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ABSTRACT
Background: Acute diarrheal disease caused by viral, bacterial and parasitic infections are a major global
health problem with substantial mortality and morbidity in children under five years of age in lower and
middle income countries. However, a number of these infections also impact large segments of
populations in upper income countries, as well as individuals who travel overseas for work, business
or pleasure. Campylobacter has been and continues to be a leading cause of disease burden globally
across all income countries.
Aims: The aim of this review is to describe recent understanding in burden of disease, consider the
current landscape of Campylobacter vaccine development, and address the challenges that need to be
overcome.
Sources: Relevant data from the literature as well as clinical trials described in European and US
registries were used to conduct this review.
Content: Despite advances in population health, food security, improved sanitation, water quality and
the reduction of poverty, Campylobacter infections continue to plague global populations. The emerging
recognition of chronic health consequences attributed to this pathogen is changing the potential
valuation of preventive interventions. Advancing development of new vaccines is a present opportunity
and holds promise.
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Introduction

Acute enteric infections causing diarrhea and gastroenteritis
are a global public health problem with high mortality and
morbidity, particularly among children of the developing
world. Each year, approximately 500,000 children under five
years old die from severe, dehydrating diarrhoea and dysen-
tery worldwide, and millions more are hospitalized, mostly in
low-resource countries.1 In addition, growing evidence finds
that children are also susceptible to long-term physical and
cognitive health consequences secondary to these frequent
infections.2

While the overwhelming burden due to these infections is
in the developing world, acute enteric infections are also a
frequent cause for outpatient visits and hospitalization
throughout the developed world with substantial societal
and economic impact. For example, Scallan and colleagues
published recently updated estimates for foodborne illness in
the United States, which indicated that each year 31 major
pathogens acquired in the United States caused 9.4 million
episodes of diarrhoeal illness, 55,961 hospitalizations, and
1,351 deaths.3 While the acute consequences would appear
to be of global significance and drive science and public health
efforts to mitigate the problem, there is growing evidence
linking such infections with a myriad of chronic health con-
sequences including neurological, haematological and rheu-

matological systems.4 Furthermore, as with many other global
infections, antibiotic resistance concerns among bacterial
infections, particularly Campylobacter spp., have brought
alarm to the potential worsening impact of these infections
with decreasing effectiveness of commonly used antibacterials.

To fully address this problem, a multifaceted approach is
needed including improvements in sanitation and hygiene,
safe water, food security, breast-feeding, and adequate nutri-
tion, and vaccination. While vaccines against some enteric
pathogens are available, most are currently used for limited
purposes, although efforts are underway to expand their uti-
lization. Additionally, novel vaccines are in development,
which promise hope to improve the health of at-risk popula-
tions from the developed and developing worlds. Herein, we
review the current public health gap, understanding of patho-
genesis, historical efforts, and current status of vaccine devel-
opment for Campylobacter.

Burden of disease

It is estimated thatCampylobacter infection is associated with 7.5
million disability adjusted life years (DALYs) globally, second
only to rotavirus as a causative agent of diarrheal disease, with
varying epidemiology across multiple populations.5 The 2015
global burden of disease estimates indicate over 25,000 deaths
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annually in children under 5 years of age with the highest rates in
parts of Africa and Asia (Figure 1). Recent studies on diarrheal
disease in several low and middle income countries (LMICs)
have continued to highlight Campylobacter as a significant
pathogen in children under five years of age.6,7 Despite the global
burden of disease, the acute illness is often confounded by high
infection rates in asymptomatic age-matched children.

Two landmark studies have recently described the pathogens
associated with acute enteric infections in children under 5 living
in multiple LMICs. In the Global Enteric Multicenter Study
(GEMS), C. jejuni was identified as a leading cause of moderate
to severe diarrhea in children aged 0–11 months as well as in
children 2–5 years of age across all study sites; however, rates
appeared to be highest at study sites in Bangladesh, Pakistan and
India.6 These data are somewhat limited in their ability to deter-
mine the true burden of campylobacteriosis due to case-control
design. In particular, using mathematical models, Havelaar and
Swart demonstrated that for pathogens in which the force of
infection is high, disease odds ratios may be biased towards the
null and estimates of the population attributable fraction may
underestimate the proportion of cases attributable to the
organism.8 Additionally, microbiologicalmethods have hampered
all prior estimates of Campylobacter morbidity. Specifically, stu-
dies relying on culture-based methods of pathogen identification
likely underestimate pathogen-specific disease burden. In fact, a
re-analysis of GEMS data, highlighted a significant increase in the
attributable incidence of C. jejuni/coli (as well as other enteric
pathogens) to moderate to severe diarrhea when molecular based
methods were used to identify disease etiology.9

In the Malnutrition and Enteric Disease (MAL-ED) study,
designed as a birth cohort study, Campylobacter was the most
common pathogen, identified in approximately 35% of diar-
rheal stools and 25% of non-diarrheal stools in children
< 1 year of age.7 By 1–2 years of age, that proportion had
increased to 40% in diarrheal stools and 35% in non-diarrheal
stools. Estimates of adjusted attributable fraction highlight
Campylobacter as the third leading cause of diarrhea in chil-
dren < 1 year of age in the populations with the highest rates
in two sites in South America (Fortaleza, Brazil and Loreto,

Peru) and in Venda, South Africa. By the second year of life,
Campylobacter attributed to approximately 8% of all diarrheal
cases, the highest of any diarrheal pathogen with the highest
burden in Bhaktapur, Nepal and Loreto, Peru.

In addition to the morbidity associated with acute diarrheal
illness in these populations, Campylobacter infection has been
shown to be negatively associated with linear growth regardless
of whether or not the infection is associated with acute illness.10

In children from the MAL-ED cohort study with Campylobacter
infection, approximately 1 cm growth shortfall and an approx-
imate 0.25 kg less weight gain was seen compared to children
without Campylobacter; an effect that appeared to be most
pronounced at 0–2 months of age.11 Perhaps even more impor-
tant than the association between Campylobacter infection and
growth faltering is the potential link to environmental enteric
dysfunction as recently described by Schnee and Petri.12 If these
associations are confirmed, current burden of disease estimates
have likely grossly underestimated the morbidity associated with
Campylobacter in children in LMICs.

In contrast to LMICs, the rate of asymptomatic infection is
low; however, industrialized countries globally have docu-
mented a high rate of campylobacteriosis associated with
consuming contaminated food and drink. In 2017
Campylobacter was the most commonly identified foodborne
pathogen in the United States with approximately 10,000 cases
confirmed in the 10 FoodNet sites performing active
surveillance.13 In Europe, Campylobacter was also the leading
cause of foodborne disease with over 200,000 cases in 2013,
approximately 2.5 times the number of cases of Salmonella,
another common foodborne pathogen.14 Similarly, data from
OzFoodNet sites, Australia’s foodborne disease surveillance
system, have highlighted Campylobacter as the leading cause
of foodborne disease with an estimated 116 notifications per
100,000 population.15 While these data highlight the impor-
tance of Campylobacter, it is important to underscore the fact
that these studies all likely underestimate the true incidence of
disease due to the surveillance methods utilized. For example,
in the United States, active surveillance as part of FoodNet is
established for 10 representative locations around the country

Figure 1. Campylobacter-attributable under 5 mortality (recreated from .
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accounting for approximately 14% of the US population.
Despite the ‘active’ nature of this surveillance, case identifica-
tion is dependent on subjects seeking care. A 2011 report by
the US Centers for Disease Control and Prevention high-
lighted the under-reporting inherent with this type of surveil-
lance. For Campylobacter, it was estimated that for every 1
case of campylobacteriosis clinically diagnosed, over 30 cases
occurred in the community.16

In travelers to LMICs, Campylobacter is a leading cause of
travelers’ diarrhea (TD) second only to diarrheagenic
Escherichia coli.17–19 Geographically, the incidence of
Campylobacter-attributable TD varies with by far the highest
rates observed in travelers to Southeast Asia. In addition to
being a common cause of travelers’ diarrhea, Campylobacter is
often associated with a more severe disease. In separate stu-
dies, Porter et al and Sanders et al found that approximately
50% of Campylobacter-attributed cases were unable to work as
a result of their illness compared to only approximately 25%
similarly affect cases attributed to other pathogens, highlight-
ing the increased severity of illness in Campylobacter cases of
TD.20,21 Clinically, Campylobacter cases tend to more com-
monly have fever, myalgia, arthralgia, and are more likely to
have a sub-optimal response to treatment compared to TD
cases of other etiology.21

In addition to the acute illness, Campylobacter infection is
associated with numerous neurological, gastrointestinal and
rheumatological post-infectious sequelae which further mag-
nify the overall morbidity of infection.22 In particular,
Campylobacter is the most common infection associated
with Guillian-Barré Syndrome, a disorder in which the
body’s immune system attacks the peripheral nerve cells caus-
ing an acute, ascending flaccid paralysis, a process initiated by
anti-ganglioside antibodies directed to the Campylobacter
infection.23,24 The association between Campylobacter infec-
tion and several chronic gastrointestinal outcomes including
irritable bowel syndrome, functional dyspepsia, inflammatory
bowel disease and celiac disease was recently reviewed and
highlights the significant costs and impact on quality of life
measures associated with this pathogen.25 Campylobacter is
also one of several bacterial enteropathogens associated with
reactive arthritis, a post-infectious sterile inflammation of
joints and tissues that, in a significant proportion of cases,
can be long lasting with significant associated morbidity.26,27

When considering the overall burden of campylobacterio-
sis, in addition to the corresponding acute morbidity and
mortality described above as well as the long-term post-infec-
tious sequelae, a consideration must also be made regarding
anti-microbial resistance (AMR). In a recent study of inter-
national travelers, rates of ciprofloxacin resistance appeared to
increase over time with almost 75% of the strains resistant by
2014.28 In addition to the rate of ciprofloxacin resistance, 4%
were also resistant to erythromycin. The concern over AMR
has led the US Centers for Disease Control and Prevention to
designate antibiotic resistant Campylobacter as a serious
threat to public health.29 Additionally, the World Health
Organization recently labeled Campylobacter as a high prior-
ity pathogen for novel antibiotic development due to the rates
of ciprofloxacin resistance.30 While the majority of
Campylobacter cases do not require antibiotic treatment, the

rising rates of AMR threatens to yield few treatment options
in those at high risk of more serious outcomes or with more
severe disease.

Advances in understanding of pathogenesis

Current knowledge on C. jejuni infectious process has
revealed that the bacteria colonize the intestine via penetra-
tion of the intestinal mucus layer, invade intestinal epithelial
cells leading to damages and ultimately disease manifesta-
tions. A number of mechanisms have been attributed to C.
jejuni virulence including, cell adhesion molecules, cytolethal
distending toxin (CDT), lipooligosaccharide (LOS), antimi-
crobial efflux pumps, capsular polysaccharide (CPS), invasion
proteins, flagella, N- and O-glycosylation,31–34 and a Type VI
secretion system that has been recently discovered in some C.
jejuni strains.35 Unfortunately, the major mechanisms of viru-
lence and human disease are currently unclear due to the lack
of cell and animal models that accurately convey human
infection and disease. Several small animal models have
been used including new-born piglet,36 ferret,37 genetically
modified mice38-40 and even insects.41 Nevertheless, each of
those models require large C. jeuni doses and do not recapi-
tulate the symptoms of human campylobacteriosis. Perhaps
overcoming prior limitations, Giallourou et al. induced
bloody and inflammatory diarrhea following C. jejuni infec-
tion in antibiotic-treated mice fed a low zinc diet.42 This novel
animal model of campylobacteriosis may further elucidate
mechanisms of C. jejuni virulence.

During the infectious process, C. jejuni is actively evading
the host immune defenses through the action of various cell
surface structures, including N- and O-linked glycosylation,
multiple CPS and LOS serotypes and structures between
strains, and molecular mimicry.34 Much of the current
research on C. jejuni pathogenesis has focused on these cell
structure mechanisms, modifications, and phase variations
with the hope of developing vaccines that are unaffected by
mechanisms of immune system escape.

The C. jejuni CPS highly contributes to immune system
evasion. C. jejuni CPS, which was originally thought to be
lipopolysaccharide (LPS), was first discovered upon identifi-
cation of a putative kps locus of the first published C. jejuni
genome sequence.43 Importantly, CPS was found to be the key
antigenic determinant in the Penner heat-stable (heat-stable,
HS) serotyping scheme.44 The Penner serotyping system was
the most widespread method of C. jejuni strain typing and
based on antiserum raised against heat-stable C. jejuni
antigens.45 To date, 47 Penner serotypes have been described.
Considering that CPS is a key determinant of the Penner
serotyping scheme,44 CPS represented a key antigenic deter-
minant and hence a good potential vaccine target. Further
studies revealed a key role of CPS in pathogenesis.
Specifically, CPS was shown to promote resistance to comple-
ment-mediated cell death by normal human serum.46 A recent
study also indicated that CPS plays an essential role in pro-
moting systemic infection and abortion in sheep which was
demonstrated to be partially due to CPS-mediated serum
resistance.47 Importantly, C. jejuni CPS mutants were shown
to be significantly attenuated in a ferret model of diarrheal
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disease and nearly completely attenuated in a Galleria mello-
nella model of C. jejuni disease.46,48 Additionally, mutants
lacking CPS expression were shown to be defective in chicken
colonization, the major reservoir for human infection,
although infected chickens do not develop diarrheal disease
or other major disease symptoms.49 CPS expression and struc-
ture may also influence C. jejuni adhesion to and invasion of
host epithelial cells, which are both believed to be key steps in
the C. jejuni infectious process, although the results have been
inconsistent between studies.46,48–51 This inconsistency
between studies was most likely been due to differences in
the C. jejuni strain, CPS serotype, and/or the cell line used for
these experiments. Taken together, these results suggest a
major role of CPS in C. jejuni pathogenesis and immune
evasion.

Phase-variable modifications play a key role in the
mechanisms of CPS pathogenesis and immune evasion.
Phase variation in C. jejuni occurs via slipped-strand mispair-
ing, where high frequency introduction/deletion of C/G resi-
dues can occur during replication at stretches of 8 or more C/
G residues. This mechanism introduces an early stop codon
resulting in a truncated nonfunctional product.43 One major
phase-variable modification involved in C. jejuni pathogenesis
is the unique O-methylphosphoramidate (MeOPN) modifica-
tion of CPS. An 81–176 mutant defective in MeOPN bio-
synthesis was as sensitive to normal human serum killing as
a non-capsulated mutant,52 highlighting the major role of the
MeOPN modification in immune system evasion, although an
81–176 mutant deficient in MeOPN expression on CPS
showed no significant defect in chicken colonization after
6 days of infection, although the long-term survival was not
tested.48 This result suggests that the MeOPN modification
may be important to survival within humans and possibly
other hosts but not chickens, at least in the short term.
Intriguingly, indirect evidence suggests that the phase-variable
MeOPN modification in the HS2 serotype strain NCTC11168
may actually reduce normal human serum resistance,51

although more detailed studies using specific mutants in the
MeOPN transferase genes are needed to confirm this observa-
tion. In addition to immune evasion, the MeOPN phase
variation may also play a role in pathogenesis since 81–176
mutants deficient in MeOPN biosynthesis or attachment to
CPS surprisingly displayed increased Caco-2 cell invasion but
not adherence vs. wild-type 81–176.48 Therefore, cycling of
MeOPN on 81–176 may play a multifaceted role in C. jejuni
pathogenesis. Importantly, both the galactose 4-OH MeOPN
transferase gene (cjj1420) and the galactose 2,6-OH MeOPN
transferase gene (cjj1435) of 81–176 contain poly(C) tracts
that can undergo slipped-strand mispairing, resulting in
phase variable gene expression during infection.48,53 This
mechanism likely promotes optimal C. jejuni virulence and
fitness during infection.

Another major cell surface modification is LOS, the major
structural component of the C. jejuni outer membrane. C.
jejuni LOS consists of an endotoxin, core oligosaccharide,
and a single O-chain oligosaccharide structure rather than
the repeating oligosaccharide moiety observed in LPS.
Importantly, a number of C. jejuni LOS O-chain oligosacchar-
ide structures have similarity to ganglioside oligosaccharide

structures found on human and animal cells.54,55,56 More
recent studies also identified strains displaying structural
determinants at the non-reducing end of the LOS oligosac-
charide similar to those found on human glycoconjugates
including P blood group antigens, Type I
N-acetyllactosamine, and α2-3-sialylated Type I
N-acetyllactosamine.57 This molecular mimicry may be useful
for C. jejuni evasion of antibody recognition by displaying
self-antigens; moreover, ganglioside-like LOS structures are
also subject to phase-variable expression,58–60 which may pro-
mote antibody and T cell escape. C. jejuni strains expressing
ganglioside-like LOS structures are strongly associated with
the autoimmune disorder Guillain-Barré syndrome (GBS),
which is believed to occur via antibody generation towards
the ganglioside mimics that then damage host tissues and
ultimately GBS symptoms.54 It is possible that C. jejuni LOS
structural mimics may contribute to other autoimmune dis-
ease sequelae associated with C. jejuni such as RA and IBD,
but this remains to be studied. For these reasons, LOS-based
or whole cell vaccines against C. jejuni do not appear practical
or fruitful, as discussed in more detail in the following
sections.

C. jejuni also harbors N- and O-glycosylation systems.
While protein glycosylation in bacteria is being more widely
recognized and appreciated, C. jejuni is quite unique in that it
displays numerous classes of glycoconjugates and glycosyla-
tion systems including protein N-glycosylation, protein
O-glycosylation, LOS, CPS, and peptidoglycan.54 The protein
N-glycosylation synthesizes and attaches a unique heptasac-
charide unit to target proteins that is not further modified,61

except that the terminal GalpNAc residue is sometimes mod-
ified with a phosphoethanolamine (PEtN) by the eptC gene
product.62,63 The role of this N-glycan PEtN modification is
currently unclear since eptC also adds PEtN to LOS and the
flagellar rod protein FlgG.63,64 Expression of this N-linked
heptasaccharide has been shown to promote resistance to
cell death by host digestive protease enzymes such as trypsin,-
65 slightly reduce IL-6 production by human dendritic cells,66

and promote C. jejuni adhesion to and invasion of epithelial
cells as well as colonization of the mouse intestine.67,68 In all
these cases though, it is unclear if the N-glycan heptasacchar-
ide directly mediates these effects or if N-glycosylation is
merely required for full activity of N-glycosylated protein
virulence factors such as Peb1 and JlpA. Taken together, the
N-linked glycosylation system of C. jejuni may play an impor-
tant role in C. jejuni host survival and infection.

Another major C. jejuni virulence factor is flagella. C.
jejuni cells express bipolar flagella that promote cellular
motility, and flagellar motility contributes to C. jejuni
virulence.69 Additional roles of the flagella in pathogenesis,
including host cell adhesion and as a virulence factor secre-
tion system, have been previously reviewed.70 C. jejuni
flagellin, the major protein of the flagellar filament, is also
modified by O-glycosylation. In fact, the protein
O-glycosylation system of C. jejuni seems to be limited to
glycosylation of the flagellin protein subunits of the flagella.
The flagellin O-glycan structures are monosaccharide units
consisting of one of two rare sugars, pseudaminic acid
(Pse5Ac7Ac) or legionaminic acid (Leg5Am7Ac), which
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can be further modified with small functional groups
including acetate, acetamidine, and N-acetylglutamine
(reviewed in54,70,71). These monosaccharide functional
group modifications may be important in virulence as
strains defective in O-glycan biosynthesis or modification
showed significantly reduced adherence to and invasion of
epithelial cells72 anti-inflammatory dendritic cell
responses,73 colonization of chickens,74 and incidence of
diarrheal disease in ferrets.72 The mechanisms by which
O-glycosylation contributes to virulence though is unclear
since, depending on the locations of the glycosylation sites,
the O-linked glycans in strain 81–176 may be involved in
either flagellar assembly and motility or autoagglutination,
the latter of which may be important in C. jejuni biofilm
formation.75 Importantly, the flagellum is one of the major
Campylobacter antigens,76,77 with the O-glycosylated region
of flagellin presumably being the most antigenic region.78–
82 The variable monosaccharide structures and degree of
O-glycosylation may thus assist in antibody and T cell
escape. Additionally, C. jejuni flagellin is relatively unique
in that it is not recognized by human or chicken Toll-Like
Receptor 5 with or without O-glycosylation, even though
Toll-like Receptor-5 is known to recognize flagellins from
other bacteria to initiate and promote immune responses.-
83,84 Therefore, the antigenic C. jejuni flagellum utilizes
multiple mechanisms to evade the immune system.
However, considering the strong antigenicity towards the
C. jejuni flagellum, development of a Campylobacter

flagellar subunit vaccine has been of considerable interest,
as discussed in more detail below.

Historical vaccine development and lessons learned

Development of an effective vaccine for the prevention of
campylobacteriosis has been ongoing for over 20 years
(Figure 2). The process has been hindered by multiple factors
including the lack of small animal of disease, presence of LOS
ganglioside mimics that can induce auto-immune diseases
such as GBS, the lack of understanding of C. jejuni virulence
factors, and the lack of known immunological correlates of
disease protection. Poultry meat is considered the major
source of infection, and much attention has been made in
the veterinary field to develop a vaccine that would success-
fully control C. jejuni colonization in broilers.85,86 This review
is focused on vaccines against Campylobacter that were pro-
cessed into phase 1 human clinical trial. There is a multitude
of C. jejuni antigens that were tested in animal models but
were not tested in or even intended for humans. For example,
there is a tremendous effort to reduce colonization of chicken
in broiler setting via vaccination. Neal-McKinney et al. pre-
viously reviewed the control of Campylobacter jejuni coloni-
zation of poultry via vaccination.87 One of the most recent
approaches was made by Szymanski et al., using the conserved
N-glycan heptasaccharide conjugated to Tox protein. This
conjugate vaccine provided an impressive reduction of C.
jejuni colonization of the chicken gastrointestinal tract.88
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This promising vaccine candidate may thus be worth testing
in humans to assess its potential against campylobacteriosis.

Killed whole cell vaccine

The first effort toward the development of a C. jejuni vaccine
was started in the early 1990’s using a killed whole cell
approach. Inactivated whole cell bacteria is an attractive
method of vaccination: They represent an economical process
for large scale production and allows the inclusion of a myriad
of antigens. Attenuated/killed whole cell vaccination has been
successful for preventing disease induced by other enteric
pathogens including Salmonella typhi and Vibrio cholerae.
For C. jejuni, a killed whole cell vaccine represented an
attractive approach that relieved costly and time-consuming
fundamental research to understand mechanisms of protec-
tion as well as eliminated the need of the production of
recombinant protective antigens.

The C. jejuni whole cell vaccine (CWC) was derived from
the C. jejuni strain 81–176, isolated in 1981 from a child
presenting acute diarrhea due to consumption of contami-
nated raw milk during a school field trip in Minnesota.89 In
pre-clinical studies using 0.2% formalin-killed 81–176 cells,
robust prevention of C. jejuni colonization in mice was seen
when delivered orally alongside the E.coli heat labile toxin
(LT) as an adjuvant.90 It was further demonstrated that the
vaccination stimulated production of local and systemic IgA
and IgG to Campylobacter antigens in rhesus monkeys that
received the adjuvanted vaccine.91 These studies warranted
the transition of the vaccine to safety and immunogenicity
testing in a human phase 1 clinical trial.

The first human study of the CWC was performed using a
vaccination regimen consisting of three vaccinations delivered
2 weeks apart at doses of 105, 107, or 109 cells, or 109 cells
administered orally with 25 μg of LT(R192G) as adjuvant.92

The isogenic attenuated mutant of LT, LT (R192G), was used
to reduce LT enterotoxicity but preserve adjuvanticity as
demonstrated in animal studies. This first clinical evaluation
demonstrated that the vaccine was safe in humans but failed
to prevent campylobacteriosis during a homologous con-
trolled human infection model (CHIM) with C. jejuni
81–176. The CWC approach thus needed further
development.

In the meantime, a ferret animal model of disease was
developed and demonstrated to mimic human campylobac-
teriosis symptoms.93 Studies in the ferret model led to the
modification of the dose, number of immunizations, and
schedule for oral vaccination; specifically, the next phase 1
CWC human clinical trial used a 1010 cell dose with 25 μg of
LT(R192G) adjuvant given orally 4 times, 2 days apart. The
new vaccination regimen demonstrated to be superior by
inducing a higher level of fecal IgA compared to the previous
human vaccination, but the vaccine was unsuccessful to pro-
tect against disease in a Phase 2b CHIM when receiving the
homologous strain.92 It has to be noted that the hefty infec-
tious dose of 1010 CFU may have overwhelmed the host
immune system the vaccine may have been more effective
had a lower challenge dose been used. The CWC approach
was abandoned in early 2000’s and has not been further

refined. The major motive for no longer pursuing this CWC
was that the strain C. jejuni 81–176 used in the vaccine was
found to present sialylated LOS that resemble GM2 and GM3

human gangliosides,59 which could potentially lead to the
induction of GBS.

Subunit vaccines

Following the abandonment of the CWC approach, C. jejuni
vaccinology efforts switched to the use of a recombinant C.
jejuni antigens. Based on the findings of other successful
enteric pathogen vaccines, the ideal antigen candidate should
be surface exposed/accessible to the host immune system and
able to elicit significant seroconversion of IgG as well as
mucosal and serological IgA. In addition, the subunit vaccine
should ultimately induce long-term immunological memory.
In the early 2000’s, the Naval Medical Research Center, Silver
Spring, USA initiated the production of a recombinant C.
jejuni flagellin vaccine.94 Flagellin has well-documented
proof of immunogenicity in various animal models and also
in humans.94,95 Indeed, early CHIM studies demonstrated
that volunteers challenged with C. jejuni 81–176 developed a
robust immune response against the flagella.94In addition, the
immunological level of response against the flagellin corre-
lated with the protection against disease as demonstrated
during re-challenge studies.94To thus generate a recombinant
flagellin-based vaccine, the conserved region of FlaA from C.
coli VC167 was fused with the maltose binding protein (MBP)
of E.coli.94 The vaccine (rFlaA-MBP) was tested for immuno-
logical response and protective efficacy in a nasal mouse
model developed in house.94 Encouraging results were made:
intestinal secretory IgA response and protection against het-
erologous colonization and disease by C. jejuni 81–176 were
established when the rFlaA-MBP was adjuvanted with LT
(R192G).

The rFlaA-MBP vaccine was tested in a human clinical trial
for safety and immunogenicity (ClinicalTrials.gov Identifier:
NCT00124865). The vaccine was dispensed via intranasal
delivery at one of four doses (25, 125, 625, or 1000 μg), with
3 total immunizations delivered at 2 week intervals.
Interestingly, no adjuvant was administered, in contrast to
the mouse model.92 The vaccine was deemed safe but only
mildly immunogenic at the systemic and mucosal level. In
part due to this disappointing result, the rFla-MBP C. jejuni
vaccine was abandoned.

In the mid 2000’s ACE BioSciences, now Zymenex, ven-
tured into the development of a travelers’ diarrhea vaccine.96

This endeavor led to the development of a subunit vaccine,
ACE393, a proprietary cell surface exposed C. jejuni protein.
Following successful reduction of colonization in vaccinated
mice, the vaccine was rapidly transitioned into a Phase 1 and
extended Phase 1 for safety, immunogenicity and role in the
prevention of disease (ClinicalTrials.gov Identifier:
NCT00859716). The vaccine, consisting of 250 μg of recom-
binant protein and 500 μg Alhydrogel® (aluminum hydroxide
adjuvant), was administered twice intra-muscularly 3 weeks
apart. Volunteers were challenged with a newly established C.
jejuni strains, CG8421, which lack sialylated LOS and by
consequence unable to trigger auto immune sequelae
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including GBS.97 The vaccination regimen had low/no effect
on prevention campylobacteriosis and has not been further
pursued to this date.

Glycoconjugate vaccine

Protein-polysaccharide conjugate vaccines are superior to
polysaccharide vaccines the protein carrier, provides the abil-
ity to induce T-cell responses towards the polysaccharide.
Conjugated polysaccharide vaccines are immunogenic in
young children98 and induce long term immune protection
compared to unconjugated polysaccharide vaccines.99 Three
licensed conjugated polysaccharide vaccines targeting encap-
sulated strains of the pathogens Haemophilus influenzae (type
b), Neisseria meningitidis, and Streptococcus pneumoniae are
available on the market. Based on the success of conjugated
polysaccharide vaccines and the recent characterization of a
polysaccharide capsule in C. jejuni described above, NMRC
initiated a pilot vaccine study using the capsule of C. jejuni
conjugated to CRM197 as protein carrier. The choice of
CRM197 as protein carrier for the prototype vaccine was
motivated for the reasons that CRM197, a non-toxic
diphtheria toxin used in the pneumococcal conjugate vaccine,
has been demonstrated to be safe, is commercially available,
and is amenable to conjugation to oxidized polysaccharide.

For pre-clinical studies, the strain C. jejuni 81–176 was
chosen. This strain harbors a serotype HS23/36 capsule that
is composed of repeating units of the following core trisac-
charide [→3)-β-D-GlcpNAc-(1→3)-α-D-Galp-(1→2)-D-gly-
cero-α-D-altro-Hepp-(1→]n.

100,101 As described above, the
CPS structure also contains non-stoichiometric modifications
including methyl phosphoramidate (MeOPN) occurring on
the Galactose residue at the 2-OH, 4-OH, or 6-OH group.53

Those MeOPN are believed to be immunodominant and
required for vaccine efficacy. To prevent potential auto-
immune reactions resulting from trace contamination with
the 81–176 sialylated LOS structures, the 81–176 strain was
genetically manipulated to prevent expression of ganglioside-
like mimics.

The CPS was extracted and purified directly from the cell
paste of C. jejuni 81–176. The glycoconjugate vaccine was
then synthesized by CPS oxidation with sodium periodate to
yield an aldehyde functional group at the non-reducing end,
allowing the conjugation to the lysine residues of CRM197 via
reductive amination.102

Dose ranging and pre-clinical studies were performed in a
mouse intranasal vaccination colonization model and vali-
dated via subcutaneous vaccination in a non-human primate
(NHP) Aotus nancymaae model. NHP were vaccinated with 1,
5, or 25 μg of glycoconjugate with alum adjuvant adminis-
tered in three doses of vaccine or PBS at 6-week intervals. The
highest dose resulted in 100% protection against disease dur-
ing homologous challenge in the NHP model 9 weeks post last
vaccination.102 This encouraging result led to development of
a cGMP grade vaccine that was tested for safety and immu-
nogenicity in a phase 1 clinical trial that occurred in 2014
(ClinicalTrials.gov Identifier: NCT02067676). This study
enrolled a total of 48 volunteers that received two intramus-
cular (IM) vaccinations, 4 weeks apart, of CJCV1 of 2μg, 5μg,

or 10μg with or without 125μg Alhydrogel®. The vaccine was
deemed safe but did not result in a significant serum immu-
nological response (both IgA and IgG) against the CPS moi-
ety. This disappointing result was retrospectively hypothesized
to be due to the lack on the immunodominant MeOPN
epitopes in CJCV1 vaccine. Both the strain used and the
manufacturing process can be incriminated. Unfortunately,
the transferase enzymes responsible for the attachment of
the MeOPN on the galactose residues are known to be
affected by a mechanism of phase variation.53

Based on this observation, a natural variant of C. jejuni
81–176 presenting both MeOPN transferases in the “phase
on” configuration was selected and demonstrated to be stable
during the cell production for CPS extraction. In addition, the
extraction protocol was optimized and now utilizes a more
gentle extraction procedure that minimizes MeOPN hydro-
lysis and loss. The current iteration of the C. jejuni CPS
glycoconjugate vaccine, CJCV2, is currently under manufac-
ture and will be shortly tested in a Phase 1 clinical trial for
safety and immunogenicity (Table 1).

Summary and looking towards the future

Momentum has been building in both the public and private
sectors around research and development of new diarrheal
disease interventions, including rotavirus, cholera, typhoid,
ETEC, Shigella, and Campylobacter vaccines. Public funding
for diarrheal diseases from high-income country govern-
ments and multinational organizations has increased sub-
stantially. Global agencies have made greater commitments
to understanding diarrheal disease burden and the impact of
specific pathogens. Opportunities to leverage private markets
for the public good through implementation of tiered pricing
schemes allow companies to achieve a return on investment
in profitable markets (i.e. travelers and emerging econo-
mies), while providing products at lower cost in the devel-
oping world. While industry funding would likely be able to
take a vaccine for the high-income country market, further
development in low- and middle-income country markets
would likely require funding and initiative from a range of
sources, including vaccine-manufacturing partners in poten-
tial target markets, national governments, and global public
health nonprofit organizations. The emerging epidemiology
and understanding of campylobacter-attributable burden

Table 1. Comparison of manufacturing parameters and vaccination regimen
between C. jejuni CPS conjugate vaccine CJCV1 and CJCV2.

CJCV1 CJCV2

Strain 81–176 81–176 o/o(a)

Growth medium Animal-based Non-Animal-based
Capsule extraction Phenol DOC (b)

Endotoxin removal Long acetic acid treatment Short acetic acid treatment
Oxidation Sodium metaperiodate Sodium metaperiodate
Conjugation Sodium cyanoborohydride Sodium cyanoborohydride
Protein Carrier CRM197 CRM197
Adjuvant Alum hydroxide TBD
Number of dose 2 doses 4 weeks apart TBD
Amount of CPS/
dose

2, 5 and 10 mg TBD

(a) C. jejuni 81–176 strain stably expressing both phase-variable MeOPN transferases.
(b) Sodium deoxycholate
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(both acute and chronic) in both traveler and global popula-
tions, combined with promising development in vaccines,
leads to the consideration of the possibility for a global
vaccine against C. jejuni. Based on the epidemiological,
immunological, and virulence studies reviewed here and
described elsewhere, the targets and goals for such a C. jejuni
vaccine are shown in Table 2.

A capsule-conjugate vaccine approach against C. jejuni is
promising but several questions still need to be addressed. As
mentioned previously, highly effective conjugate vaccines
have been developed for other mucosal pathogens, one of
which, Streptococcus pneumoniae, has more capsular types
(~ 90) than C. jejuni (~ 35). There have been numerous
prevalence studies of capsule serotypes in the developed
world,77,95 but few studies from developing countries where
the disease incidence is higher. Alternative vaccine
approaches, such as recombinant protein subunits, have not
yet demonstrated feasibility but are likely to advance with
improved understanding of Campylobacter pathogenesis.

The CHIM for C. jejuni is likely to be utilized in future
vaccine down/up-selection decisions and a brief review of its
current status is warranted here. Briefly, the currently CHIM
utilizes an HS23/36 strain, named CG8421, isolated from a US
solder in Thailand with acute febrile dysentery in 199997 The
strain has been safely administered to 68 “naïve” subjects at 3
clinical sites at doses ranging from 2 × 104 to 1 × 10 colony
forming units.103–105 In the most recent randomized, double-
blind, placebo-controlled trial, the strain induced campylo-
bacteriosis in 85.7% (24/28) of all subjects.103 Importantly,
microbial recrudescence has been observed with this strain,
a phenomenon that may be specific to this model or may be
reflective of natural Campylobacter infection.103,104,106,107

While the CG8421 appears to be sufficiently robust to assess
current vaccine candidates, other vaccine strategies (or other
capsule-types) may require the development of new C. jejuni
CHIMs.

More research is needed on Campylobacter-host interac-
tions and epidemiology to identify adequate coverage of a

capsule conjugate or protein subunit vaccine. The identifica-
tion and characterization of a correlate of protection is
important and could be informed indirectly through seroepi-
demiological studies. Favorable results from early phase clin-
ical trials in adults from the high-income countries (e.g.,
travelers or other high-risk populations) would provide hope
that such a vaccine might be effective in low- and middle-
income country populations.
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