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Abstract

Background Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely
common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often
prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both
aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse
of conditioned responses associated with trauma or drug use.

Objectives The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of
addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the
expression of relapse.

Key findings After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the
expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse,
hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory
control over fear- and drug-associated conditional responding.

Conclusions The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-
seeking behaviors.

Keywords Addiction - Amygdala - Bed nucleus of the stria terminalis - Extinction - Hippocampus - Prefrontal cortex - PTSD -

Reinstatement - Relapse

Introduction

The primary goal of cognitive behavioral therapies for psychi-
atric disorders is to produce long-term therapeutic benefits that
improve the quality of life in individuals suffering from dis-
ease. For some of these disorders, including post-traumatic
stress disorder (PTSD) and substance use disorders, behavior-
al therapies target the maladaptive memories that underlie, at
least in part, pathological conditioned fear responses and
drug-seeking behaviors, respectively. These therapies are
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based on considerable work in both humans and other animals
indicating that fundamental associative learning processes, in-
cluding Pavlovian and instrumental conditioning, contribute
to the pathogenesis and comorbidity of anxiety and addiction.
For example, associations between trauma-related stimuli
(e.g., flashes of light, smells of blood, and loud noises) and
their outcomes (e.g., physical pain or fear of loss of life) un-
derlie some aspects of fear-related behavior in patients suffer-
ing from PTSD (Rothbaum and Davis 2003; Mahan and
Ressler 2012; Lissek and Meurs 2015). Likewise, learned as-
sociations in cocaine-dependent patients between drug-related
stimuli (e.g., mirrors, razor blades, and dollar bills) and their
outcomes (e.g., euphoria) are believed to support some aspects
of drug-seeking behavior (particularly early in addiction)
(Robinson and Berridge 1993; Di Chiara et al. 1999).
Although cognitive behavioral therapies, such as
prolonged exposure therapy, are often successful, some indi-
viduals experience only short-term gains and suffer from a
relapse of symptoms. Patients with anxiety disorders (Craske
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et al. 2009) and trauma- and stressor-related disorders (Ross
et al. 2017), for example, may exhibit a reemergence of be-
haviors and symptoms of fear and anxiety that have previous-
ly been reduced through therapy (Yonkers et al. 2000; Yonkers
et al. 2001; Yonkers et al. 2003). This phenomenon, termed
“fear relapse,” undermines the goals of therapy, is unpleasant,
and is quite common (Boschen et al. 2009; Vervliet et al.
2013b; Vervliet et al. 2013a): across an 8-year study by
Yonkers et al. (2003), the authors documented a cumulative
probability of 64% of relapse in women patients treated for
panic disorder. Likewise, individuals with substance use dis-
orders who reduce intake and abstain from taking drugs can
experience a return of drug cravings that drives them to once
again seek and take drugs (O’Brien et al. 1977; McAuliffe
1990; Hser et al. 1993). Consequently, “drug relapse” is a
major challenge for long-term rehabilitation programs and
puts individuals at risk for overdose (Piischel et al. 1993;
Chopra and Marasa 2017). Drug relapse is also extremely
common: one report found that 40-60% of patients treated
for drug dependence return to active substance use within a
year following treatment discharge (McLellan et al. 2000).
Given the high cost of mental illness (Warshaw et al. 1993;
Souétre et al. 1994; Rehm et al. 2009; Craske et al. 2017) and
the comorbidity of drug use and other disorders (Brown et al.
1999; Kessler et al. 2005; Logrip et al. 2012), it is essential
that progress be made towards understanding common behav-
ioral and brain mechanisms of relapsed behaviors.
Accordingly, the purpose of this review is to explore current
studies of the neurobiology of relapse, to compare and con-
trast these reports, and to integrate findings in the fields of
affective and addiction neuroscience (Peters et al. 2009;
Abraham et al. 2014). We derive these insights primarily from
preclinical animal research but consider work in humans
where appropriate. We first identify and define the terms used
in the literature to highlight the various forms of fear and drug
return. We will then harmonize these terms to aid in our dis-
cussion of overarching neural mechanisms of relapse. In later
sections, we discuss current data encompassing the neural
circuits of fear and drug recovery, with particular emphasis
on overlapping circuits of the amygdala, prefrontal cortex,
hippocampus, and bed nucleus of the stria terminalis.

Extinction of fear and drug-seeking

Cognitive behavioral therapies for trauma and addiction, such
as prolonged exposure therapy, are thought to involve mech-
anisms of extinction (Lovibond 2004; Peters et al. 2009; Milad
and Quirk 2012; Abramowitz 2013; Craske et al. 2014; Milad
et al. 2014; Forcadell et al. 2017; Craske et al. 2018; Everitt
et al. 2018). As a result, important features of fear and drug
relapse in the clinic can be effectively studied in the laboratory
using conditioning and extinction procedures in both humans
and animal models. Pavlovian conditioning is a fundamental
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form of learning by which animals associate stimuli (Pavlov
1927). In the laboratory, this commonly involves one or more
presentations of a detectable but harmless stimulus (such as a
discrete light or tone; termed the conditioned stimulus, CS)
with a noxious stimulus (such as an electric shock; termed the
unconditioned stimulus, US). The aversive US elicits numer-
ous behaviors and physiological reactions, including tachycar-
dia, hypothalamic—pituitary—adrenal (HPA) axis activity, and
activity bursts (Bolles and Fanselow 1980; Fanselow 1994).
After one or more pairings of the CS and US, defensive fear
responses will be elicited by the CS alone—freezing often
serves as the dependent measure of learning in rodent models.
In addition to the CS, the context in which conditioning occurs
also comes to evoke conditioned fear after fear conditioning
(i.e., contextual conditioning) (Curzon et al. 2009; Luyten
etal. 2011; Urcelay and Miller 2014). Fear to the CS (whether
a context or discrete cue) can be reduced using extinction
procedures, in which the CS is repeatedly presented in the
absence of the US (Pavlov 1927; Myers and Davis 2002;
Hermans et al. 2006; Myers and Davis 2007; Chang et al.
2009). The extinction of conditioned fear appears to generate
a new memory (a CS—“no US” memory) that inhibits and
competes with the original conditioned memory of the CS—
US association for expression (Bouton 2000; Bouton 2002;
Maren 2011; Rosas et al. 2013; Bouton 2014); later, we will
highlight the situations in which the original CS—US memory
dominates to express relapse.

Conditioning and extinction procedures can also be used to
study drug-secking behavior and its relapse. For example,
animals will readily learn to self-administer drugs of
abuse when given the opportunity to perform an instru-
mental (operant) response to obtain the drug (Robinson
and Berridge 1993; Robinson and Berridge 2000; Weiss et al.
2001; Feltenstein and See 2008). In typical self-administration
paradigms, rats will readily learn to press a lever, pull a chain,
or make a nose poke to earn an intravenous drug infusion. In
these tasks, learning is indexed by the magnitude and frequen-
cy of these responses over time. Thus, unlike Pavlovian fear
conditioning, the reinforcer or outcome (“O”; e.g., intrave-
nous drug) is dependent on the behavioral response (“R”;
e.g., nose poke) of the animal. Nevertheless, instrumental con-
ditioning involves associative learning: the animal comes to
associate its response with the outcome of reward (R—O asso-
ciations) (Bouton and Todd 2014). Additionally, predictive
and environmental stimuli can be used to “set the occasion”
for the R—O relationship (Holland 1992; Urcelay and Miller
2014; Khoo et al. 2017). In particular, predictive cues (such as
lights or tones), or even particular contexts, can be used to
signal when or which behavior to initiate for the reward
(Lynch et al. 2010; Chesworth and Corbit 2017); in turn, these
stimuli (“S”) can be associated with the learned re-
sponse (S—R associations). Thus, in the presence of such
cues, the cues and drug itself are akin to the CS and US of a
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Pavlovian conditioning experiment, respectively. Similar to
contextual fear conditioning, the environment or context can
be associated with the drug US. For example, conditioned
place preference (CPP) involves the pairing of drug(s) with a
particular environment; the readout of associative learning is
then measured by observing the extent to which the animal
spends time in or shows a preference for a drug-paired context
vs. a location in which no drug was administered (Tzschentke
1998; Roux et al. 2003; Tzschentke 2007). The extinction of
drug-seeking behaviors involves omitting delivery of the out-
come after the instrumental response is performed. During
extinction procedures, animals learn that their behaviors no
longer produce the outcome and this degrades the R—O and
S—R associations that underlie instrumental drug-seeking be-
havior. Similar to the extinction of fear, the omission of reward
generates an extinction memory that inhibits the expression of
drug-seeking behaviors (Millan et al. 2011). After extinction
of drug-seeking, there are many factors than can cause this
behavior to relapse (Trask et al. 2017; Namba et al. 2018;
Marchant et al. 2018). Consequently, mechanisms of extinc-
tion appear to have important similarities for conditioned fear
and drug-seeking, which may suggest overlapping neural
mechanisms.

Of course, Pavlovian and instrumental responses can be
reduced through procedures other than extinction. For exam-
ple, drug dependence can be attenuated via voluntary or
forced abstinence [(Venniro et al. 2016); although this is
known to incubate the drug-seeking responses] as well as
through punishment of the instrumental response (in which
the drug-seeking behavior is instead paired with a noxious
outcome) (Smith and Laiks 2017; Marchant et al. 2018). The
brain mechanisms of relapse may differ as a function of the
procedure used to reduce responding (Pelloux et al. 2018).
Similarly, fear-conditioned responses can be reduced through
counterconditioning procedures in which the CS is paired with
a reward rather than the aversive US (Holmes et al. 2016;
Kang et al. 2018); and this engages additional neural circuitry
(Bulganin et al. 2014; Correia et al. 2016). Furthermore, it
should be noted that instrumental tasks in which animals can
escape or avoid the aversive US are also important models for
the study of the expression and relapse of fear and of avoid-
ance symptoms in PTSD patients (Campese et al. 2016;
LeDoux et al. 2017; Campese et al. 2017; Moscarello and
Maren 2018). However, fear relapse circuitry in aversive
learning has primarily been studied in the context of unavoid-
able shock (therefore, our review will center on these studies).

Relapse in the laboratory: harmonizing
the terminology

With the aforementioned conditioning and extinction mecha-
nisms in mind, we will now discuss models of relapse. The
first reported evidence of relapse of an extinguished

conditioned response was discovered by Pavlov (Pavlov
1927). Pavlov observed that an extinguished salivary response
could “spontaneously recover” if one of his dogs was tested to
the extinguished CS after some delay. Since then, relapse of
extinguished fear has been studied extensively, and we now
know it can be caused by numerous factors in both humans
and other animals (Bouton 2002; Bouton 2004; Bouton et al.
2006; Vervliet et al. 2013b; Vervliet et al. 2013a; Goode and
Maren 2014; Bouton 2014; Maren and Holmes 2016).
Likewise, relapse or “reinstatement™ of drug-secking behavior
has been demonstrated in humans and other animals for many
drugs of abuse, including heroin, cocaine, nicotine, metham-
phetamine, and alcohol (as well as combinations of these
drugs) (Wikler 1948; Weiss et al. 2001; Weiss et al. 2006;
Stoker and Markou 2015; Marchant et al. 2015; Venniro
et al. 2016; Mantsch et al. 2016). However, there has been
divergence in the terminology used to describe relapse phe-
nomena by scientists interested in mechanisms of fear learning
and those interested in drug addiction, for example. This is
important, because the underlying triggers of fear and drug
relapse may rely on similar psychological processes and on
similar brain circuits (Bossert et al. 2013; Farrell et al. 2018).
Furthermore, fear and drug relapse can be triggered by similar
events and relapse of one often influences the other (Sanchez
and Sorg 2001; Kutlu et al. 2016).

Figure 1 summarizes the major features of various forms of
relapse and illustrates the terminology used by learning theo-
rists and addiction biologists to describe relapse. In the fear
learning laboratory, relapse is defined as a significant and at
times long-lasting return of conditional responding to a previ-
ously extinguished cue. Fear relapse is often used to describe
clinical relapse in humans, as well as in laboratory models of
humans and other animals. Return of fear (ROF) is sometimes
used to describe a form of fear relapse in humans that may be
experimentally induced but may not necessarily be related to
clinical psychopathology, or may simply be less intense
(Vervliet et al. 2013a). We will primarily use fear relapse in
the present review. Several factors can promote the return of
extinguished conditional responding. Generally, extinguished
fear returns after a context shift (renewal) (Bouton and Bolles
1979b; Goode et al. 2017), the experience of the US or other
excitatory CSs (reinstatement) (Rescorla and Heth 1975;
Haroutunian and Riccio 1977; Bouton and Bolles 1979a;
Morris et al. 2005a; Halladay et al. 2012; Goode et al.
2015a), and/or a passage of time since extinction (spontane-
ous recovery) (Rescorla 2004). Furthermore, stress exposure
(beyond aversive US exposure, and including pharmacologi-
cal stressors or induction of activity in stress-reactive regions)
may also induce relapse (stress-induced relapse) (Haroutunian
and Riccio 1977; Kellett and Kokkinidis 2004; Morris et al.
2005b; Deschaux et al. 2013; Kinner et al. 2018) or enhance
relapse of other forms (Knox et al. 2012). Fear may also return
after the extinguished cue is once again paired with the US
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Fig. 1 A summary of various
drug and fear relapse scenarios,
the common and divergent terms
used to describe them, and their
features

RELAPSE
DIMENSION

Features / Mechanisms

Fear or drug seeking returns when the
animal experiences the extinguished shock-

S NE ]  SPONTANEOUS or drug-associated cues or contexts after a
RECOVERY RECOVERY passage of time in their absences.

Time
CONTEXT-INDUCED Fear Tr drug seeki;g returns ;:vl;er; thke
REINSTATMENT animal experiences the extinguished shock-
or RENEWAL or drug-associated cues outside of the ex-

RENEWAL tinction context.

Context
Fear or drug seeking returns when the
STRESS-/SHOCK- STRESS- animal experiences shock- or drug-asso-
INDUCED INDUCED ciated cues after acute or chronic stress
REINSTATEMENT RELAPSE (physical, psychological, and/or pharma-

Stress

cological stress).

=

DRUG-PRIMED/
DRUG-INDUCED

Fear or drug seeking returns when the
animal experiences a separate excitatory

RHNST‘:EMENT REINSTATEMENT  shock-/drug-paired CS or the shock/drug
CUE-INDUCED US alone. May overlap with stress-in-

US exposure  REINSTATEMENT duced relapse when the US is aversive.
?77 Extinguished fear or drug seeking returns
o0 EXTERNAL EXTERNAL following the introduction of a novel
DISINHIBITION  DISINHIBITION  stimulus that was not present during con-

ditioning or extinction.

Retraining

(reacquisition) (Bouton and Swartzentruber 1989). Finally,
extinguished fear can return after introduction of a novel stim-
ulus (external disinhibition) (Maren 2014; Giustino et al.
2016). Often, relapse of extinguished fear is complete, and
returns fear to the level of that expressed by control animals
that did not receive extinction training. Note that relapse may
also involve new learning/conditioning, especially in cases
where the US is re-experienced during reinstatement and
reacquisition (Sokol and Lovibond 2012). These phe-
nomena are also observed in appetitive (non-drug-related)
conditioning situations; however, we will focus on the return
of extinguished fear for the purposes of this review.

In addiction laboratories, a return of instrumental
responding is typically referred to as a reinstatement of
drug-seeking. This is characterized by a return of drug-
seeking or taking behaviors following extinction of the origi-
nal drug-seeking response. The term drug relapse is typically
reserved for the clinical manifestation of the return of drug-
seeking after extinction of drug taking in humans (Hunt et al.
1971). Drug reinstatement most often serves as the umbrella
term for laboratory models of drug relapse (human or research
animal) (O’Brien et al. 1992; Self and Nestler 1998; Leri and
Stewart 2002). The mechanisms underlying the return of
drug-seeking (e.g., changes in context, stress) are often further
clarified by prefacing “drug reinstatement” with the trigger in
question (e.g., “context-induced” or “stress-induced”
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Fear or drug seeking rapidly returns when
the extinguished shock- or drug-associat-
ed cues or contexts are once again rein-
forced with the shock or drug US.

REACQUISITION REACQUISITION

reinstatement). As such, this nomenclature differs from how
fear relapse is most often described for laboratory studies (al-
though some researchers will at times make use of such terms
as renewal to describe the context-induced return of drug-
seeking). As with fear relapse, drug reinstatement may occur
in the drug-seeking context (context-induced reinstatement)
(Crombag and Shaham 2002), the experience of either the
drug US, a non-extinguished drug cue, or other stressors
(drug-primed-, cue-induced-, or stress-induced reinstatement,
respectively) (Shaham and Stewart 1995; Shaham et al. 1997,
Crombag and Shaham 2002), and/or the passage of time
(spontaneous recovery) (Shaham et al. 1997). Post-
extinction drug conditioning trials also reinstate drug-
seeking (reacquisition) (Garcin et al. 1977; Leri and Rizos
2005). Novel cues can also reinstate drug-seeking (external
disinhibition) (Bastle et al. 2012). Note the differences in the
use of “reinstatement™ for both fear and drug return.

Given the overlapping mechanisms, but unique terminolo-
gy, for both fear relapse and drug reinstatement, we will for the
sake of consistency utilize a harmonized system for describing
the different mechanisms of relapse for fear and drug studies
in this review. Accordingly, from this point forward, we will
use fear relapse and drug relapse as umbrella terms for fear
and drug return (for both human and animal models), with
renewal, spontaneous recovery, reinstatement, stress-induced
relapse, reacquisition, and external disinhibition being used
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according to their respective mechanisms (e.g., instead of
“context-induced drug reinstatement” to describe relapse of
drug-seeking following a change in context, we will use “drug
renewal”). With these terms defined, we will now explore
underlying and overlapping neural circuitry of relapse.

Neural circuits of relapse

Several overlapping brain regions and circuits have been im-
plicated in the learning and memory processes underlying fear
and drug relapse, particularly of the amygdala, prefrontal cor-
tex (PFC), hippocampus (HPC), and bed nucleus of the stria
terminalis (BNST). Although the neural circuits guiding the
conditioning and extinction of fear (LeDoux 2000; Maren
2001; Kim and Jung 2006; Sotres-Bayon et al. 2006; Herry
et al. 2010; Janak and Tye 2015; Izquierdo et al. 2016) and
drug-seeking (Robinson and Berridge 1993; Koob et al. 1998;
Chao and Nestler 2004; Everitt and Robbins 2005; Koob and
Volkow 2010; Janak and Tye 2015) have received consider-
able attention, research on the behavioral and brain mecha-
nisms of extinction retention and relapse is increasing
(Venniro et al. 2016; Mantsch et al. 2016; Khoo et al. 2017,
Chen etal. 2017; Dong et al. 2017; Goode et al. 2018a; Farrell
et al. 2018)—we will center our review on the roles of these
structures and their circuits at the time of relapse expression.
When applicable, we will also describe how these structures
interact with other essential reward and aversion processing
structures, such as the ventral tegmental area (VTA) and nu-
cleus accumbens (NAc) (Shalev et al. 2002; Kalivas and
McFarland 2003; Leri and Rizos 2005; Feltenstein and See
2008; Fuchs et al. 2008; Wise 2009; Stuber et al. 2010; Sun
2011)—connections between the VTA and NAc are also crit-
ically involved in drug relapse and are highlighted in other
reports (Mahler and Aston-Jones 2012; Stefanik et al. 2013a;
Gibson et al. 2018). We also appreciate that there are a number
of important drug factors, sex, species, and developmental
differences in the neural circuits under discussion in this re-
view (Fuchs et al. 2005b; Kippin et al. 2005; Kim and
Richardson 2010; Saunders and Robinson 2011; Bossert
et al. 2013; Ganella and Kim 2014; Matsuda et al. 2015;
Dejean et al. 2015; Den et al. 2015; Marchant et al. 2015;
Swalve et al. 2016b; Becker and Koob 2016; Swalve et al.
2016a; Park et al. 2017; King et al. 2018; Zbukvic and Hyun
Kim 2018), and these factors might influence the
neurocircuitry of drug and fear relapse.

Amygdala The expression of relapse is thought to rely, in part,
on a loss of inhibition over the expression of excitatory con-
ditioned responses (CRs) by amygdala neurons involved in
representing CS—US and/or S—-R—O associations (Quirk and
Gebhlert 2003; Pape and Pare 2010; Duvarci and Pare 2014;
Tovote et al. 2015; Calhoon and Tye 2015; Namburi et al.
2016). In other words, relapse occurs because extinction

memories no longer inhibit expression of Pavlovian or instru-
mental responses acquired during conditioning (Bouton
2014). Many decades of work have identified neural circuits
in the amygdala involved in the conditioning and extinction of
fear (Herry et al. 2008; Ciocchi et al. 2010; Senn et al. 2014).
Accordingly, the expression of fear memories and ultimately
relapse depends on outputs of (and connections within) the
lateral nuclei (LA), basolateral nuclei (BLA), and central nu-
clei (CeA) of the amygdala (Paré et al. 2004; Izquierdo et al.
2016). The expression of extinction memories (especially
extinguished fear memories) is thought to depend on the dom-
inance of activity in “extinction” neurons of the BLA, along
with local inhibition of BLA “fear” neurons and inhibition of
CeA outflow via inhibitory intercalated (ITC) cells of the
amygdala (Royer and Paré¢ 2002; Likhtik et al. 2008; Ehrlich
et al. 2009; Pinard et al. 2012; Asede et al. 2015; Tovote et al.
2015; Gafford and Ressler 2016) and/or the basomedial amyg-
dala (BMA) (Adhikari et al. 2015). Thus, activity in the amyg-
dala is associated with both the inhibition of extinguished fear
and its relapse (and, in turn, may be localized to particular
subregions and cell types) (Knapska and Maren 2009).

For example, increased neuronal activity in the amygdala is
associated with both renewal and spontaneous recovery of
extinguished fear (Hobin et al. 2003; Herry et al. 2008; Lin
et al. 2011; Huang et al. 2013; Orsini et al. 2013; Tapias-
Espinosa et al. 2018), as well as reinstatement of drug-
seeking (Weiss et al. 2000; Ciccocioppo et al. 2001; Thiel
et al. 2010; Polston et al. 2012; Hitora-Imamura et al. 2015).
Similarly, gamma oscillations in the amygdala during extinc-
tion have been shown to correlate with levels of spontaneous
recovery during retrieval (Courtin et al. 2014) and electrical
stimulation of the amygdala can induce fear relapse (Kellett
and Kokkinidis 2004). In turn, the amygdala (including its
BLA/CeA regions) is essential for both fear and drug relapse,
such that lesions of the amygdala prevent fear renewal (Herry
et al. 2008), fear reinstatement (Laurent and Westbrook 2010),
drug reinstatement (Meil and See 1997; Grimm and See 2000;
Kantak et al. 2002; Fuchs and See 2002; Yun and Fields 2003;
Wang et al. 2006; Rogers et al. 2008; Cummins et al. 2014; Li
etal. 2015), and drug renewal (Fuchs et al. 2005a; Fuchs et al.
2007; Lasseter et al. 2011; Wells et al. 2013; Chaudhri et al.
2013; Stringfield et al. 2016; Pelloux et al. 2018).
Additionally, inactivation studies suggest that the CeA plays
a critical role in stress-induced drug relapse [(Shaham et al.
2000; McFarland et al. 2004) also, see (Leri et al. 2002; Wang
et al. 2006; Yamada and Bruijnzeel 2011)]. When reinstate-
ment is drug-primed, the role of amygdala is less clear (Fuchs
and See 2002; Yun and Fields 2003; Fuchs et al. 2005a; Wang
et al. 2006; Pockros-Burgess et al. 2014; Georgiou et al.
2015)—this may relate to the fundamental role of the amyg-
dala in forming stimulus—reward or CS—behavior associations,
while drug (US) exposure as a trigger may introduce other
non-associative and amygdala-independent mechanisms.
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Nonetheless, once fear has relapsed, its re-extinction does not
appear to require a fully functional BLA (Lingawi et al. 2017).
These data suggest that the circuits required for extinction may
change over time, though future forms of relapse may contin-
ue to rely on the amygdala.

Several neuromodulatory systems in the amygdala have
also been implicated in regulating relapse. For example, do-
pamine (See et al. 2001; Tobin et al. 2013), serotonin
(Pockros-Burgess et al. 2014), glucocorticoid (Stringfield
et al. 2016), and opioid (Nygard et al. 2016) signaling in the
BLA are all critical for drug relapse. Likewise, dopamine
(Thiel et al. 2010) and glucocorticoid (Simms et al. 2012)
signaling in the CeA is essential for stress-induced drug re-
lapse, whereas corticotropin-releasing factor (CRF) signaling
in CeA is required for drug reinstatement (Wang et al. 2006).
Less is known about these systems in the amygdala during
fear relapse, though many of these neurotransmitters have
well-established roles in regulation of conditioned fear (de
Quervain et al. 2009; Abraham et al. 2014; Bauer 2015;
Andero 2015; Bocchio et al. 2016; Lee et al. 2016; Giustino
and Maren 2018). That said, noradrenaline signaling in the
BLA can enhance reinstatement of fear (Lin et al. 2011), while
blockade of noradrenaline in CeA can attenuate stress-induced
drug relapse (Leri et al. 2002). Cortisol treatment, which can
potentiate reinstatement, enhances activity in the amygdala of
male subjects (Kinner et al. 2018).

A number of amygdalar efferents have emerged as critical
regulators of the expression of relapse (critical inputs to the
amygdala are discussed in detail in relevant sections below).
Immediate early gene expression in NAc-targeting BLA neu-
rons is increased after cocaine reinstatement (McGlinchey
etal. 2016). In turn, BLA projections to the NAc are necessary
for drug reinstatement (Lee et al. 2013; Keistler et al. 2017).
These findings are interesting in light of research implicating
NAc-targeting cells of the BLA in the extinction of fear
(Correia et al. 2016), as well as in the extinction of drug-
seeking itself (Millan and McNally 2011; Keistler et al.
2017). Additionally, photostimulation of this pathway in con-
junction with extinction reduces fear relapse [(Correia et al.
2016); also, see (Millan et al. 2017)]. Thus, BLA=>NAc cells
appear important for the expression of extinction and relapse;
however, it has not yet been fully reconciled how ablation of
this extinction-promoting pathway facilitates relapse, unless
there exist some functional heterogeneity and segregation in
cells between BLA and NAc core/shell.

Amygdala projections to both cortical and subcortical tar-
gets are also important for fear and drug relapse (Vouimba and
Maroun 2011). For example, BLA projections to the prelimbic
(PL) region are necessary for cue-induced reinstatement of
drug-seeking (Stefanik and Kalivas 2013). Relatedly, research
indicates that PL-targeting cells of the BLA are engaged by
and critical for driving fear expression to non-extinguished
cues and contexts (Stevenson 2011; Sotres-Bayon et al.
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2012; Senn et al. 2014; Burgos-Robles et al. 2017), suggesting
roles for these circuits in fear and drug reinstatement in aver-
sive contexts. Conversely, infralimbic (IL)-targeting BLA
neurons also appear to be critical in regulating extinction of
fear (Senn et al. 2014); inhibiting their activity may be asso-
ciated with relapse, at least of conditioned fear. As will be
discussed later, the BNST plays an important role in the reg-
ulation of stress-related relapse; CRF-releasing CeA=>BNST
neurons are needed for stress-induced drug relapse (Erb et al.
2001). Beyond these circuits, BLA projections to the
orbitofrontal cortex (OFC) (but not OFC to BLA) are required
for drug reinstatement (Arguello et al. 2017). While not yet
explored fully in the context of fear relapse, other critical fear-
promoting amygdalar efferents, such as amygdala—brainstem
(Penzo et al. 2014; Cheriyan et al. 2016) circuits, suggest
similar roles for these circuits during relapse expression.
Collectively, these data indicate that the amygdala is critical
for encoding and expressing CS—-US associations, whether
those consist of CS—shock or CS—drug associations.
Accordingly, the amygdala and its efferents are critically in-
volved in relapse, as these circuits are an important site of
conditioned and extinction memories.

Prefrontal cortex The PL and IL regions of the prefrontal
cortex (including homologous regions in humans) have been
identified as critical regulators of fear and drug relapse
(Giustino and Maren 2015; Moorman et al. 2015; Gourley
and Taylor 2016). PL and IL contributions to learned behav-
iors are often found to be dissociable; more specifically, PL
appears to facilitate conditioned behaviors and drive relapse
(serving as a “go” structure), while IL functions as an inhib-
itory “stop” structure, promoting the expression of extinction
memories and minimizing relapse. Nonetheless, there are sev-
eral important caveats to these functions in both fear and drug
behaviors, and we will address these complexities later on in
the section.

In line with the “go” role of the PL, there is a large amount
of evidence showing that PL is involved in promoting relapse
in a broad sense. For example, fear renewal is associated with
enhanced activity in PL neurons (Knapska and Maren 2009;
Zelikowsky et al. 2013). Likewise, stress-induced drug relapse
(via food deprivation) induces c-fos expression in PL (Shalev
et al. 2003). Accordingly, PL inactivation has been shown to
block relapse of both fear and drug-seeking, including fear
renewal (Kim et al. 2013; Sharpe and Killcross 2015), drug
reinstatement (drug-primed) (McFarland and Kalivas 2001;
Capriles et al. 2003; Di Pietro et al. 2006; Stefanik et al.
2013b; Vassoler et al. 2013; Shen et al. 2014; Martin-Garcia
et al. 2014), drug reinstatement (cue-induced) (McLaughlin
and See 2003; Di Pietro et al. 2006; Mashhoon et al. 2010)
drug renewal (Fuchs et al. 2005a), and stress-induced drug
relapse (Capriles et al. 2003; McFarland et al. 2004).
Additionally, PL. mediates fear expression in aversive contexts
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(Lemos et al. 2010; Kim et al. 2013; Rozeske et al. 2015;
Cullen et al. 2015; Reis et al. 2016), suggesting a role for this
structure in fear reinstatement. That said, activation of
periaqueductal gray (PAG)-projecting neurons of PL (and of
the anterior cingulate cortex) are associated with low fear and
increased discrimination of shock-associated contexts
(Rozeske et al. 2018), indicating some pathway-specific roles
of PL efferents in regulating fear behaviors.

With regard to roles of particular neuromodulator systems
in PL during relapse, dopamine signaling in PL is required for
drug relapse, at least in some paradigms (Capriles et al. 2003;
McFarland et al. 2004; See 2009; Liu et al. 2017; James et al.
2018; Wang et al. 2018b). When paired with a cocaine injec-
tion that is not sufficient to induce reinstatement by itself,
increasing corticosterone signaling in PL is sufficient to in-
duce reinstatement of drug-seeking (McReynolds et al. 2017).
These effects are further dependent on endocannabinoids,
such that corticosterone in PL reduces activity in local inhib-
itory interneurons in an endocannabinoid receptor-dependent
process (McReynolds et al. 2017); the net result of which
appears to facilitate activity of PL’s outputs. Stimulating sero-
tonin 2C receptors in PL (and IL) blocks reinstatement of
cocaine-seeking (Pentkowski et al. 2010). Additionally, infu-
sions of oxytocin in PL appear to prevent stress-induced drug
relapse (Han et al. 2014). Norepinephrine signaling in PL is
also an important regulator of drug reinstatement (Schmidt
etal. 2017; Otis et al. 2018). It is not yet known if these same
systems affect fear relapse, but glucocorticoids (Reis et al.
2016), endocannabinoids, and serotonin (Fogaga et al. 2014;
Almada et al. 2015) in PL are important for contextual fear
expression, suggesting they may be involved in fear
reinstatement.

Several studies now document the involvement of specific
PL projections in the regulation of relapse. In aversive learn-
ing paradigms, amygdala-projecting neurons of PL are more
strongly engaged by renewal as compared to extinction re-
trieval (Orsini et al. 2011; Knapska et al. 2012). The relapse
of drug-seeking behavior also implicates the PL=»BLA cir-
cuit, which suggests that there is overlap in circuits regulating
“g0” behavior. For example, asymmetric inactivation of the
PL and BLA has been shown to attenuate drug relapse
(Mashhoon et al. 2010). Glutamate release from PL terminals
to the NAc core is augmented after drug-primed reinstatement,
suggesting that the NAc core mediates the influence of PL on
relapse (McFarland et al. 2003; Kalivas 2009). Indeed, c-fos
expression in the PL=»>NAc core pathway is positively corre-
lated with relapse of drug-seeking, and pharmacological dis-
connection of the PL and NAc core attenuates cue-induced
reinstatement of cocaine-seeking behavior (McGlinchey
et al. 2016). Moreover, it has been reported that optogenetic
inhibition of PL terminals in the NAc core inhibits drug re-
lapse and prevents drug cue-induced synaptic potentiation in
the NAc (Stefanik et al. 2013b; Stefanik et al. 2016). The role

of PL projections to NAc during fear relapse is not clear. In
total, these data implicate the PL and its connections to the
amygdala in relapse broadly, and PL-to-NAc cells in drug
relapse in particular.

Consistent with the idea that IL serves as a “stop” structure,
it has been shown that the IL is critically involved in the
suppression of conditioned fear and reward-seeking behavior
(Rhodes and Killcross 2004; Quirk and Mueller 2008; Peters
etal. 2009; Sierra-Mercado et al. 2011); the essential role of IL
in acquisition and consolidation of extinction memories has
been an area of intense study (Quirk and Mueller 2008;
LaLumiere et al. 2010; Gass and Chandler 2013; Van den
Oever et al. 2013; Barker et al. 2014; Jasinska et al. 2015).
Indeed, successful retrieval of extinguished fear is associated
with enhanced activity in the IL [(Milad and Quirk 2002;
Milad et al. 2007; Knapska and Maren 2009; Madsen et al.
2017); but, see (Chang et al. 2010; Fitzgerald et al. 2014)]
whereas fear relapse is associated with a decrease in IL acti-
vation (Hefner et al. 2008; Knapska and Maren 2009; Hitora-
Imamura et al. 2015; Kutlu et al. 2016). Interestingly, acute
treatment with nicotine enhances the spontaneous recovery of
extinguished contextual fear, which coincides with reductions
in IL activation (Kutlu et al. 2016). Consistent with these
reports, pharmacological inactivation of the IL results in a loss
of extinguished fear and results in relapse (Laurent and
Westbrook 2009; Hitora-Imamura et al. 2015; Marek et al.
2018a), while pharmacological activation of the IL impairs
relapse and promotes extinction retrieval (Marek et al.
2018a)—provided that the spontaneous recovery of fear does
not mask these effects (Do-Monte et al. 2015; Marek et al.
2018a). That said, reduced spontaneous recovery (in a two-
way active avoidance paradigm) is associated with greater IL
activity (Tapias-Espinosa et al. 2018). In drug-seeking par-
adigms, several studies demonstrate that lesion or inac-
tivation of the IL results in the emergence (or even,
enhancement) of drug reinstatement (for both cue- and
drug prime-induced reinstatement), stress-induced drug
relapse, and drug renewal across numerous drug types
(Capriles et al. 2003; McLaughlin and See 2003; McFarland
et al. 2004; Peters et al. 2008b). In turn, activation of IL di-
minishes drug reinstatement (Peters et al. 2008a; LaLumiere
et al. 2012). Beyond lesions, blocking dopamine (D1) recep-
tors in the IL appears to reduce drug relapse, at least for some
forms of reinstatement (Cosme et al. 2018). Similarly, pre-
shock blockade of these same receptors in IL blunted subse-
quent fear reinstatement (Hitora-Imamura et al. 2015). Thus,
stress-induced drug relapse and fear reinstatement both
may require dopaminergic input to the IL from the VTA
(McFarland et al. 2004; Hitora-Imamura et al. 2015).
Serotonin in the IL also appears to play a role in regulating
drug relapse (but again, with similar results as in PL)
(Pentkowski et al. 2010). There is still much to learn with
regard to neuromodulatory systems in the PFC during relapse.
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Differences in the function of IL and PL neurons are de-
fined by the different efferent targets of these neurons (Pinard
et al. 2012). For example, BLA-projecting neurons of the IL
have been shown to exhibit increases in excitability following
fear extinction—an effect that was not observed for BLA-
targeting neurons of PL (Bloodgood et al. 2018). Successful
retrieval of extinction is thought to rely on IL’s ability to en-
gage extinction-promoting neurons in the amygdala, which
may in turn inhibit fear- and perhaps drug-seeking-
promoting cells (Paré et al. 2004; Herry et al. 2010). Other
studies have shown amygdala-targeting cells of IL to be more
strongly engaged when extinguished fear is successfully re-
trieved (Knapska et al. 2012). Nonetheless, the functional role
of amygdala-targeting IL cells is not clear in context of drug
relapse or successful retrieval of extinguished drug-seeking
behaviors. PL projects predominantly to NAc core whereas
IL projects almost exclusively to NAc shell (Berendse et al.
1992; Vertes 2004). Consistent with an inhibitory role of IL
over relapse, it has been shown that stimulation of IL terminals
in the shell of the NAc blocks morphine-induced reinstate-
ment of CPP (Hearing et al. 2016). Interestingly, deep-brain
stimulation of the shell of the NAc, which appears to induce
increased c-fos expression in IL (but not PL), has been dem-
onstrated to reduce reinstatement (drug-primed; cocaine) of
drug-seeking (Vassoler et al. 2013). VTA inputs to the IL
may provide the dopamine signaling that has been shown to
be necessary for fear reinstatement, as this circuit is engaged
during relapse (Hitora-Imamura et al. 2015). Also, expression
of extinction of alcohol-secking has been shown to induce
activity in medial dorsal hypothalamus-targeting cells of IL
(Marchant et al. 2010), suggesting a diversity of pathways
may be engaged by extinction retrieval.

In contrast to a go/stop dichotomy, other works suggest that
the PL and IL have similar roles in relapse. For example,
relapse is associated with similar levels of immediate early
gene expression in the IL and PL in some studies (Zavala
et al. 2008; Koya et al. 2009; Bossert et al. 2011). While the
aforementioned data may reflect competition between IL and
PL during relapse, IL lesions have been found to impair (rath-
er than enhance) relapse of drug-seeking (Koya et al. 2009;
Rocha and Kalivas 2010; Bossert et al. 2011; Bossert et al.
2012; Vassoler et al. 2013; Pelloux et al. 2013). Similarly,
targeted disruption of IL neurons that were active during ex-
posure to the drug-taking context was shown to prevent later
drug renewal [an effect that was not observed when disrupting
IL neurons that were active in the extinction context (Bossert
et al. 2011)]. Willcocks and McNally (2013) found that PL
inactivation attenuated drug renewal. However, PL inactiva-
tion also potentiated reacquisition, an effect that may depend
on the reintroduction of the reinforcer (but not the drug’s ef-
fects per se) (Willcocks and McNally 2013). This same study
found no effect of IL inactivation on the expression of
extinguished drug-seeking (though latencies were altered).
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Nonetheless, lesions of PL have in some cases been found to
spare the relapse of drug-seeking (Bossert et al. 2011).
Others have demonstrated limited effects of ablating
PFC input to the BLA during reinstatement of alcohol-
seeking (Keistler et al. 2017). Additionally, there is ev-
idence that electrical stimulation of the IL induces long-
lasting changes in the BNST (a region the IL heavily
targets), and that these IL- and BNST-dependent changes can
facilitate reinstatement (Reisiger et al. 2014).

One reason for these discrepancies may be the reciprocal
connections between PL and IL (Vertes 2004; Hoover and
Vertes 2007), such that one region may function abnormally
in the absence of the other. Interestingly, projections from PL
to IL appear to be greater than those from IL to PL (Marek
et al. 2018b). Although it is not yet known if these circuits are
involved at the time of relapse, recent work indicates that the
extinction of conditioned fear engages projections of PL to IL
and that photostimulation of these excitatory projections en-
hances the acquisition of extinction (Marek et al. 2018b).
Photoinhibition of this pathway appeared to slow the rate of
extinction acquisition (Marek et al. 2018b). These findings
may also help explain other cases in which IL and PL neurons
exhibit similar responses during the extinction of instrumental
behaviors (Moorman and Aston-Jones 2015). Additionally,
given that many of the non-overlapping results are found
in drug-seeking paradigms, the complexity of behaviors
associated with drug-seeking may contribute to cases in
which there are a diversity of outcomes of prefrontal le-
sions on drug relapse (Gilmartin et al. 2014; Giustino and
Maren 2015; Moorman et al. 2015; Gourley and Taylor
2016). Nevertheless, these data suggest a complicated, but
important, role for the prefrontal cortex in both drug and
fear relapse.

Hippocampus Hippocampal activity in humans and other an-
imals has been linked to forms of fear relapse that depend on
contextual conditioning (reinstatement) or shifts in context
(renewal) (Marinelli et al. 2007; Maren et al. 2013; Orsini
et al. 2013; Lonsdorf et al. 2014; Jin and Maren 2015;
Hermann et al. 2016; Wang et al. 2016; Scharfenort et al.
2016). Accordingly, HPC lesions or inactivation have been
shown to disrupt both fear reinstatement (Frohardt et al.
2000) and fear renewal (Corcoran and Maren 2001;
Corcoran and Maren 2004; Ji and Maren 2005; Corcoran
et al. 2005; Hobin et al. 2006; Ji and Maren 2008; Marek
et al. 2018a). Furthermore, inactivation of the hippocampus
eliminates neuronal correlates of renewal in the amygdala
(Maren and Hobin 2007). Additionally, the HPC is involved
in novelty-detection processes that are often necessary to sup-
port relapse (Maren 2014). Interestingly, reacquisition of an
inhibitory avoidance procedure was shown to rely on protein
synthesis within the dorsal HPC (Cammarota et al. 2003);
thus, contributions of the HPC to relapse may be quite broad.
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The direct role of the HPC in other forms of fear relapse (e.g.,
stress-induced) has not been explored; however, nicotine ad-
ministration appears to enhance the spontaneous recovery of
contextual fear, an effect which coincides with enhanced c-fos
in the ventral HPC (Kutlu et al. 2016). Additionally, enhanced
post-extinction amygdalar—hippocampal functional connec-
tivity has been documented in individuals that exhibited ro-
bust spontaneous recovery of fear (as compared to weak spon-
taneous recovery) (Hermans et al. 2017). Moreover, pharma-
cogenetic activation of hippocampal cells that were active at
the time of conditioning has been shown to result in fear
relapse-like effects when tested for extinction memories
(Yoshii et al. 2017).

Similar to its role in fear relapse, the HPC is engaged by
and required for drug renewal and (cue- and drug-primed)
reinstatement (Fuchs et al. 2005a; Cooper et al. 2006;
Rogers and See 2007; Kufahl et al. 2009; Luo et al. 2011;
Zhao et al. 2017; Ge et al. 2017), and in the relapse of condi-
tioned place preference (Guan et al. 2014; Portugal et al. 2014;
Assar et al. 2016). Expression of drug relapse is also affected
by activity of the HPC during learning of the conditioned drug
response (Martin-Fardon et al. 2008). Depending on the
timing of its induction or ablation, adult hippocampal
neurogenesis may protect against drug-primed reinstatement
(Deschaux et al. 2014; Galinato et al. 2018), but its role in fear
relapse has not been established [also, see (Seo et al. 2015)].
Similar to fear renewal, the ventral subiculum (vSUB) appears
to be critically involved in context-induced drug reinstate-
ment. It has been reported that inactivation of vSUB decreases
renewal of heroin-seeking (Bossert and Stern 2014).
Furthermore, electrical stimulation of vSUB has been shown
to induce relapse itself (Taepavarapruk and Phillips 2003;
Taepavarapruk et al. 2014). Both the dorsal and ventral HPC
have been implicated in drug relapse, but this has not been
entirely consistent across studies. For example, pharmacolog-
ical inhibition of the ventral HPC, but not the dentate gyrus or
posterior dorsal HPC, prevents drug renewal (Lasseter et al.
2010). This is in contrast to reports that have found effects of
dorsal HPC manipulations on drug relapse: tetrodotoxin (but
not anisomycin) in the dorsal HPC has been shown to prevent
renewal in a drug-associated context (Ramirez et al. 2009).

Similar to the amygdala and PFC, dopamine plays an im-
portant role in HPC’s contributions to drug relapse
(Khakpour-Taleghani et al. 2015; Haaker et al. 2015; Assar
et al. 2016; Wang et al. 2018b). Additionally, infusions of
oxytocin in dorsal HPC attenuate stress-induced drug relapse
(Han et al. 2014)—a similar outcome as when oxytocin is
infused into PL. Selective nicotinic receptor blockade in the
ventral (but not dorsal) HPC disrupts the reinstatement of
morphine—CPP (Wright et al. 2018). Contributions of these
neurotransmitter systems to fear relapse have not yet been
explored. That said, post-extinction (but pre-novelty expo-
sure) adrenoceptor blockade in dorsal CA1 of the HPC blocks

the extinction-enhancing effects of novel context exposure on
measures of spontaneous recovery of fear and fear reinstate-
ment (Chai et al. 2014; Liu et al. 2015).

Converging evidence suggests that the hippocampus
strongly regulates relapse through its interactions with the
prefrontal cortex. In particular, recent work has demonstrated
that the HPC controls fear renewal by gating activity in the IL
via feed-forward inhibitory mechanisms [(Marek et al.
2018a); also, see (Liu and Carter 2018)]. That is, glutamater-
gic HPC neurons target local inhibitory interneurons of the IL
(as well as amygdala-targeting principal cells of IL); activation
of HPC=IL neurons engages strong inhibition of IL outputs,
preventing their induction of extinction mechanisms.
Pharmacogenetic activation or silencing of this pathway bidi-
rectionally promoted or shunted relapse, respectively (Marek
et al. 2018a). Other functional studies have shown co-
activation of HPC->IL and HPC-PL cells during fear renew-
al (Wang et al. 2016), suggesting these circuits may work in
tandem during relapse; however, the HPC appears to target PL
to a lesser extent, so the HPC->IL pathway may dominate the
effects of HPC=>PFC stimulation. Due to this arrangement, it
should be noted that functional dissociations in PL and IL may
in part be explained by the extent of projections from ventral
HPC to these structures (Jin and Maren 2015; Wang et al.
2016; Marek et al. 2018a). That said, reversible disconnection
experiments have also suggested a role for connections be-
tween HPC and PL as being involved in fear relapse (Orsini
etal. 2011; Fu et al. 2016).

Overlapping with fear relapse, addiction studies have
found the HPC=2IL pathway to be critical to drug relapse
insofar as renewal of heroin-seeking has been shown to en-
gage HPC=2IL circuitry (Bossert et al. 2016; Wang et al.
2018a), and inactivation of HPC-?IL neurons prevents drug
renewal (Wang et al. 2018a). The HPC-PL pathway does not
appear necessary for drug renewal (Bossert et al. 2016; Wang
et al. 2018a). This may reflect a divergence of drug relapse
from the fear relapse circuitry described above, or may high-
light the larger role of HPC=>IL neurons in mediating context-
dependent drug relapse, in particular. Moreover, Bossert et al.
(2016) did not observe effects of anatomical disconnections of
HPC-IL on drug renewal—however, given their targeting of
vSUB, in particular, it is possible a majority of IL-targeting
CAL cells were capable of sustaining relapse. Additionally, it
has been shown that protein kinase B (Akt) signaling along
the HPCPFC pathway critically regulates the reinstatement
of morphine—CPP (Wang et al. 2018b). Overall, these data
suggest a complicated relationship between HPC, IL, and
PL, but consistently suggest a regulatory role of HPC on
PFC-dependent relapse.

Perhaps in conjunction with its interactions in the PFC, the
HPC also is thought to regulate relapse via its strong connec-
tions to the amygdala (Maren and Hobin 2007; Orsini et al.
2011). In particular, photoinhibition of hippocampal terminals
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in CeA attenuates renewal (Xu et al. 2016). Interestingly,
photoinhibition of HPC=>CeA cells did not affect contextual
fear (Xu et al. 2016), suggesting that this pathway may not
contribute to reinstatement (though this remains untested).
Conversely, photoinhibition of HPC-2BLA reduced contex-
tual fear, but not renewal (Xu et al. 2016), also suggesting that
HPC=-BLA neurons may facilitate reinstatement (though un-
tested). These results are interesting in light of disconnection
studies targeting ventral HPC and BLA (Orsini et al. 2011);
these data suggest roles for indirect connections and/or recip-
rocal feedback from BLA to HPC in relapse. Relatedly, and
while connections are far more extensive between BLA and
ventral HPC, disconnection of BLA and dorsal HPC has been
shown to attenuate renewal of drug-seeking (though it remains
unclear the directionality of this relationship) (Fuchs et al.
2007). Drug relapse may also broaden relapse-regulating cir-
cuits of HPC. Indeed, NAc shell-targeting vSUB cells have
been shown to be engaged during renewal of heroin-seeking,
and disconnection of these regions attenuates the renewal of
heroin-seeking (Bossert et al. 2016). Dual-virus pharmacoge-
netic techniques have further shown that inactivation of vSUB
projections to NAc shell prevents renewal of alcohol-seeking
after punishment-imposed abstinence (Marchant et al. 2016).
While these projections to the NAc may indirectly regulate
VTA-dependent relapse, others have also shown that drug
renewal incorporates dorsal HPC projections to the lateral
septum (McGlinchey and Aston-Jones 2018), including a se-
rial relay of HPC=lateral septum (LS)=>VTA cells (Luo et al.
2011). In sum, the role of the HPC in relapse is heavily tied to
its connections with amygdala, PFC, and NAc.

Bed nucleus of the stria terminalis Considerable work indi-
cates that the BNST is involved in fear and drug relapse that
depends on contextual fear and stress. This may be due to the
broad role of the BNST in processing uncertain threats (Davis
et al. 2010; Avery et al. 2016; Gungor and Paré 2016), partic-
ularly in situations in which there is uncertainty about when an
aversive event will occur (Goode and Maren 2017; Goode
et al. 2018b). Indeed, unsignaled and unpredictable footshock
exposure (often used for stress-induced drug relapse or fear
reinstatement) induces c-fos expression in the BNST (Erb
et al. 2004; Lin et al. 2018). Furthermore, contextual fear
expression in the aftermath of footshock is associated with
activity in the BNST (Lemos et al. 2010; Luyten et al. 2012;
Ali et al. 2012). At the time of relapse, fear reinstatement has
been linked with increased activation in the human BNST
(Scharfenort and Lonsdorf 2016). In animals, stress-induced
drug relapse is associated with increased c-fos expression in
the BNST (Zhao et al. 2006; Schank et al. 2015). Additionally,
acute food deprivation, which has been shown to induce
stress-induced drug relapse, triggers an increase in c-fos levels
in subregions of the BNST (Shalev et al. 2003). Stress-
induced drug relapse produced by systemic administration of
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norepinephrine (NE) or the pharmacological stressor, yohim-
bine, is also associated with increased activity in the BNST
(Brown et al. 2011; Funk et al. 2016). Moreover, drug rein-
statement has also been shown to increase c-fos in the BNST
(Jupp et al. 2011).

In turn, permanent and reversible lesions of the BNST dis-
rupt contextual fear expression (including behavioral and au-
tonomic readouts) and subsequent fear reinstatement (Sullivan
et al. 2004; Waddell et al. 2006; Waddell et al. 2008; Goode
et al. 2015b). Recent work suggests that contextual condition-
ing and its expression can be made independent of an intact
BNST, if training occurs such that shock onset occurs early on
and in a predictable manner (Hammack et al. 2015). Thus,
there may be cases in which reinstatement is independent of
the BNST, although this remains to be tested. In cases where
the test context is not excitatory, but contextual information is
nonetheless important (such as with fear renewal), lesions of
the BNST spare relapse (Goode et al. 2015b); this again sug-
gests a reliance on the BNST in stress-dependent forms of
relapse. Contributions of the BNST to the expression of other
forms of relapse have not yet been extensively explored. That
said, concurrent neuropeptide Y receptor (particularly, Y2 re-
ceptor) antagonism in the BNST has been shown to impair
extinction acquisition as compared to animals treated with Y2
receptor agonists or saline in the BNST; these effects mirror
levels of spontaneous recovery of this extinguished fear at
remote time points (Verma et al. 2018). In the absence of
extinction, Y2 receptor agonism appears to weaken incubation
of the fear CS memory (Verma et al. 2018).

As with fear relapse, permanent and reversible lesions of the
BNST block various forms of stress-induced drug relapse, in-
cluding through the use of footshock (McFarland et al. 2004),
swim stress (Briand et al. 2010), and pharmacological stressors
(Buffalari and See 2011). Interestingly, reversible inactivation
of the BNST also blocks drug reinstatement (Buffalari and See
2011)—fear reinstatement by non-extinguished fear cues has
not yet been demonstrated to rely on the BNST. The absence
of an effect of BNST inactivation on fear renewal (Goode et al.
2015b) may suggest a limited role for the BNST in drug renew-
al; nevertheless, this possibility (along with the BNST’s role in
other forms of drug relapse) is still unaddressed.

Stress-related neurotransmitter systems, such as CRF, NE,
and pituitary adenylate cyclase-activating polypeptide
(PACAP), are known to make significant contributions to re-
lapse by acting within the BNST (Harris and Winder 2018).
For example, triggers for stress-induced fear and drug relapse,
as well as drug reinstatement itself, have been shown to coin-
cide with increases in CRF mRNA in dorsal (but not ventral)
regions of the BNST (Shalev et al. 2001; Funk et al. 2006). In
turn, CRF antagonism in the BNST (but not amygdala) pre-
vents stress-induced drug relapse (Erb and Stewart 1999;
McReynolds et al. 2014). Induction of NE signaling in
BNST can induce drug relapse (Vranjkovic et al. 2014), while
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Fig. 2 Arrows indicate common and divergent regions and neural
pathways that have been demonstrated as directly engaged by and/or
are required for expression of either drug relapse (blue dashed arrows)
or for fear relapse (red arrows) after extinction. Relapse circuits are drawn
from studies that are not limited to any particular drug type (cocaine,
methamphetamine, etc.) or relapse scenario (spontaneous recovery, re-
newal, etc.). “+” symbols indicate excitatory (glutamatergic) pathways.
Arrows labeled with “DA” and “CRF” denote dopaminergic or
corticotrophin-releasing factor-releasing relapse circuits, respectively.
Region abbreviations: nucleus accumbens core (NAc core); nucleus ac-
cumbens shell (NAc shell); ventral tegmental area (VTA); prelimbic cor-
tex (PL); hippocampus (HPC); infralimbic cortex (IL); basolateral amyg-
dala (BLA); central amygdala (CeA); bed nucleus of the stria terminalis
(BNST)

adrenoceptor antagonism in the BNST prevents stress-
induced drug relapse in a receptor- and dose-dependent man-
ner (Leri et al. 2002). Blockade of either NE or CRF signaling
in BNST prevents stress-induced drug relapse of CPP (Wang
et al. 2001; Wang et al. 2006). Similar effects were shown for
drug relapse when hypocretin/orexin antagonists or cannabi-
noid antagonists were infused into the BNST (Reisiger et al.
2014; Ubaldi et al. 2016). Although not yet demonstrated for
fear relapse, activation of CRF or PACAP signaling within the
BNST has been shown to induce relapse of drug-seeking (Erb
and Stewart 1999; Miles et al. 2018b; Miles et al. 2018a).

With regard to the contributions of BNST efferents in re-
lapse, forced-swim stress, which has been shown to induce
drug reinstatement, is associated with increased c-fos expres-
sion in VTA-targeting cells of the BNST (Briand et al. 2010).
Additionally, pharmacological inactivation of the BNST is
associated with decreased c-fos expression in the VTA,
CeA, and NAc core (Briand et al. 2010). Furthermore, phar-
macological disconnection studies indicate that NE-activated
CRF-releasing VTA projection neurons of the BNST are re-
quired for stress-induced drug relapse (Vranjkovic et al.
2014). BNST sends and receives extensive projections to
and from the amygdala, PFC, HPC, VTA, and NAc, suggest-
ing there is still much to uncover with regard to its potential
contributions to fear and drug relapse. Overall, however, the
BNST is clearly a site of stress-related relapse regulation.

Conclusions: Converging neural circuits
for fear and drug relapse

Based on the foregoing review, it is apparent that common
neural circuits regulate the maintenance and relapse of
extinguished responding to fear and drug CSs (Fig. 2; also,
see Table 1). Importantly, connections between the PFC and
the amygdala are a key point of convergence in the neural
circuitry for fear and drug relapse. In particular, excitatory
outputs of the PL division of the PFC to the amygdala are
important for the expression of both fear and drug relapse.
Context-mediated forms of fear and drug relapse (e.g., renew-
al and reinstatement) invoke the hippocampus and its circuit-
ry, with relapse engaging excitatory IL-projecting HPC neu-
rons in both fear and drug relapse. Furthermore, stress (e.g.,
reinstatement and stress-induced relapse) recruits the BNST
and its circuits during both fear and drug relapse. Additionally,

Table1 Additional information based on studies examining relapse circuits of the amygdala, prefrontal cortex, hippocampus, and BNST (summarized
in Fig. 2). Dashed marks indicate cases in which results of the manipulation are currently unknown

Circuit Manipulations Result for drug relapse Result for fear relapse
BLA-PL Inhibition Optogenetics Decreased | -
BLA=>NAc (core) Inhibition Pathway-specific cell ablation Decreased | -
CeA=>BNST Inhibition of CRF Pharmacological disconnection Decreased | -
PL=NACc (core) Inhibition Optogenetics Decreased | -
PL=BLA Inhibition Pharmacological disconnection Decreased | Decreased |
HPC=IL Inhibition Optogenetics/DREADDs Decreased | Decreased |
Excitation DREADDs - Increased 1
HPC-PL Inhibition Pharmacological disconnection - Decreased |
Optogenetics Null result -
HPC-CeA Inhibition Optogenetics - Decreased |
HPC=NACc (shell) Inhibition Pharmacological disconnection/KORDs Decreased | -
BNST=VTA Inhibition of CRF Pharmacological disconnection Decreased | -
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dopaminergic signaling in the PFC and norepinephrine in the
amygdala appear to critically regulate both fear and drug-
seeking behaviors during relapse. Although the neural circuits
mediating fear relapse are centered on the PFC, HPC, and
amygdala, drug relapse broadens the roles of these circuits
to include the VTA and NAc. Differences in the circuits of
fear and drug relapse may relate to the nature of the behaviors
being examined (e.g., freezing vs. active lever pressing) as
well as the impact of drug use (or abstinence) on the circuitry.
Further insight into the common neurocircuitry of relapse may
be gleaned by examining relapse of aversively motivated in-
strumental behaviors, such as after the extinction of active
avoidance. Additionally, further work should consider wheth-
er manipulations that attenuate drug relapse can reduce fear
relapse (and vice versa) in the same animals. To conclude,
overlapping neural circuits of fear and drug relapse may ex-
plain, in part, the high comorbidity of fear-related pathologies
and addiction. The characterization of the brain circuits under-
lying relapse in preclinical models may help inform the devel-
opment of therapeutic interventions for psychiatric disorders
in humans.
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