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Abstract

Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry
of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation
of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the
dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino
acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest
collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed.
Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved
to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual
monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative
modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present
study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on
the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively
determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.
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Introduction

The biological function of proteins is usually enabled by their

dynamics under native state conditions, which, in turn, is encoded

by their 3-dimensional (3D) structure. Unraveling this functional

code has been the aim of many experimental and theoretical

studies [1–9]. In particular the slow conformational dynamics of

proteins in the micro-to-milliseconds time scale has been pointed

out to be consistent with the changes in structure or domain/

subunit movements observed between the substrate-bound and -

unbound forms of enzymes [4–7,10], and potentially limit the

catalytic turnover rates of enzymes [11–14]. The quaternary

structure of oligomeric proteins adds another layer of complexity

to this code as the assembly of the subunits entails additional

constraints while possibly inducing new types of collective motions.

The structural hierarchy in oligomers indeed gives rise to a wide

diversity of dynamical events [15]. For instance, in allosteric

proteins, such as the paradigmatic hemoglobin [16,17], the

coupling between the internal dynamics of the subunits and the

intrinsic ability of pairs of dimers to undergo concerted

reorientations with respect to each other underlies the cooperative

response to ligand binding [18–20]. Analysing the slow confor-

mational dynamics thus emerges as a crucial step towards

understanding the structure-function code in oligomeric proteins.

Two classical models have been broadly used in the literature to

interpret the conformational changes observed upon ligand

binding: the Koshland-Némethy-Filmer (KNF) model [21] where

the ligand ‘induces’ a conformational change in the allosteric

protein, in line with the classical induced fit model, and the

Monod-Wyman-Changeux (MWC) model [22] where the ligand

selects from amongst those pre-existing conformers accessible by

the intrinsic dynamics of the 3D structure. The former is usually a

stepwise process, while the latter is all-or-none. The experimen-

tally observed structural changes appear to result from a

combination of intrinsic and induced effects: the intrinsic dynamics

of the protein prior to substrate binding is essential to enabling

cooperative changes in structure, while induced motions, usually

more localized, help optimize and stabilize the bound conformers

[4,23].

Protein-protein interfaces are usually characterized by their size,

shape complementarity and hydrophobicity [24,25]. The dynam-

ics at the interfacial residues are usually given little attention,

although the functional significance of the structural changes

triggered by complex formation or oligomerization is widely

recognized. The interface between subunits often plays a key role

in mediating the activity of each monomeric subunit [25]. Protein-

protein interactions provide, not only thermodynamic stability to

the folded state of the subunit in the complex (or assembly), but
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also a new spectrum of collective motions. Furthermore, the

oligomeric arrangement provides an efficient means of commu-

nication that may modulate allosteric regulation [19]. The present

study focuses on the following questions: (1) Is the intrinsic

dynamics of the component subunit modified by the oligomeri-

zation process, and if so, in which ways? (2) What is the role of

interfacial interactions and overall contact topology in the

functional dynamics of the oligomer and, in particular, in signal

transduction or allosteric communication?

The effect of multimerization on protein dynamics is investi-

gated here in the context of the Amino Acid Kinase (AAK) family

of enzymes. Members of this family have different degrees of

oligomerization (Figure 1). Rubio and co-workers have signifi-

cantly contributed to our current knowledge of this family of

enzymes: they have resolved the X-ray structures of most family

members [26-33] and suggested a shared mechanism of action on

the basis of their sequence and folding similarities [28]. This

mechanism was elucidated by our recent computational study of

the softest modes of motion intrinsically accessible to different

members of the AAK family of proteins [34].

The most exhaustively studied member of the AAK family is N-

acetyl-L-glutamate kinase (NAGK) (Figure 1A). NAGK phosphor-

ylates the amino acid N-acetyl-L-glutamate (NAG) in the bacterial

route of arginine biosynthesis. In many organisms, NAG

phosphorylation is the controlling step of the route, as NAGK is

feedback inhibited by the end product arginine. Rubio and co-

workers [30] characterized the structures of two hexameric

NAGKs (from Thermotoga maritima (Figure 1B) and Pseudomonas

aeruginosa) that are cooperatively inhibited by arginine [35]. In

Escherichia coli, NAGK (EcNAGK) is homodimeric and arginine-

insensitive (Figure 1A). Indeed, several studies have proven that

the hexameric arrangement is a requirement for the cooperative

inhibition by arginine [30,36]. The distinctive feature of this

biosynthetic route in bacteria is that it produces N-acetylated

intermediates, in contrast to mammals that yield non-acetylated

intermediates. This turns NAGK into a potential target for

antibacterial drugs by selective inhibition. Another member of the

AAK family is carbamate kinase (CK; Figure 1C). CK catalyses

the formation of ATP from ADP and carbamoyl phosphate (CP; a

precursor of arginine and pyrimidine bases), and undergoes a

substantial change in its structure upon substrate binding [37]. A

third member is the hexameric UMP kinase (UMPK) (Figure 1D).

UMPK catalyzes the reaction ATP + UMP ' ADP + UDP to

yield uridine diphosphate (UDP). It is involved in the multistep

synthesis of UTP, being regulated by the allosteric activator GTP

and inhibited by UTP itself. Its monomer fold is very similar to the

rest of family members, but presents a strikingly different assembly

of the subunits that has not been explained so far.

Notably, while the AAK family members do not exist in

monomeric form, they share the same monomeric fold. This

commonly shared monomeric fold is stabilized by oligomerization.

The selection of a common monomeric fold in different oligomers

suggests that that particular architecture possesses structure-

encoded dynamic features that are exploited for enzymatic activity

in oligomeric state. It is essential to analyze what the intrinsic

dynamics of the monomeric units are, and to what extent, if any,

they are maintained in the oligomeric state, or how they are

coupled to, or complement, the dynamics of the biologically active

(oligomeric) state. Calculations are thus performed for the

monomeric fold alone as well as the monomer in the context of

different oligomeric states, and the intact oligomers. As will be

shown below, the oligomers do maintain some intrinsic dynamic

features of the monomeric units, while the different assembly

geometries of the monomers give rise to global motions uniquely

defined for the particular oligomerization states. The method of

analysis presented here is applicable to any protein that functions

in different multimeric states. The effect of oligomerization on the

dynamics of the component subunits can be experimentally

examined provided that the protein exists in monomeric and

different oligomeric states, which, in turn, may be controlled by

environmental conditions [38] and few mutations at the protein

surface [39]. However, such studies may be challenging in

practice, and a computational examination emerges as an

alternative promising tool.

The most collective movements of biomolecular systems, also

called the global modes of motions, can be determined using Elastic

Network Models (ENMs) in conjunction with Normal Mode

Analysis (NMA) at very low computational cost. A wealth of

studies have shown the robustness of the global modes predicted

by the ENMs (e.g., by the anisotropic network model, ANM

[40,41]) and their close relevance to experimentally observed

structural transitions related to ligand binding [4-6,10,18,41–46],

or to the essential modes extracted from converged molecular

dynamics (MD) simulations [47–49]. The global modes are the

low-frequency modes extracted from NMA, also referred to as slow

modes. They correspond to large-amplitude motions taking place

at long timescales (e.g. microseconds to milliseconds); and they are

also called soft modes due to their lower energy cost associated with

a given level of fluctuation away from the equilibrium state,

compared to other modes. Given their robustness and efficiency,

ENMs are uniquely suited for exploring the collective motions and

allostery in oligomers. Previous such studies have highlighted the

significance of multimeric arrangement in defining the collective

dynamics [50–54].

The present study adds new evidences to the role played by

multimerization in defining functional dynamics. First, we contrast

the low-frequency modes favoured by the EcNAGK and PfCK

monomers to those preferentially selected by the corresponding

dimers. Secondly, the modes of the monomeric and dimeric

components of hexameric TmNAGK are compared to those

collectively accessible in the hexameric form. Third, a detailed

Author Summary

Protein function requires a three-dimensional structure
with specific dynamic features for catalytic and binding
events, and, in many cases, the structure results from the
assembly of more than one polypeptide chain (also called
monomer or subunit) to form an oligomer or multimer.
Proteins such as hemoglobin or chaperonin GroEL are
oligomers formed by 2 and 14 subunits, respectively,
whereas virus capsids are multimers composed of
hundreds of monomers. In these cases, the architecture
of the interface between the subunits and the overall
assembly geometry are essential in determining the
functional motions that these sophisticated structures
are able to perform under physiological conditions. Here
we present results from our computational study of the
large-amplitude motions of dimeric and hexameric pro-
teins that belong to the Amino Acid Kinase family. Our
study reveals that the monomers in these oligomeric
proteins are arranged in such a way that the oligomer
inherits the intrinsic dynamic features of its components.
The packing geometry additionally confers the ability to
perform highly cooperative conformational changes that
involve all monomers and enable the biological activity of
the multimer. The study highlights the significance of the
quaternary design in favoring the oligomer dynamics that
enables ligand-binding and allosteric regulation functions.

Oligomerization Effects on Protein Dynamics
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analysis of the softest modes accessible to the EcUMPK dimeric

form is presented to shed light onto the role played by different

dimeric assemblies found in the AAK family in selecting the

functional motions of the family members. Overall, the different

designs of interfaces and assembly geometries observed among the

members of the AAK family are shown to practically define the

collective modes that are being exploited by the oligomers for

achieving their particular activities, including substrate binding

and allosteric regulation.

Results/Discussion

Soft modes intrinsically accessible to the monomer are
selectively utilized or obstructed in compliance with the
specific substrate-binding properties of the dimer:
EcNAGK vs PfCK

How does the intrinsic dynamics of the monomeric subunits

affect the oligomerization process or vice versa? To what extent the

intrinsic dynamics of the monomers prevail in the oligomers? Or

to what extent they are perturbed by oligomerization? To analyse

these issues, we have first compared the low-frequency ANM

modes of the dimeric PfCK and EcNAGK with those of their

respective monomers. The two enzymes exhibit close structural

similarities (Figure 2). Their sequence identity is 24%, and their

ATP-binding site and catalytic sites exhibit similar structural

features. In fact, our previous comparative analysis of their

collective dynamics showed that the slowest three ANM modes,

which essentially modulate the opening/closure of the ATP-

binding site, are commonly shared between these two enzymes;

and they yield an overlap of 0.75 with the experimentally observed

reconfiguration from open to closed state of NAGK [34].

The main structural difference between PfCK and EcNAGK,

on the other hand, resides in their amino acid substrate binding

site, and here we focus on the softest modes that control those sites.

In EcNAGK, the b3–b4 hairpin serves as the lid of the NAG

binding site and interlinks helices B and C, which are key

components of the interface (Figure 1A); in PfCK (Figure 1C), a

Figure 1. AAK family enzymes examined in the present study. (A) NAGK from Escherichia coli (EcNAGK), (B) NAGK from Thermotoga maritime
(TmNAGK), (C) CK from Pyrococcus furiosus (PfCK), (D) UMPK from Escherichia coli (EcUMPK). Panels A, B and C show the ATP binding domains in green
and N domains in yellow. The NAG-binding sites in EcNAGK (b3–b4 hairpin) and the CK-binding site in PfCK (protruding subdomain (PS) composed of
the strand b5, helix D and hairpin b6-b7) are colored orange. The B helices of these two enzymes build part of the intersubunit surface and are very
close to the N-domain binding sites. The N-terminal helices of TmNAGK (red) interlink three EcNAGK-like dimers (delimited by dotted lines). This
hexameric enzyme is indeed regarded as a trimer of EcNAGK-like dimers. The UMPK is colored by chains. aC helices indicated in panels A and D
highlight the difference in the assembly of the monomeric subunits between the two structures.
doi:10.1371/journal.pcbi.1002201.g001

Oligomerization Effects on Protein Dynamics

PLoS Computational Biology | www.ploscompbiol.org 3 September 2011 | Volume 7 | Issue 9 | e1002201



subdomain protruding away from the interface serves as the lid of

the CP binding site. This subdomain (PS) is formed by the strand

b5, helix aD and hairpin b6–b7. Both lids exhibit significant

conformational changes closely linked to substrate binding, as

shown by the crystallographic studies performed by Rubio and co-

workers [27,32]. Among the ANM modes that affect the substrate-

binding sites, those simultaneously leading to closure/opening of

the substrate-binding site in both subunits will be called

symmetrical modes, and others, asymmetrical (Figure 2).

Description of the modes
In EcNAGK, the symmetrical opening/closure of the sub-

strate-binding sites is enabled by the 5th mode (red arrows in

Figures 2B and 2D; see Video S1), whereas the corresponding

asymmetrical motion takes place in the 4th (green arrows) mode

(Video S2). Note that our previous work [34] showed that ANM

modes 1–3 were instrumental in accommodating the structural

changes at the ATP-binding site, but had practically no effect on

the NAG-binding site. This nicely illustrates how the enzyme

takes advantage of different types of motions accessible to its

native structure for achieving different types of functional

motions. In mode 5, the two b3–b4 hairpins (Figure 1A), the

lids of the NAG-binding sites, undergo an almost rigid-body

rotation about the dyadic (z-) axis of the molecule while the ATP

binding domains undergo smaller but coupled anticorrelated

rotations. On the other hand, the asymmetrical motion (mode 4)

induces a translation along the y axis in both lids, along with the

C-terminal part of the two helices B which are connected to the

lids. No symmetric opening/closing of the lids is observed about

the y-axis because these movements would be prohibited by steric

clashes between the two B-helices (blue arrows in Figure 2D).

Rotational motions about the z-axis, on the other hand, are

favored by the overall architecture of the dimeric enzyme.

Indeed, tight interfacial interaction between the two B-helices is

considered to be a key element for the stability of the dimer [28].

The interfacial region thus coincides with the central hinge site

that mediates the opening/closing of the two monomers. This

example emphasizes the effect of inter-subunit surface and

topology on the character of the movements allowed/prohibited,

or selected, in the oligomer.

Figure 2. Dynamics of the substrate-binding sites on PfCK and EcNAGK. Panels A and C are bottom and lateral views of PfCK. Panels B and D
are bottom and lateral views of EcNAGK. Each panel shows different conformations (in yellow, orange and red) along a given mode (the number and
the symmetry are specified in parenthesis). The structural elements involved in substrate-binding are highlighted by the brighter colors: PS in PfCK
and the b3–b4 hairpin (lid) in EcNAGK. In PfCK, helix B (green) and b10–b11 hairpin (cyan) are key structural elements at the dimer interface. In
EcNAGK, helix B, which is connected to the b3–b4 hairpin, is also highlighted. Green and blue arrows indicate the mechanisms of the modes that
induce asymmetric and symmetric opening/closure at the substrate-binding site, respectively. In panels A and C, the green arrows show that the
corresponding asymmetric movements of PSs are also allowed (4th mode). In panel B, the black ellipse displayed at the interface shows the axis of
rotation (z-axis), normal to the plane of the figure. The blue arrows in panel D show that the opposite movement of b3-b4 hairpins is not allowed due
to the steric clashes. For better visualization of these modes see Videos S1, S2, S3 and S4.
doi:10.1371/journal.pcbi.1002201.g002

Oligomerization Effects on Protein Dynamics
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As to PfCK, the two substrate-binding subdomains are able to

undergo both symmetric (1st and 3rd mode; see Video S3) and

asymmetric (4th mode; see Video S4) motions because these two

subdomains protrude away from the interface and their rotational

rigid-body motions are not constrained by potential clashes

between the adjacent B-helices. Indeed, the motion is parallel,

rather than normal, to the plane defined by the two B-helices, and

the two B-helices remain tightly packed and almost immobile in

these modes. Notably, the global fluctuations of two PSs on PfCK

dimer appear to modulate the access to the substrate-binding sites,

suggesting a role in mediating substrate-binding.

Comparison between the monomer and dimer dynamics
The selection of particular modes by EcNAGK for achieving its

specific functions (e.g., modes 1 and 3 enabling ATP-binding; and

mode 5, substrate binding) [34] raises the following question: is the

rotation of the hairpins an acquired mode of motion originating

from the topology of the dimer interface and not accessible to the

monomer? Or, is it an intrinsic dynamical ability of the monomer

that is conserved and exploited in the dimer? To address this issue,

we compared the modes obtained for the isolated monomer with

those of the monomer in the dimer, using the subsystem/

environment coupling method described in the Methods. The

monomer is the subsystem, and the second monomer stands for the

environment in this case. For the sake of clarity, herein the modes

that include the coupling to the environment are indicated with a

superscript, i.e., monomer(dimer) refers to the behaviour of the

monomer within the dimer.

The results are presented in Figure 3 (and Supplementary

Tables S1 and S2). Therein the overlaps between the eight lowest-

frequency modes accessible to the monomer in the isolated state

(y-axis) and within the dimer (x-axis) are displayed for EcNAGK

(panel A) and PfCK (panel B), and Tables S1 and S2 lists the

corresponding values. The orange-red entries along the diagonal

in panel A demonstrate that the modes intrinsically accessible to

the EcNAGK are closely maintained in the dimeric enzyme.

Notably, both the order of the modes (i.e., their relative frequency

and size, as defined by the respective eigenvalues), and their shapes

are closely conserved.

The picture is different in the case of the PfCK dimer (panel B).

While in EcNAGK all of the top-ranking seven modes are

maintained with an overlap of 0.70 or above, in PfCK significantly

fewer global modes favored by the isolated monomer are

maintained, and with a weaker correlation and reordering of the

modes. Thus, the Pf CK monomer dynamics is strongly affected by

dimerization. Examination of the individual modes showed that

the monomer modes that induce high fluctuations at particular

secondary structural elements such as the helix B and the b10–b11

hairpin (shown in cyan in Figures 2A and C) are practically absent

in the dimer. As shown in Figure 2 these are key elements at the

intersubunit interface, and dimerization imposes high constraints

quenching their motion. The intersubunit surface of PfCK

(2453 Å2) [27] is remarkably bigger than that of EcNAGK

(1279 Å2) [28]. This higher surface area, and ensuing closer

association of the two monomers, may be partly responsible for the

larger perturbation of the intrinsic dynamics of the monomer upon

dimerization in Pf CK, compared to EcNAGK.

Figure 2 and videos S3 and S4 in the Supporting Information

demonstrate that the global motions preferentially undergone by the

two PSs in the Pf CK dimer induce conformational changes near the

substrate-binding site; and Figure 3 shows that the global dimer

dynamics departs from that of the isolated monomers. So,

dimerization promotes in this case collective motions that affect

substrate recognition and/or binding. The PS has been proposed to

have evolved, together with the intersubunit interface, to play a key

role in the specificity of CK for its substrate carbamate, as opposed

to more abundant analogues, i.e., acetate, bicarbonate or acetylpho-

sphate [37]. This conjecture originally inferred from the examina-

Figure 3. Comparison of the global dynamics of EcNAGK and PfCK monomers in the dimer with those of the isolated monomeric
components. Overlaps between the eight slowest modes of the monomers and dimers of (A) EcNAGK and (B) PfCK are shown in the heat map.
Dimerization has minimal effect on the intrinsic global dynamics of EcNAGK, while that of PfCK appears to be more strongly affected, presumably due
to its larger intersubunit interface.
doi:10.1371/journal.pcbi.1002201.g003

Oligomerization Effects on Protein Dynamics
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tion of crystal structure alone is supported by our examination of

PfCK dynamics. ANM global modes clearly indicate the ability of

the PS to undergo movements toward the substrate-binding site,

and the enhanced mobility at this particular region may indeed

underlie the adaptability of CK to bind its substrate.

Conservation and creation of functional modes: the
hexameric TmNAGK

The next case we studied is the hexameric form of the NAGK

enzyme from Thermotoga maritima (TmNAGK). The higher degree

of multimerization of TmNAGK will permit us to contrast the

dynamics of the whole enzyme with those of its dimeric and

monomeric components.

On the basis of the X-ray crystallographic structure, the

hexameric arrangement of TmNAGK is considered to be a trimer

of EcNAGK-like dimers [30], herein called the AB dimer (see

Figures 1B and 4A). The dimeric scaffolds are interlaced by a

mobile N-terminal helix, not present in the dimeric EcNAGK, and

organized with a ring shape. An alternative dimeric building block

being considered is the one constituted by the two monomers that

interlink two adjacent AB dimers, herein called the AF dimer (see

Figure 4A). In the present study, we have compared the 20 lowest-

frequency modes of the hexamer with those of the monomeric

subunit and the two different dimeric building blocks.

The results are presented in the panels B–F of Figure 4. In each

panel, the x-axis refers to the modes observed in the oligomer

(hexamer or dimer), and the y-axis refers to those intrinsically

accessible to the components (dimers or monomers) that make

these oligomers, e.g., panel B compares the global modes of the

AB dimer in the hexamer (x-axis) to those accessible to the AB

dimer itself when examined in isolation (y-axis). The comparative

examination of these maps discloses two distinctive patterns:

panels C and E reveal the conservation of global modes, in

general, between the entities that are being compared, while

panels B, D and F reveal that about K of the modes accessible to

the substructures when examined in isolation are not represented in

the assemblies. This behavior is clearly seen, and quantified, by the

dashed lines on the maps, which represent a linear fit by weighted

least squares regression to the entries that exhibit a correlation of

0.5 of higher. The dashed line in the former groups lies along the

diagonal (slope -1.04 and -1.01 in the respective panels C and E),

whereas in the latter case, the slope varies as -1.81 (panel B), -1.72

(D) and -1.44 (F).

Let us first examine the 1st group more closely: panel C

essentially tells us that the monomers participating in the AB

dimer maintain in the dimer their intrinsic dynamics favored by

their monomeric architecture. As to panel E, it simply reflects that

AF dimer in the hexamer behaves practically in the same way as in

Figure 4. Comparison of the global dynamics of TmNAGK monomers in the hexamer with those of the isolated monomeric and
dimeric components. (A) Cartoon representation of TmNAGK, illustrating the packing of the individual subunits, resulting in two different types of
intersubunit interfaces represented by those in the AB and AF dimers. (B)-(F) Overlaps between the 20 slowest modes of different building blocks
(monomer, AB and AF dimers) and the hexamer, as labelled in the individual heat maps. In all five maps, the weighted linear fit to overlaps above 0.5
is shown by the dashed line.
doi:10.1371/journal.pcbi.1002201.g004

Oligomerization Effects on Protein Dynamics
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the isolated AF dimer, indicating that multimerization does not

alter the global dynamics favored by the AF dimeric structure. In

other words, the TmNAGK hexamer exploits the intrinsic

dynamics of the AF dimer; and likewise, the AB dimer takes

advantage of the structure-encoded dynamics of its monomers.

Notably, the top four modes are conserved in this case with a

correlation of more than 0.95. This is in agreement with the high

conservation of the monomer dynamics in the EcNAGK dimer, as

pointed out in Figure 3A, given the structural and dynamical

similarities [34] between the AB dimer and EcNAGK.

We now turn our attention to the 2nd group. Here we see the

dimer AB in the hexamer which is unable to sample several modes

that are accessible to the same dimer in isolation (panel B). Thus,

the environment provided by the hexamer constrains the intrinsic

dynamics of the AB dimer. Why is the AB dimer rigidified in the

hexamer? We note that in the hexamer, these EcNAGK-like (AB)

dimers make close, interlacing interactions with the adjacent dimer

by swapping their N-terminal helices and also making contacts

with the C-domain, i.e. the interactions of AB-type dimers with the

adjacent dimer through the AF interface impose topological

constraints that impair several modes in the hexamer (panel B).

Likewise, the monomer in the hexameric environment is more

restricted than the isolated monomer, such that many modes

accessible to the isolated monomer cannot be effectuated in the

hexamer (panel D). Given the different degree of conservation of

the dynamics of the AB and AF dimers within the hexamer (panels

B and E), we can add a complementary perspective to the

structural view of TmNAGK as a trimer of EcNAGK-like dimers.

The stronger conservation of the dynamics of the AF dimer

supports a dynamical view of TmNAGK as a trimer of AF-like

dimers.

Finally, it is worth pointing out that the surface area of the AF

interface (1186 Å2) is slightly smaller than that of the AB interface

(1381 Å2) [30]. This might suggest that the monomeric modes

would be more severely constrained in the AB dimer, but this does

not hold true as explained above. The small difference in the

surface area is therefore not sufficient to explain the observed

behavior. The major determinant of accessible global motions is

not the surface area but the topology of the interfacial contacts, or

the overall shape/architecture of the dimer. In the present case,

the overall architecture of the hexamer selectively hinders a

number of global modes accessible to the AB dimer, while those of

the AF dimer are mostly preserved. It is widely accepted that the

size of the interface is closely linked to the thermodynamic stability

of the oligomer [25,55]. The dynamics of the oligomer, on the

other hand, is suggested by the present analysis to be predomi-

nantly controlled by the quaternary arrangement and contact

topology of the subunits.

New modes of motion and cooperativity
The results discussed above focus on the preservation or the

obstruction of the global motions of the subunits upon oligomer-

ization. Nevertheless, in many cases, oligomeric proteins are

subject to cooperative processes that regulate the biological

activity. This raises the question whether such cooperative

processes are linked to new modes of motion unique to oligomeric

arrangement.

TmNAGK is cooperatively inhibited by arginine in contrast to

the dimeric EcNAGK and PfCK, which do not exhibit an

allosteric regulation. The available X-ray crystallographic struc-

ture of TmNAGK represents the T state of the enzyme, which is

bound to arginine. The apo form of the enzyme (R state) has not

been structurally resolved, but the X-ray structure of the same

enzyme from Pseudomonas aeruginosa (PaNAGK) serves as a suitable

model for the R state on the basis of sequence and structural

similarities [30]. Taking into account that the transition of

TmNAGK between the R and T states is intimately linked to its

allosteric regulation, those modes of motion that favor this

conformational change will be the most functional. Therefore,

the cumulative overlap of the lowest modes with the deformation

vector between the R and T states has been calculated. Given that

the T and R states correspond to proteins with different sequences,

we have structurally aligned the two structures with DALI [56]

and used the subsystem/environment coupling method (see

Methods) to compute the ANM modes of TmNAGK, considering

as subsystem those residues of TmNAGK structurally aligned to

PaNAGK. Likewise, the deformation vector was calculated for the

structurally aligned residues.

Strikingly, a single non-degenerate mode (6th) accessible to

TmNAGK is found to describe 75% of the R«T deformation (see

Figure 5D showing the cumulative overlap). A deeper analysis of

this mode can shed light on the structural origin of the

functionality of this enzyme. The aim is to ascertain whether this

mode arises from the intrinsic dynamics of the subunits or is

acquired in the hexameric state. Mode 6 is an expansion/

contraction of the ring, accompanied by cooperative rotational

and twisting motions of each monomer (see Video S5). The axis of

rotation goes through each AF interface (Figure 5A) and performs

an almost rigid rotation of the EcNAGK-like dimers (Figure 5C).

Residues close to these axes of rotation form minima in the mode

fluctuations profile (Figure 5B) and belong to the AF interface. The

axis involves a part of the N-terminal helix (6–20) of chains A and

F, where the two helices interact tightly. Indeed, this interface

stabilizes the hexameric arrangement and no NAGK dimer has

been structurally characterized with an AF-like interface. The AF

interface is unique to the hexameric arrangement.

As shown in Figure 4, the hexamer dynamics is affected by the

intrinsic dynamics of the component subunits. Therefore, mode 6

could be associated with particular global modes accessible to the

AB and/or AF dimers. We have examined the inter-residue

distance variations maps induced by the low-frequency modes of

the isolated AB and AF dimers to explore this possibility. AF dimer

proves to be the major source of the rigid body movements of

monomers observed in the hexamer (see Videos S6 and S7). The

distance variation maps of the 1st and 4th modes of the AF dimer

(Figure S1) illustrate that the internal motions within a given

subunit are negligible, but the relative movements between the two

subunits are significant. The AF interface, thus, emerges as a key

mechanical region that confers to the two linked subunits suitable

flexibility to undergo functional changes in their relative

orientations. This dynamic feature of the AF interface, whose size

is smaller than the AB interface, is in accord with Hubbard and

co-workers [57], who stated that those interfaces that are not

optimally packed may confer functional mobility to the oligomer.

This inherent dynamical ability of the AF interface is therefore

exploited in the hexameric arrangement to couple the rigid-body

movements of the subunits, complementing their intrinsic internal

dynamics.

Communication across the structure
The topology of the AF interface appears to be evolutionary

selected to provide two essential features for the functionality of

the enzyme: (1) flexibility to allow for the cooperative reorienta-

tions of the dimers, which is inextricably linked to allostery, and (2)

thermodynamic stability of the whole hexamer. Taking into

account the crucial role of the AF interface and with the aim of

providing further insights into the allosteric regulation of this

enzyme, we considered the maximum likelihood pathway (MLP)
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Figure 5. The cooperative mode of motion that enables the TRR transition of hexameric TmNAGK. (A) Schematic description of the
TmNAGK mode 6 which yields a remarkably high overlap with the structural change involved in the TRR transition of the enzyme. Two structures
have been generated using Eq.3. The top view of the deformed structures shows the opening/closure of the ring. The arrows show the direction of
motion. The side views of the AB and AF dimers show a rotational movement of both dimers that make the hexameric ring flatter when it opens. See
Video S5 for better visualization. (B) Mean-square displacements of residues in the 6th mode. Hinge sites are indicated by solid triangles. (C) Inter-
residue distance variation map in mode 6. Blue/red/orange entries refer to distances that decrease/increase/remain unchanged. If the inter-residue
distances within a given subunit remain constant, this indicates a rigid-body motion of the subunit (see Eq. 5). (D) Overlap of individual TmNAGK
modes with the allosteric change in structural coordinates between the T and R states. Red line: cumulative overlaps CO(m) between ANM modes and
the experimentally observed conformational transition between R and T states (see Eq. 4), calculated for the 20 lowest-frequency modes. Green bars:
overlap of each mode. This subset of 20 modes accounts for 85% of the conformational change, predominantly contributed by the 6th mode (overlap
of 75%).
doi:10.1371/journal.pcbi.1002201.g005
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for each combination of pairs of residues (endpoints) belonging to

the respective chains A and F, and evaluated the fractional

occurrence of each residue in the ensemble of MLPs (see

Methods). Figure 6A displays the percent occurrence of each

residue, which also provides a measure of the relative allosteric

potential of the residues. Peaks are observed at K17, E18, F19,

Y20, K50 and Y51 (ribbon diagram color-coded from blue (peaks)

to red (minima) in Figure 6B). The significance of this first set in

allosteric communication could be anticipated due to their

location at the tightest part of the AF interface and proximity to

the arginine inhibitor (Figure 6B). However, our approach helps to

identify other distal residues important for the communication,

which behave as hubs. In particular, K196 and I162 channel most

of the pathways to the AF interface via interactions with F19 (and

the arginine inhibitor) and K50, respectively.

The communication across the AF interface can be summarized

namely by two symmetric pathways distinguished by the MLP

analysis: I162A R K50AR Y51AR K17F R E18F R F19F R
K196F and its counterpart I162F R…R K196A (colored yellow

and green in Figure 6B). Aromatic residues tend to be favored at

protein interfaces [25], and in this case, F19 and Y20 play a

critical role. Not surprisingly, F19 is highly conserved among

arginine-sensitive NAGKs [30] and, together with Y20 (violet in

Figure 6B), it establishes an efficient communication pathway of

the form F19(A/F)R Y20(A/F)R Y20(F/A)R F19(F/A).

Differences in the dimer organization point to different
functional mechanisms: EcNAGK vs EcUMPK

The structure of the monomeric subunit of EcNAGK is

preserved among all family members, but the assembly geometry

is less conserved. The arrangement of the monomeric subunits of

NAGKs and CKs is strikingly similar, as shown above, but has

significant differences with the assembly of UMP Kinases.

Structurally, UMPKs are trimers of dimers in which the two

helices that build the intersubunit surface of each dimer are

parallel (Figure 7C and D), whereas in NAGK (and CK) these

helices at the interface make an angle of ,65u (Figure 7A and B).

To our knowledge, a clear functional reason for this difference in

monomer-monomer packing has not been reported so far.

Although this difference has been argued to be necessary for

hexameric assembly [58], there might be another functional

reason since TmNAGK is an example of a hexameric assembly

that selectively adapts the EcNAGK-like dimer packing (AB

dimer). Here we compute the ANM modes of the UPMK dimer

from Escherichia Coli (EcUMPK) in order to examine whether such

a difference in packing geometry gives rise to significant changes in

the global dynamics.

The first mode of motion of the isolated EcUMPK dimer entails

a rotational rigid-body movement with respect to an axis across

the aC helices (Figure 7, panels C and D, and Video S8). The

anticorrelated motion of both subunits leads to an opening/closure

movement of the whole dimer. This is in sharp contrast to the

EcNAGK dimer dynamics, whose low-frequency modes do not

exhibit rigid-body movements of the subunits. Does this dynamic

feature of the EcUMPK dimer play a functional role?

Gilles and co-workers determined the X-ray crystal structure of

EcUMPK complexed with GTP (PDB code 2VRY) [59], which is

an allosteric activator, and characterized a functional conforma-

tional change. They argued that GTP induces a rearrangement of

the quaternary structure that involves a rigid-body rotation of 11u
that opens the UMPK dimer. Strikingly, the first ANM mode

predicted for the UDP-bound dimer describes the structural

transition between the UDP- and GTP-bound forms. The overlap

is outstandingly high (0.78) (see Figure 8E for cumulative overlap).

Moreover, it is worth pointing out that we have checked that this

mode of motion is totally conserved in the hexamer (see Figure

S2).

Why does the different assembly in the UMPK dimer give rise

to a normal mode with a rigid-body character not present in

EcNAGK? In UMPK the interface between the monomers is

constituted mainly by two long parallel helices (aC) able to build a

rotational axis that promotes an en bloc motion of both subunits. In

contrast, the crossed orientation of the helices of NAGK (,65u)

Figure 6. Communication pathways at the AF interface. (A) Percentage of communication pathways in which a given residue is on-pathway.
(B) Color coded-ribbon diagram of the AF interface. The color code refers to the participation of the residues in the located communication pathways
(the participation increases from red to blue).The main communication pathways across the interface are colored in green, yellow and violet, and the
residues on-pathway are labeled.
doi:10.1371/journal.pcbi.1002201.g006
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Figure 7. Comparison between EcNAGK and EcUMPK dimmers. (A) and (B) Ribbon representations of two perpendicular views of the EcNAGK
dimer. A different color is used for each subunit. Secondary structure elements building the intersubunit surface are colored differently (helices aC in
red, b9-b10 hairpins in green and helices aB in orange). (C) and (D) Ribbon representations of two perpendicular views of the EcUMPK dimer. Different
conformations along the 1st ANM mode are generated with Eq. 3 (s = -20 in red , s = 0 in orange and s = 20 in yellow). See Video S8 for better
visualization. (E) Comparison of EcUMPK dimer modes with the allosteric conformational change observed in the GTP-bound form. Red line:
cumulative overlaps CO(m) between ANM modes and the experimentally observed conformational transition between the UDP- and GTP-bound
states (Eq. 4 in Methods), calculated for the 20 lowest-frequency modes. Green bars: overlap of each mode with the conformational change. This
subset of 20 modes accounts for 84% of the conformational change, being predominantly contributed by the 1st mode.
doi:10.1371/journal.pcbi.1002201.g007

Oligomerization Effects on Protein Dynamics

PLoS Computational Biology | www.ploscompbiol.org 10 September 2011 | Volume 7 | Issue 9 | e1002201



and the presence of other intersubunit contacts (B-helices and b9–

b10 hairpins) hinders a rigid-body rotation of the two subunits.

This suggests that the unique dimeric assembly of UMPK gives

rise to a particular soft mode not present in other AAK family

members. This example further indicates that the design of the

interfacial contact topology and oligomerization geometry is

crucial in defining the functional mechanisms of oligomers.

Importance of spatial constraints in the allosteric
regulation of UMPK

In some cases, a single residue may significantly affect the

contact topology at the interface and, thus, the allosteric

regulation. This has been explored in the context of the UMPK

analogue from Mycobacterium tuberculosis (MtUMPK), for which

crystallographic and site-directed mutagenesis studies have been

recently conducted [60]. The X-ray structure of MtUMPK bound

to GTP shows striking similarities to EcUMPK structure. Notably,

this similarity is extended to their global motions: the lowest

frequency ANM modes of the two structures exhibit an overlap of

0.97. Given that the global modes of motion are fully determined

by the overall shape of the protein, local perturbations are indeed

unlikely to affect the low-frequency modes.

Site-directed mutagenesis studies, on the other hand, show the

importance of some residues in both the activity and the

cooperativity of the enzyme. Among them, P139 was pointed

out to to be a key residue in the allosteric regulation of the enzyme.

P139 is located close to the trimeric interface where three GTP

molecules are bound. What is the dynamical role of this residue?

The mean-square fluctuations profile obtained with the ANM

shows that P139 occupies a position close to a local minimum (a

rigid part of the protein) (Figure 8A). Such regions usually play a

key mechanical role for mediating collective changes in structure,

and mutations at such positions may potentially affect the allosteric

dynamics of the protein.

We have analyzed the importance of P139 in mediating the

allosteric communication among subunits A, D and F, which build

one of the two trimeric interfaces where three GTP molecules are

bound. We computed the communication pathways between GTP

binding residues (starting from subunit A and ending at subunits D

and F) and the percent contribution of each residue to MLPs, as

done for TmNAGK. Figure 8 shows the trimeric interface color-

coded according to the percent contribution in the same way as in

Figure 6B. We note that the participation of P139 (in yellow) to

these pathways is minimal (note the red color in the backbone), but

the adjacent residues Y137 and L138 are important mediators of

inter-subunit communication via interactions with Q132.

This analysis suggests that the importance of P139 lies in

constraining the orientation of nearby residues Y137 and L138

involved in inter-subunit signal propagation. The fact that this

residue is highly restricted position in the global mode profile

emphasizes its role in constraining the neighboring residues in a

precise orientation pre-disposed to enable inter-subunit commu-

nication. The experimentally tested mutants (P139A, P139W and

P139H) all showed a diminished allosteric regulation, but to

different extents [60]. Further simulations at atomic scale might

help explain the relative sizes of the effects induced by these

mutations, but this is beyond the scope of the present work. It

might be interesting to experimentally test the effect of mutations

at L18, Y137 and Q132, since these residues emerge here as key

elements enabling inter-subunit communication and they are

distinctly restricted in the collective dynamics (Figure 8A) despite

the relatively low packing density at the interface.

To summarize, the present study reveals several dynamic

features of oligomeric proteins by means of an ENM analysis of

family members with different degrees of oligomerization. A

common dynamic feature of the oligomers presented here is the

conservation of the inherent dynamics of their monomeric or

dimeric building blocks. The way these blocks are assembled in

different oligomers confers different types of collective mechanisms

Figure 8. Collective dynamics and signal propagation in MtUMPK. (A) Mobility profile obtained by ANM computed for all 3N-6 normal modes
of the hexamer. The fluctuations of only one monomer are shown. Red dots correspond to those positions that were mutated in the study of Labesse
and co-workers [60] (B) Color coded ribbon diagram of the interface. The color code (same as in Figure 6B) refers to the participation of the residues
in the located communication pathways. P139 (shown in yellow) does not directly participate in intersubunit communication but highly constraints
the neighboring residues Y137 and L138 that play a key role in allosteric signaling.
doi:10.1371/journal.pcbi.1002201.g008
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unique to particular oligomerization geometries. Here are the

main observations:

(1) The dimeric EcNAGK and PfCK conserve to a high extent

those normal modes of the monomers which involve minimal

conformational rearrangements at the intersubunit interface.

(2) The topology of the interface in PfCK provides the protruding

subdomains of the component subunits with remarkably high

mobility, which apparently enhances the affinity for binding

the carbamate substrate and for excluding other carbamate

analogues that are more abundant, as suggested by recent

experiments [37].

(3) The TmNAGK hexamer has two different types of interfaces

(AB and AF) that provide different dynamic properties to the

hexamer. The AF interface provides the hexamer with the

ability to perform en bloc motions that cooperatively engage all

six subunits, in contrast to the AB interface that enjoys an

internal flexibility relevant to the opening of the substrate

binding site. The concerted movements of the six subunits

coupled to the internal motion of the subunits give rise to a

normal mode (mode 6, Figure 5) intimately linked to the

allosteric transition of the hexameric enzyme.

(4) The ability of TmNAGK to enable allosteric signaling has

been studied by means of a Markov model of network

communication. The MLPs connecting residues of chains A

and F suggest that some residues of the interlaced N-terminal

helices, which build the AF interface (e.g., K17, E18, F19 and

Y20) are distinguished by their high allosteric potential.

Notably, these residues coincide with the key mechanical sites

(global hinges) that mediate the cooperative mode of motion.

(5) The different assembly of the subunits in the EcUMPK dimer,

with respect to EcNAGK, gives rise to rigid-body movements

of the subunits that are necessary for the allosteric regulation

of EcUMPK. The mutual disposition of the two long helices

that build the interface in either enzyme proves to be crucial

for favoring functional dynamics. Interestingly, the experi-

mentally observed allosteric switch mechanism of UMPK is

closely reproduced by a single mode (ANM mode 1;

Figure 7E), in support of the functional significance of the

collective motions uniquely defined by the dimeric architec-

ture.

(6) In parallel with the observations made for TmNAGK

allosteric communication, a series of residues highly restricted

in the collective dynamics of MtUMPK play a key role in

enabling intersubunit communication. P139 plays a structural

role by introducing backbone constraints that precisely

constrain nearby residues’ side chains in orientations pre-

disposed to optimal binding of GTP and inter-subunit

communication. The significance of P139 in enabling

allosteric communication is consistent with site-directed

mutagenesis data [60].

In summary, the oligomers in the examined AAK family appear

to selectively exploit the inherent dynamic abilities of its

components, on the one hand, and favor coupled movements of

intact subunits, on the other, to effectively sample cooperative

movements (soft modes) that enable motions required for substrate

binding and efficient allosteric responses. The architecture of the

interfaces and the assembly geometry play an essential role in

defining the most easily accessible (or softest) modes of motion,

which in turn, are shown to be relevant to the functional

mechanisms of the different oligomers, being presumably

optimized by evolutionary pressure.

Methods

Anisotropic Network Model (ANM)
The low-frequency modes described by the NMA of different

ENM variants [40,61–64] have proven to be robustly determined

by the overall fold [7,65,66] and provide a consistent description of

the conformational space most easily accessible to the protein [67].

Among them, we use here the most broadly used model, the

anisotropic network model (ANM) [40,41]. In the ANM, the

network nodes are located at the Ca-atoms’ positions, and pairs of

nodes within close proximity (a cutoff distance of 15 Å, including

bonded or non-bonded pairs of amino acids [41]) are connected

by springs of uniform force constant c. The interaction potential of

the molecule is given by

VANM~
c

2

XM
i,j

Rij

�� ��{ R0
ij

��� ���� �2

ð1Þ

where M is the number of springs, and |Rij|-|Rij
0| is the inter-

residue distance with respect to the equilibrium (crystal) structure.

The second derivatives of VANM with respect to residue

displacements yield the 3Nx3N Hessian matrix H, the eigenvalue

decomposition of which yields 3N-6 nonzero eigenvalues lk and

eigenvectors uk corresponding to the frequencies (squared) and

shapes of the normal modes of motion accessible to the examined

structure. Numbering of modes in this work starts from the first

mode with a nonzero eigenvalue.

The cross-correlation between the displacements of residues i

and j, contributed by mode k scales as

(DRi : DRj)k! ukuT
k

� �
ij
=lk ð2Þ

where the subscript ij designates the element of the matrix in

square brackets. For i = j, equation (2) reduces to the square

displacement of residue i in mode k. Clearly, lower-frequency

modes (smaller lk) drive larger-amplitude motions.

Generation of large-amplitude conformational changes
Conformations sampled upon moving along mode k are

generated using

R(+ s)½ �k~R0+sl
{1=2
k uk ð3Þ

where R0 is the 3N-dimensional vector representing the initial

coordinates of all residues and s is a parameter that rescales the

amplitude of the deformation induced by mode k. The movies S1-

S8 in the Supporting Information are generated using this

equation with a series of different s values for selected modes of

examined proteins.

Comparison of experimental conformational changes
with normal modes

The degree of overlap between a conformational change Dr
observed by X-ray crystallography and the structural change

predicted by the ANM to take place along mode k is quantified by

(Dr ? uk)/|Dr|. Here Dr is the 3N-dimensional difference vector

between the a-carbon coordinates of two different forms resolved

for the same protein under different conditions (e.g., substrate-
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bound and -unbound forms of enzymes, or inward-facing or

outward-facing forms of transporters). The cumulative overlap

CO(m) between Dr and the directions spanned by a subset of m

modes is calculated as

CO(m)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k~1

(Dr : uk)=jDrj
� �2

s
ð4Þ

CO(m) sums up to unity for m = 3N-6, as the eigenvectors form a

complete orthonormal set of basis vectors in the 3N-6 dimensional

space of internal conformational changes (see Figures 5D and 7E)

Subspace overlap
The similarity between the conformational spaces described by

two subsets of m and n modes, uk and vl, evaluated for two different

systems can be quantified in terms of a double summation over

squared overlaps as in Eq. 4, among all mxn pairs of modes

(divided by m or n, depending on the reference set). The overlap

O(uk,vl,) between the pairs of modes uk and vl calculated for

different systems (e.g., Figure 3) is given by the inner product of the

eigenvectors, i.e.,

O uk,vl ,ð Þ~uk
:vl ð5Þ

Note that O(uk,vl,) is equal to the correlation cosine between the

two N-dimensional vectors, since the eigenvectors are normalized.

Distance variation maps
The change in a given inter-residue distance |R0

ij| induced by a

given mode k, DRij

� �
k
, is given by the projection of the

deformation induced by the kth mode onto the normalized distance

vector, scaled by the inverse frequency,

DRij

� �
k
~s l

{1=2
k ukð Þj{ ukð Þi

h i
:

R0
ij

R0
ij

��� ��� ð6Þ

Here (uk)i designates the ith super element (a 3D vector) of uk, and

describes the relative displacement of the ith residue (x-, y-, and z-

components) along the kth mode direction.

Communication pathways
Inter-residue communication has been suggested to play a key

role in allosteric regulation and enzymatic catalysis [68,69], and

has been the subject of many computational studies [48,70–72].

Here we use a Markov model of network communication [73,74]

to identify communication pathways. The interactions between

residue pairs connected in the ANM are defined by the affinity

matrix A, whose elements are aij = Nij/(Ni Nj)
K where Nij is the

number of atom-atom contacts between residues i and j based on a

cutoff distance of 4 Å, and Ni is the number of heavy atoms

belonging to residue i. The density of contacts at each node i is

given by di~
XN

j~1
aij .The Markov transition matrix M = {mij},

where mij = aij/dj, determines the conditional probability of

transmitting a signal from residue j to residue i in one time step

[73]. We define –log(mij) as the corresponding ‘distance’. The

maximum-likelihood paths (MLPs) for signal transfer between two

end points are evaluated using the Dijkstra’s algorithm [73]. In

order to identify the residues that play a key role in establishing the

communication between pairs of subunits, we considered the

communication between all pairs of residues belonging to the two

subunits of interest. In the application to the communication

between the A and F subunits of TmNAGK (Figure 6), an

ensemble of N2 = 2822 combinations of residue pairs (endpoints)

have thus been considered (each chain consists of N = 282

residues). For each pair, we evaluated the MLP and thus

determined the series of residues taking part in the MLP. To

quantify the contribution of a given residue to intersubunit

communication, we counted the occurrence of each residue in the

complete ensemble of MLPs. Figure 6, panel A displays the

resulting curve, peaks indicating the residues that make the largest

contribution.

NMA of a subsystem coupled to a dynamic environment
In many applications the dynamics of a part of the protein

(subsystem, S) may be of interest in the context of its environment

(E). The Hessian of the whole system is conveniently partitioned

into four submatrices [75,76]:

H~
HSS HSE

HES HEE

� 	
ð7Þ

where HSS is the Hessian submatrix for the subsystem, HEE is that

of the environment and HSE (or HES) refers to the coupling

between the subsystem and the environment. Inasmuch as the

environment responds to the subsystem structural changes by

minimizing the total energy, the effective Hessian for the

subsystem Heff
SS coupled to the environment is

Heff
SS ~HSS{HSEH-1

EEHES ð8Þ

This approach has been advantageously employed in determining

potential allosteric sites [77] and locating transition states of

chemical reactions [78]. It will be used below in conjunction with

the ANM for assessing the effect of oligomerization on the

dynamics of monomeric and/or dimeric components (subsystem).

Structural data
We examined four enzymes belonging to the AAK family

(Figure 1): EcNAGK (dimer), TmNAGK (hexamer), PfCK (dimer)

and EcUMPK (hexamer). To this aim, we use the X-ray structures

of EcNAGK in the open state (PDB code: 2WXB), the arginine-

bound TmNAGK (PDB code: 2BTY), the ADP-bound PfCK (PDB

code: 1E19) and the UDP-bound EcUMPK (PDB code: 2BND).

All diagrams of molecular structures have been generated using

VMD [79].

Supporting Information

Figure S1 Distance variation maps of the 1st and 4th

modes of the AF dimer. Blue positions indicate that the

distance between two residues decreases, and a red position that it

increases. If the inter-residue distances within a given subunit

remain constant, this indicates a rigid-body motion of the subunit.

See Videos S6 and S7 for better visualization of these two normal

modes.

(TIF)

Figure S2 Comparison of the global dynamics of the
dimeric component of EcUMPK in the hexamer with
that of the isolated dimeric component. Overlaps between
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the 20 slowest modes of the dimer and hexamer are labelled in the

heat map. The AB dimer is highlighted in the ribbon diagram of

EcUMPK and the rest of the hexamer (the environment) is

shadowed. The structure is colored by chains. The first mode of

the dimer is expressed by two modes within the hexamer (the

overlap with hexameric modes 1 and 3 is 0.73 and 0.58,

respectively). The dynamic properties of the dimer are remarkably

well conserved in the hexamer as given by a subspace overlap of

0.95 of the 20 lowest-frequency modes.

(TIF)

Table S1 Overlap between the eight lowest frequency
modes of the isolated EcNAGK monomer and the
EcNAGK monomer within the dimmer.
(DOC)

Table S2 Overlap between the eight lowest frequency
modes of the isolated PfCK monomer and the PfCK
monomer within the dimmer.
(DOC)

Video S1 Symmetric substrate binding mode of motion
of dimeric EcNAGK (ANM mode 5).
(WMV)

Video S2 Asymmetric substrate binding mode of mo-
tion of dimeric EcNAGK (ANM mode 4).
(WMV)

Video S3 Symmetric substrate binding mode of motion
of dimeric PfCK (ANM mode 3).
(WMV)

Video S4 Asymmetric substrate binding mode of mo-
tion of dimeric PfCK (ANM mode 4).

(WMV)

Video S5 Allosteric mode of motion of hexameric
TmNAGK (ANM mode 6).

(WMV)

Video S6 Mode of motion of the isolated AF-type dimer
of TmNAGK (ANM mode 1).

(WMV)

Video S7 Mode of motion of the isolated AF-type dimer
of TmNAGK (ANM mode 4).

(WMV)

Video S8 Allosteric mode of motion of the dimeric
component of EcUMPK (ANM mode 1).

(WMV)
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