (50). In a similar setting, Buckholtz and
colleagues (123) attributed the increased activity in the nucleus
accumbens to antisocial and impulsive traits. As an alternative to
monetary rewards, Cope and colleagues (52) approached the
setting from a different angle. They presented imprisoned
substance-dependent psychopathic subjects drug-related cues
and discovered that psychopathy was associated with decreased
activity in the anterior cingulate cortex, posterior cingulate
cortex, amygdala, hippocampus, globus pallidus, caudate, and
frontal gyri.
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in Psychopathy
The integrity of white matter structures appeared to play a
pivotal role in psychopathy. Several studies showed reduced
fractional anisotropy (FA) in the uncinate fasciculus on the
right side (73, 87, 89) and bilaterally (16, 85, 88). These
findings were in general attributed to the interpersonal-
affective dimensions (85, 89, 124), but also to a lesser extent to
lifestyle-antisocial dimensions (85). Moreover, increased radial
diffusivity (RD) in the uncinate fasciculus correlated with the
interpersonal dimension of psychopathy (16).

In addition to the uncinate fasciculus, aberrancies in other
various white matter structures were reported. Sethi and
colleagues (86) found that psychopathic subjects exhibited
decreased FA in the left dorsal cingulum, indicative of
emotional detachment and dysfunction of the default mode
network. In turn, Hoppenbrouwers and colleagues (85)
discovered bilaterally decreased FA in the uncinate fasciculus,
anterior thalamic radiation, and inferior fronto-occipital
fasciculus. Furthermore, Yoder, Porges, and Decety (83)
conducted a tractography of the amygdalar subnuclei and
found that CU traits negatively correlated with functional
connectivity between dACC and the central amygdalar
subnucleus (83).

Structural Gray Matter Findings in ASPD
Similar to psychopathy, ASPD was associated with gray matter
aberrancies in the limbic and cortical areas. Decreased GMV
was noted in anterior cingulate cortex (125–127) superior
temporal sulcus, superior temporal gyrus, frontal gyri (125),
orbitofrontal cortex (125, 127, 128), sensory motor area,
frontopolar cortex (127), medial prefrontal cortex (127, 128),
and rectal gyrus (128). In a study by Kolla et al. (110),
psychopathic and ASPD groups were compared to each
other, and psychopathic individuals had a more pronounced
decrease in GMV in temporal and cerebellar regions. Further,
contrary to findings in psychopathy, several of the regions with
gray matter reductions were accompanied by increased surface
area, most notably in the superior temporal gyrus, superior
frontal gyrus, superior temporal sulcus, supramarginal gyrus,
orbitofrontal cortex, insula, and parahippocampal gyrus (125).
Furthermore, ASPD subjects had lower right thalamic volume
compared to healthy controls (129). Both the volume of the
anterior cingulate cortex and that of the right thalamus
negatively correlated with psychosocial deprivation (126,
129). Moreover, increased GMV and WMV were found in
ASPD subjects in the inferior parietal lobule and precuneus,
respectively (130). However, a study by Howner et al. (34)
showed that ASPD individuals had a decreased global brain
volume compared to healthy controls.

Functional MRI Findings in ASPD
Tang et al. (131) investigated resting-state neural activity
in ASPD and found that ASPD subjects showed decreased
activity in the posterior cerebellum and middle frontal gyrus
(MFG). Contrariwise, ASPD subjects showed increased activity
February 2020 | Volume 10 | Article 1027

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Johanson et al. A Systematic Review of Neuroimaging of Psychopathy
in the middle occipital gyrus, inferior temporal gyrus, and
inferior occipital gyrus (130). Similarly, Liu, Liao, Jiang,
and Wang (132) found decreased activity in the posterior
cerebellum, but also in temporal areas and in the orbitofrontal
cortex. Recently, Kolla and colleagues (133, 134) noted that
monoamine oxidase A (MAOA) genotype was associated
with ASPD. High activity MAOA subjects showed increased
resting-state functional connectivity between caudate,
frontopolar cortex, and anterior cingulate cortex compared
to low activity MAOA subjects and healthy controls. The
researchers also found that instrumental aggression and
functional connectivity from the ventral striatum to the
precuneus had an inverse correlation in the low activity
MAOA subjects, and a positive correlation to the angular gyrus
(134). Increased corticostriatal resting-state connectivity was also
described in psychopathic individuals (35).

Aberrant neural correlates were also found at task. Firstly,
Kumari et al. (135) found that ASPD individuals showed
decreased activity in the left frontal gyrus, anterior cingulate
cortex, and precuneus in an n-back setting. Secondly, decreased
activity in the thalamus was noted in a NoGo condition
suggesting impaired control inhibition (136). In a similar vein,
Schiffer et al. (97) discovered in a Stroop color naming task that
response times and activity in the dorsolateral prefrontal cortex
correlated with impulsivity. Furthermore, the ASPD group
showed decreased activity most prominently in the left dACC
and Wernicke's area compared to healthy controls. Importantly,
the decreased activity in the dACC was associated with
interpersonal-affective dimensions of psychopathy (97).
However, Gregory et al. (62) found more divergent neural
activity in ASPD and psychopathy in a reversal learning
setting. The researchers found that psychopathic individuals
responded to punishment with increased activation of the
posterior cingulate cortex and insula, whereas ASPD subjects
showed decreased activity in these areas (62). Further evidence
for divergent neural correlates was provided by Murray, Shaw,
Forbes, and Hyde (96) who showed that antisocial behavior, but
not CU traits, was associated with decreased activity in the
ventral striatum and dorsolateral prefrontal cortex during
reward anticipation.

In a facial emotion processing condition, Hyde, Votruba-
Drzal, Hariri, and Manuck (66) found that ASPD traits positively
correlated with amygdalar activity, whereas with psychopathic
traits the correlation was negative. Indeed, amygdalar
hyperreactivity was linked especially to reactive aggression
(137). Furthermore, ASPD traits positively and psychopathic
traits negatively correlated with tendency to feel unpleasant
emotional states (66). In recognizing emotional states based on
eyes only, Schiffer and colleagues (138) found no group
differences in performance in ASPD versus healthy controls.
Contrariwise, psychopathy was associated with diminished
ability to recognize emotions. However, ASPD subjects did
exhibit decreased activity in the amygdala and increased
activity in the left medial prefrontal cortex, ventrolateral
prefrontal cortex, pSTS, temporoparietal junction, fusiform
gyrus, and precuneus (138).
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Akin to psychopathy, decreased FA was seen in the uncinate
fasciculus, inferior fronto-occipital fasciculus, and anterior
thalamic radiation in ASPD (88, 139). Of note, axial diffusivity
(AD) and radial diffusivity (RD) revealed additional regions not
detected with FA alone, implying abnormal axonal structure and
demyelination in ASPD, respectively. Importantly, impulsivity
negatively correlated with AD in the corpus callosum, posterior
corona radiata, and posterior thalamic radiation, whereas risky
behavior positively correlated with RD in the superior
longitudinal fasciculus and inferior fronto-occipital fasciculus
(139). Moreover, the antisocial lifestyle dimensions of
psychopathy were associated with decreased FA and increased
mean diffusivity (MD) in the frontal lobe (88).

Structural Gray Matter Findings in CD
CD was associated partly with similar GMV reductions as were
seen in psychopathy including amygdala, insula, dorsomedial
prefrontal cortex, orbitofrontal cortex, fusiform gyrus, and
inferior and superior occipital cortex (31). Dissimilar to
psychopathy, a decrease in caudate GMV and an increase in
frontal operculum and inferior temporal gyrus GMV was seen.
However, the researchers also noted that CU traits positively
correlated with the caudate nucleus and ventral striatum
consistent with findings of increased striatal volumes in
psychopathy. Furthermore, compared to healthy controls, the
GMV changes in CD were similar irrespective of childhood- or
adolescence on-set with the exception of adolescence on-set
group showing GMV reductions in the orbitofrontal cortex.
(31). In turn, Budhiraja et al. (140) investigated the brain
structure of young women with prior CD diagnosis. They
noted an increase in GMV in the superior temporal gyrus and
a decrease in GMV in the anterior cingulate cortex,
hippocampus, and lingual gyrus, which were attributed mainly
to substance use disorder (SUD), anxiety, and depression
symptoms (140). In comparison, decreased GMV in both the
anterior cingulate cortex and the superior temporal gyrus were
reported in psychopathy. Moreover, the findings of Budhiraja et
al. (140) may also imply gender specific changes in CD as the
sample in Fairchild et al. (31) only included males. Indeed,
Lindner et al. (124) emphasized that CD in males and females
differed in terms of genotype and phenotype. However, a study
by Cohn et al. (90) found reduced gray matter concentration in
the insula and amygdala irrespective of gender. CU traits
negatively correlated with these findings (90), which are in line
with findings in psychopathy. Similarly, a longitudinal cohort
study by Pardini, Raine, Erickson, and Loeber (42) showed that
decreased bilateral amygdalar volume was associated with higher
levels of psychopathy from childhood to adulthood.
Furthermore, the amygdalar volumes successfully predicted
increased psychopathic features and committing violent acts in
a 3-year follow up. The researchers underscored the possibility of
amygdalar lateralization by showing that the left amygdalar
volume negatively correlated with the lifestyle dimension of
psychopathy, while the right amygdalar volume negatively
correlated with interpersonal-affective dimensions (42).
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Moreover, prior CD diagnoses were shown to predict decreased
amygdalar activity, higher CU traits and increased aggression as
well as impulsivity in adulthood (141).

Functional MRI Findings in CD
The few functional neuroimaging studies of CD included in this
review yielded results quite similar to those in psychopathy.
Firstly, resting-state functional connectivity analysis revealed
aberrancies in the default mode and salience networks, and
also in the frontoparietal network. CU traits were associated
with increased connectivity in the left frontopolar cortex within
the default mode network. In turn, impulsivity was associated
with increased connectivity in the left IFG within the
frontoparietal network as well as the left amygdala within the
salience network (93). Secondly, Ewbank and colleagues (58)
investigated facial emotion processing in CD and found that CD
subjects showed decreased amygdalar activity compared to
healthy controls. Moreover, psychopathic traits were associated
with reduced connectivity between the ventral anterior cingulate
cortex and the left amygdala (58).

Diffusion Tensor MRI Findings in CD
In a study by Lindner et al. (124), young women with a prior CD
diagnosis exhibited reduced AD in the forceps minor and the
genu and the body of corpus callosum compared to comorbidity
matched controls without CD. Furthermore, the researchers
could not ascertain abnormal FA in the uncinate fasciculus
(124), as was seen in psychopathy on the contrary. However,
Pape and colleagues (102) found a positive correlation between
FA and with grandiose-manipulative traits in the uncinate
fasciculus, corpus callosum, inferior fronto-occipital fasciculus,
corticospinal tract, forceps minor, and anterior thalamic
radiation in a mixed sample, albeit a non-categorical one. The
direction of correlation was negative for RD in the same tracts
and a number of other WM tracts. Further, they found that CU
traits positively correlated with AD in the corticospinal tract
(102). In a similar vein, Passamonti et al. (142) discovered that
CD subjects had increased FA, increased AD and decreased RD
bilaterally in the external capsule and uncinate fasciculus
compared to healthy controls. As this was a male sample, the
findings of Lindner et al. (124) may imply gender differences
in CD.
DISCUSSION

The aim of this study was to conduct a systematic literature
review on MRI neuroimaging of psychopathic traits, to
summarize findings from different MRI modalities that cover
different aspects of neural function and structure, and to examine
whether these aspects were consistent. A total of 118 records
were included in the study. The records consisted mainly of
neuroimaging of clinical psychopathy, but also of non-clinical
psychopathic traits, antisocial personality disorder, and conduct
disorder. Both structurally and functionally, most aberrancies
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were described in frontotemporal regions as well as in limbic and
paralimbic structures.

Psychopathic individuals exhibited decreased GMV in
frontotemporal, limbic, paralimbic, and cerebellar structures.
Although findings indicated both reduced GMV and abnormal
morphology of the hippocampus, evidence for enlargement of
the temporal horns in psychopathy was not found nor was it
investigated in particular. The temporal horns of the lateral
ventricles lie adjacent to the hippocampi. Thus, decreased
volumes in hippocampi can inversely correlate with that of
temporal horns (143). Temporal horn enlargement has been
implicated in some psychiatric diagnoses including Alzheimer
disease (144) and schizophrenia (145). Moreover, global GMV of
psychopathic individuals does not appear to significantly differ
from that of general population (19).

Dysfunction of the default mode network was found. This was
anticipated as the default mode network consists of areas
overlapping the limbic and paralimbic regions including the
temporoparietal junction, posterior cingulate cortex, precuneus,
and medial prefrontal cortex (92, 146). Certainly, these regions
exhibited decreased GMV, activity, and functional connectivity
in psychopathic subjects. The dysfunctional default mode
network could, to a degree, relate to the aberrant behavior
displayed in psychopathy as the normal function of the default
mode network is associated with reflective self-awareness (104),
emotional reflection (105), moral judgment (106, 107), and the
ability to relive past experiences and construct possible futures
(147). However, ASPD was also associated with dysfunction in
several networks including default mode (134), attention,
cerebellar (131), and frontoparietal control networks (148).

Furthermore, findings from DTI studies corroborate the
aforesaid notions. The uncinate fasciculus was the white matter
tract with most anomalies in terms of decreased FA. The
uncinate fasciculus connects the amygdala to ventromedial
prefrontal cortex and orbitofrontal cortex and is ostensibly
responsible for several cognitive and affective functions that are
erring in psychopathy including moral judgment, empathy, value
representation, and stimulus-reinforced learning (14, 149, 150).
However, reduced FA in the uncinate fasciculus cannot be
considered strictly specific to psychopathy as similar findings
were reported in ASPD and have previously been reported in
patients with generalized anxiety disorder (151) and major
depression disorder (152). Notwithstanding, reduced FA seems
to be a viable marker for affective and social disorders. Another
white matter tract implicated in psychopathy was the dorsal
cingulum that connects posterior cingulate cortex to medial
prefrontal cortex and is associated with social and emotional
cognition (153). Decreased FA in this tract was associated with
interpersonal-affective dimensions of psychopathy and
emotional detachment. As similar findings have been reported
in other psychiatric conditions such as post-traumatic stress
disorder (154) and schizophrenia (155), reduced FA in the dorsal
cingulum is also not specific for psychopathy. Moreover,
Hoppenbrouwers and colleagues (85) suggest that a
dysfunctional striato-thalamo-frontal network and mesolimbic
reward system is present in psychopathy. Yoder, Porges, and
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Decety (101) postulate further in their tractography study that
different psychopathic traits may arise from different parts of the
highly specialized amygdala.

These findings are in accordance with the recently proposed
Impaired Integration Theory (IIT) (156). The IIT attempts to
integrate psychopathic manifestations, such as emotional
detachment and impaired ability to incorporate perceived
information into operant and contextual learning, with brain
abnormalities inherent to psychopathy (156).

Interestingly, empathy-related regions in the brain were
active in psychopathic subjects when imagining oneself in pain
(53). However, when imagining others in pain, these areas were
not active. This being said, psychopathic individuals appear not
to lack the apparatus for empathy, yet they are evidently unable
to simulate and understand the internal states of others.
Moreover, the activation of ventral striatum in imagining
others in pain might indicate that psychopathic individuals
take pleasure in observing others in pain (53). Furthermore,
the recognition of the affective mental states of others in
psychopathy was attributed to decreased activity in the mirror
neuron system (MNS) and increased activity in outcome-related
regions (72, 81). A similar compensation mechanism for
deficient empathy by engaging more cognitive areas of the
brain was also seen in ASPD (138). Concisely, the MNS
represents a mechanism by which the motor processes and
representations of one individual displaying a motor function
can be induced in another individual by merely observing the
first individual (157). However, such a mimicry is likely
insufficient to understand the emotions or actions of others
(157), which is a complex cognitive process involving the
Theory of Mind (ToM) comprising areas significantly
overlapping with the default mode network (158). Dysfunction
of the MNS has also been reported in autism spectrum
disorders (159).

Psychopathic individuals display lack of empathy and
affective cognition, and they might even be unconquerable by
love. The mesolimbic reward system, together with limbic and
paralimbic system, contribute to the feeling of romantic love
(160). All these three systems were dysfunctional in psychopathy.
In addition, according to a recent qualitative study of former
spouses to psychopathic individuals per the PCL-R, the former
spouses were repeatedly subjected to coercion, conning, and
manipulation (161). We speculate that psychopathic
individuals might not be capable of romantic love, based on
the notion that love and desire are two neuroanatomically and
fundamentally separate entities (160). Data on this topic are
scarce, and the topic opens up interesting opportunities for
future studies.

Also, intriguingly, aberrant cerebellar function and structure
were reported in psychopathy. Beyond the cerebellum's
traditional role in motor functions, an increasing amount of
evidence indicates that the cerebellum has functions pertaining
to emotional and cognitive control as well as morality (162–164).
Schmahmann (165) posits that the cognitive and limbic
functions of the cerebellum lie in the posterior lobe, in line
with the findings in this review. Firstly, the posterior cerebellar
Frontiers in Psychiatry | www.frontiersin.org 13
lobe exhibited reduced activity in a moral judgment task in
psychopathic subjects (114). Secondly, emotion recognition was
associated with increased GMV in the posterior cerebellar lobe
(76). Thirdly, reduced resting-state activity in the posterior
cerebellum was found in ASPD subjects (131, 132). Moreover,
lesion studies have shown that damage to the posterior cerebellar
lobe can lead to deficient cognitive and affective information
processing (166). We suggest that a deeper investigation into the
role cerebellum in psychopathy is warranted and might result in
new insights.

Only one of the imaging studies focused on a specific
genotype and its relationship to ASPD (134). Twin studies
suggest that heredity play a pivotal role in psychopathic traits
across childhood (167–170), adolescence (171–175), and
adulthood (172, 177, 178). Up to 70% of the variance in
psychopathic traits may be attributable to genetics according to
recent studies (177–180). However, the involved genes remain to
be identified (180). One noteworthy candidate is the human
serotonin transporter gene (SLC6A4) (181, 182). SLC6A4
manifests in two forms, and carriers of the short allele are
predisposed to negative mental health aspects including
anxiety, depression, substance use disorder, and suicide (181),
whereas homozygosity of the long allele is associated with
emotional detachment and psychopathic traits (182). Another
candidate is the X-linked monoamine oxidase A (MAOA) gene
and its high (MAOA-H) and low activity alleles (MAOA-L) (183).
Individuals with absent or low acting MAOA are more prone to
aggressive and impulsive behavior and exhibit higher
psychopathic traits (184). Furthermore, identifying genes may
reveal viable biomarkers for psychopathy. Recently psychopathy
was also associated with upregulation of Ribosomal protein L10
Pseudogene 9 (RPL10P9), Zinc finger protein 132 (ZNF132), and
downregulation of Cadherin-5 (CDH5) and Opioid receptor
Delta 1 (OPRD1) genes, which explained 30% to 92% of the
variance in psychopathic symptoms in a stem cell derived study
by Tiihonen et al. (185). Identifying more genes and examining
their relationship to brain structure and function might provide
useful information of the neurobiological etiology of
psychopathy. Some of the variance seen in genetic or
proteomic studies might also be visualizable with modern or
upcoming imaging techniques.

Discovering viable biomarkers for psychopathy is
challenging. The results in this review suggest that
psychopathy and ASPD might stem from dissimilar biological
processes and show divergent neural correlates, yet antisociality
and core features of psychopathy are clumped into one disorder.
The hypothesis of divergent neural correlates explains not only
why some heterogeneity was seen in neuroimaging results of
psychopathy, but also why there were many similar anomalies in
ASPD and psychopathy (Table 3). For example, Sato and
colleagues (45) managed to discriminate psychopathic subjects
from healthy controls based on gray matter changes, but the
psychopathic subjects all had comorbid ASPD. Further, even
though Sadeh et al. (119) did not find a correlation between core
psychopathy and amygdalar hypoactivity, the researchers
emphasize, however, that this finding is not in direct
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contradiction with the theory of amygdalar hypoactivity in
psychopathy, but rather that it provides evidence of divergent
neural correlates with respect to more general antisociality and
core psychopathy. It has, however, also been suggested that
ASPD is a subtype of psychopathy (186). Furthermore, these
two conceptually dissimilar notions are occasionally used
arbitrarily (187). Emphasizing both the inconsistent use of the
terms and the dissimilarities between antisociality and
psychopathy, ASPD has aptly been described as “a euphemism
par excellence” [(188) p. 301]. Taking the aforesaid into
consideration, it is difficult to reach high specificity for
potent ia l b iomarkers for core psychopathy unless
interpersonal-affective and lifestyle-antisocial dimensions are
considered separately. To play with the thought and try to
ensnare core psychopathy, the following combination of tests
could be attempted. Firstly, a DTI showing reduced FA in the
uncinate fasciculus, possibly accompanied by increased RD.
Secondly, an fMRI with an affective mental state recognition or
empathy-related task showing both an increase in activity in
outcome and attention-related areas and a concomitant decrease
in activity in the MNS and ToM.

There has been increasing interest to understand and discover
the neural correlates of psychopathy during the past years.
Although certain noteworthy patterns and neural correlates
have frequently transpired, the neurobiological etiology of
psychopathy remains obscure. Furthermore, the findings
suggest that “successful” psychopathic individuals may not
show similar structural gray matter changes as their
“unsuccessful” counterparts. Consequently, if the single thing
separating “successful” psychopathy from “unsuccessful”
psychopathy is a criminal conviction, then a vast amount of
neuroimaging data is yet to be obtained. The majority of the
neuroimaging studies are conducted in forensic or prison-related
Frontiers in Psychiatry | www.frontiersin.org 14
settings, and these unsuccessful psychopathic individuals
“represent only the tip of a very large iceberg” [(189) p. 115].
Therefore, focusing on non-clinical and community settings
could facilitate the unraveling of the etiology of psychopathy.

This review has several strengths. Firstly, three MRI
submodalities were included in this study. Secondly,
neuroimaging studies of psychopathic traits in community and
clinical settings were included in addition to forensic and prison
populations. Thirdly, we included studies with both genders in
this review. Fourthly, we strived to include a number of
adolescence studies as well, as psychopathic traits manifest as a
continuum from childhood to adulthood.

The qualitative synthesis was not without challenges. Firstly, a
plethora of different tasks were seen in functional neuroimaging.
These tasks needed to be grouped to be able to provide a coherent
written summary. Furthermore, some compromise between the
readability and high level of details needed to be made, although
the Review Matrix contains findings in a more detailed level.
Secondly, psychopathy and psychopathic traits have both various
definitions and instruments to measure them. Including other
instruments apart from the PCL-R can be seen both as a
limitation and strength. On the one hand, this can hinder the
generalizability of the results. On the other hand, more studies in
various settings met the inclusion criteria due to this decision.
Further, several of the non-PCL-R instruments are cross-
validated with the PCL-R.

Perhaps the most challenging aspect of this review was taking
into consideration the high comorbidity of the trait continuums
of ASPD, CD, and psychopathy. These heritable disorders reflect
independent structural and functional aberrancies in the brain,
but also seem to manifest convergent biological processes to
some extent. For example, both CD and ASPD are related
to dysfunction of the default mode network (93, 130) and to
decreased GMV in limbic and cortical regions (31, 128). Further,
the said disorders are not mutually exclusive nor are they
biologically dichotomic constructs. These confounders and the
arbitrary use the notions of psychopathy and ASPD call for
coherence and attentiveness in future research. Another
comorbidity of note is substance abuse disorder, which
damages the integrity of white matter (190, 191), and induces
volumetric gray matter reductions (192, 193).

Another limitation of note is that this review focused on MRI
submodalities. A review on PET, SPECT, and EEG could shed
light on the abstruse neurobiological etiology of psychopathy,
and even add support to our findings. The age criterion applied
in this review comprises a limitation as it led to the exclusion of
several studies. As such, psychopathic traits in childhood and
adolescence may require a systematic literature review of their
own. Moreover, notwithstanding the inclusion of females in this
review, the majority of the studies were conducted on males. This
warrants caution in generalizing the results and more research
on female psychopathy. Further, it is paramount to mention that
“the lack of longitudinal neuroimaging means that persistence of
neural abnormalities can only be inferred, not investigated” as
aptly put by Linder [(194) p. 68].
TABLE 3 | Key dissimilarities and similarities between core psychopathy and
ASPD.

Setting/Characteristic Core psychopathy ASPD

CU traits/Emotional
dectachment

Always Often comorbid

Empathy compensation with
executive brain regions

Yes Yes

Facial emotion recognition Amygdalar
hyporeactivity

Amygdala
hyperreactivity

Emotion recognition ability Diminished Normal
Response to punishment Increased activity in

limbic/paralimbic areas
Decreased activity in
limbic/paralimbic areas

Decreased GMV in limbic/
paralimbic areas

Yes Yes

MAOA -related No Yes
Hereditary Highly Moderately
Aggression Proactive/instrumental Reactive
Notably negative
emotionality

No Yes

WMT aberrancies Decreased FA in the UF Decreased FA in the UF
DMN dysfunction Yes Yes
CU, callous-unemotional; FA, fractional anisotropy; GMV, gray matter volume; MAOA,
monoamine oxidase A; UF, uncinate fasciculus; WMT, white matter tract.
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CONCLUSIONS

This systematic review sums that structural and functional
aberrancies involving the limbic and paralimbic systems
including reduced integrity of the uncinate fasciculus appear to
be associated with core psychopathic features. A deeper
investigation into the role of the cerebellum in psychopathy is
also warranted and might result in new insights. Furthermore,
the evidence suggests that ASPD and psychopathy stem from
divergent biological processes. Still, more neuroimaging studies
are warranted particularly with respect to female and
community psychopathy.
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