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Abstract

Olfactory-based behaviors in mosquitoes are mediated by odorant-binding proteins (OBPs). They form a multigenic family
involved in the peripheral events in insect olfaction, specifically the transport of odorants to membrane-bound odorant
receptors. OBPs contribute to the remarkable sensitivity of the insect’s olfactory system and may be involved in the selective
transport of odorants. We have employed a combination of bioinformatics and molecular approaches to identify and
characterize members of the ‘‘classic’’ OBP family in the Southern House mosquito Culex pipiens quinquefasciatus ( = Cx.
quinquefasciatus), a vector of pathogens causing several human diseases. By taking advantage of the recently released
genome sequences, we have identified fifty-three putative Cx. quinquefasciatus OBP genes by Blast searches. As a first step
towards their molecular characterization, expression patterns by RT-PCR revealed thirteen genes that were detected
exclusively and abundantly in chemosensory tissues. No clear differences were observed in the transcripts levels of
olfactory-specific OBPs between antennae of both sexes using semi-quantitative RT-PCR. Phylogenetic and comparative
analysis revealed orthologous of Cx. quinquefasciatus OBPs in Anopheles gambiae and Aedes aegypti. The identification of
fifty-three putative OBP genes in Cx. quinquefasciatus highlights the diversity of this family. Tissue-specificity study suggests
the existence of different functional classes within the mosquito OBP family. Most genes were detected in chemosensory as
well as non chemosensory tissues indicating that they might be encapsulins, but not necessarily olfactory proteins. On the
other hand, thirteen ‘‘true’’ OBP genes were detected exclusively in olfactory tissues and might be involved specifically in
the detection of ‘‘key’’ semiochemicals. Interestingly, in Cx. quinquefasciatus olfactory-specific OBPs belong exclusively to
four distinct phylogenetic groups which are particularly well conserved among three mosquito species.
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Introduction

In insects, odorants (aka semiochemicals) are detected by

specialized sensory structures, the olfactory sensilla, present on

different chemosensory tissues such as antennae, maxillary palps

and proboscis. Hydrophobic odorant molecules have to pass

through an aqueous medium, the sensillar lymph, separating the

port of entry on the sensilla (the pore tubules) and receptors

neurons. There is now increasing evidence that a multigenic family

of small soluble proteins first identified in moths, the odorant-

binding proteins (OBPs) [1], is involved in this important process

leading to the delivery of odorants to the odorant receptors [2,3].

A detailed mechanism has been proposed for a pheromone

binding protein of the silkmoth, BmorPBP1, suggesting that a pH-

dependent conformational change is involved in pheromone

binding and release [4,5,6,7]. Indeed, structural biology studies

showed that the C-terminal part of the protein forms an additional

a-helix at low pH capable to compete with pheromone for the

binding pocket [8,9,10], thus enabling the delivery of the

pheromone in acidic environment similar to that formed by the

negatively charged dendrite surfaces of the olfactory receptor

neurons [11]. Functional study also showed that BmorPBP1, when

co-expressed with pheromone receptor BmorOR1 in the empty

neuron system of Drosophila, enhanced the response to the

pheromone, indicating that OBPs contribute to the inordinate

sensitivity of the insect’s olfactory system [12].

In mosquitoes, the first OBP (CquiOBP1) was isolated from

antennae of female Culex quinquefasciatus by native gel electropho-

resis and further cloned from cDNA to obtain a full-length

sequence [13]. Recently this protein was shown to bind to a

mosquito oviposition pheromone [14] in a pH-dependent manner

and to be expressed in a subset of sensilla including one type

responding to this pheromone [15]. Taken together, these

experiments suggest that CquiOBP1 in involved in the detection

of semiochemicals involved in mosquito oviposition behavior.

The release of the genome sequences of several insects including

three dipteran species has allowed the identification of large

multigenic families of OBPs in Drosophila melanogaster [16,17,18,19],

Anopheles gambiae [19,20,21,22] and Aedes aegypti [23]. In mosqui-

toes, different subgroups of OBPs have been identified, each

possessing its own characteristic features. The ‘‘classic’’ group

includes the majority of OBPs characterized so far and is

structurally similar with other insect OBPs. ‘‘Classic’’ OBP genes

are predicted to encode small secreted proteins which display a
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characteristic pattern of six conserved cysteine residues called the

‘‘classic motif’’ [23], as well as a N-terminal signal peptide

sequence. Several members of ‘‘classic’’ OBPs have been

determined as important components of the insect’s chemosensory

system, as suggested by their specific association with functionally

distinct classes of olfactory sensilla in D. melanogaster [24,25,26,27]

or by their high expression levels in A. gambiae antennae [28,29].

On the other hand, studies performed on other OBP classes in the

malaria mosquito A. gambiae revealed that ‘‘atypical’’ OBPs, which

possess an extended C-terminal segment, were mostly expressed in

early aquatic stages or at very low levels in adult tissues [21,22,29],

whereas ‘‘plus-C’’ OBPs, which possess at least two additional

conserved cysteines, showed no evidence of being olfactory-specific

[22], with a few exceptions detected at relatively high levels in

antennae [29].

The southern house mosquito Cx. quinquefasciatus is an important

human health pest as a vector of several pathogens including

agents of lymphatic filariasis, West Nile encephalitis and St. Louis

encephalitis. In this species only two OBPs have been identified at

the molecular level, CquiOBP1 [13] and CquiOBP7 [30], raising

the question of how many genes encoding putative OBPs are

present. In this study, we have mined the yet to be published

genome sequence of Cx. p. quinquefasciatus (The genome sequence

of Culex pipiens quinquefasciatus; Culex Genome Consortium),

examined the diversity of this multigenic family, and focused on

the ‘‘classic’’ OBP genes. Taking advantage of the genomic data,

we have identified a total of fifty-three genes encoding putative

OBPs in Cx. quinquefasciatus. Based on expression studies, we have

identified two classes of OBPs, one being specifically expressed in

olfactory tissues - and thus suggested to be involved in olfaction

(‘‘true’’ OBPs’’) - and an ubiquitous group, encapsulins [2], which

might play other physiological role(s).

Results and Discussion

Identification of putative ‘‘classic’’ OBP genes
To explore the diversity of the OBP family in the genome of Cx.

quinquefasciatus (The genome sequence of Culex pipiens quinquefascia-

tus; Culex Genome Consortium), we have used the previously

identified OBP sequences from other dipteran species (A. gambiae,

A. aegypti and D. melanogaster) as probes to look for structurally

similar proteins by Blast search [31]. Candidate sequences that

displayed significant similarity were manually screened for

characteristic features of the OBP family. Several criteria were

used to assign a protein sequence as putative OBP: a small size

(molecular weight around 14 kDa) and the presence of both a

predicted N-terminal signal peptide sequence and highly con-

served six cysteines spacing designated as the ‘‘classic motif’’: C1-

X15-39-C2-X3-C3-X21-44-C4-X7-12-C5-X8-C6 [23], which is now

considered as a hallmark of the family. Candidate OBPs were

further blasted in NCBI conserved domain database (CDD) to

confirm the presence of characteristic motifs conserved in the OBP

family.

Homology searches coupled with bioinformatics analysis

allowed the identification of fifty-three putative OBP genes in

Cx. quinquefasciatus, including CquiOBP1 the first ever mosquito

OBP characterized [13] and CquiOBP7 recently described as an

orthologue of AgamOBP7 [30]. Structural characteristics and

GenBank accession numbers of CquiOBP1 to CquiOBP53 are

compiled in Table 1. Six proteins had no predicted signal peptide

(CquiOBP10, 29, 34, 40, 41, 42), possibly because they lack a full-

length N-terminal as suggested by their overall shorter sizes.

CquiOBP21 and CquiOBP46 did not fit the ‘‘classic motif’’ of

cysteine spacing and CquiOBP45 and CquiOBP47–50 did not

match with any conserved OBP domain when blasted in CDD.

Yet, these proteins were further analyzed because of their

similarity with other mosquito OBPs (see further phylogenetic

analysis). CquiOBP45 and CquiOBP50 had been previously

identified from salivary glands transcriptome and annotated as

‘‘putative salivary odorant-binding proteins’’ based on their

similarity with the C-terminal region of an ‘‘atypical’’ OBP from

A. gambiae [32]. Both proteins display a slight variation of the

‘‘classic motif’’ as they possess thirteen residues between C4 and

C5, a feature they share with five other putative OBPs

(CquiOBP44, 47, 48, 49 and 53).

An amino acid alignment of mature Cx. quinquefasciatus putative

OBPs highlights the very low average identity of this highly

divergent multigenic family (Fig. 1). Only the six cysteine residues

are fully conserved in each protein, the conservation of C4 being

less visible on the alignment because of a more flexible number of

residues between C3 and C4 and between C4 and C5.

We have carried out cloning and sequencing of nine genes,

CquiOBP3, 4, 5, 8, 9, 11, 12, 13 and 14 to add to four previously

characterized OBP genes, CquiOBP1 [13], CquiOBP2 and

CquiOBP6 (Ishida and Leal, unpublished data), and CquiOBP7

[30], and two putative salivary odorant-binding proteins

CquiOBP45 and CquiOBP50 [32]. The other putative OBPs

identified in this study originate from VectorBase automated

annotations and were not confirmed by cDNA cloning. Most

cloned sequences were similar to VectorBase annotations and only

three genes (CquiOBP6, 9, 12) differed from corresponding

predicted genes. All new sequences were deposited into GenBank

(Table 1).

This bioinformatics-based approach likely gives a good

estimation of the range of the OBP family in Cx. quinquefasciatus.

Multigenic families of ‘‘classic’’ OBPs have now been identified in

three different mosquito species with thirty-three genes in A.

gambiae [20,21,22,23], thirty-four genes in A. aegypti [23] and fifty-

three genes in Cx. quinquefasciatus (this study). This diversity and

high divergence of OBP encoding genes in mosquito might be

correlated with the structural diversity of semiochemicals per-

ceived by their olfactory system and thus suggest differential

affinities for OBPs towards these odorant molecules. Of particular

notice, three OBPs that we have already isolated and cloned from

A. aegypti [33] have been renamed [23]. Thus, previously identified

AaegOBP1, 2, and 3 have been renamed AaegOBP39, 27, 56,

respectively [34].

Phylogenetic analysis of mosquito OBPs
In order to gain insight of the relationships among mosquito

OBPs, we have carried out a phylogenetic analysis using putative

amino acid sequences. A consensus sequence comparison tree was

constructed by the neighbor joining method [35] with one

thousand bootstrap replicates. The resulting tree suggests that

based on their amino acid identity, most mosquito OBPs are

clustered into different groups, each comprising related proteins of

the three mosquito species (Fig. 2).

Among these groups, several OBPs of Cx. quinquefasciatus share

high identity with other dipterans OBPs already described in

previous works, as indicated by the amino acid identity

percentages compiled in Table 2. These groups of orthologous

proteins have been named OS-E/OS-F, LUSH/OBP19a,

PBPRP1, and PBPRP4 based on their similarities to D. melanogaster

OBPs [20,21,22,23,36]. In Cx. quinquefasciatus, five proteins

(CquiOBP1 to CquiOBP5) cluster within the OS-E/OS-F group,

one (CquiOBP7) within the PBPRP1 group, one (CquiOBP6)

within the LUSH group, six (CquiOBP8 to CquiOBP13) within

the OBP19a group, and one (CquiOBP14) within the PBPRP4

Cx. quinquefasciatus OBPs
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Table 1. Structural characteristics of Cx. quinquefasciatus putative OBPs.

OBP Name
GenBank
accession # Amino-acids MW pI Cysteine spacing

Signal
peptide %

CDD prediction
(E-value)

CquiOBP1 AF468212 149/125 14.486 5.52 26/3/37/8/8 98,9 PBP_GOBP (1e-19)

CquiOBP2* FJ947084 146/124 14.811 5.33 26/3/37/8/8 99,9 PBP_GOBP (4e-23)

CquiOBP3* FJ947085 147/129 14.539 5.42 27/3/37/8/8/11 95,9 PBP_GOBP (8e-20)

CquiOBP4* FJ947086 150/132 15.477 5.35 27/27/3/38/8/8 99,9 PBP_GOBP (5e-14)

CquiOBP5* FJ947087 143/128 14.873 5.01 28/3/38/9/8 87,1 PBP_GOBP (4e-14)

CquiOBP6* FJ947088 146/125 13.844 8.22 28/3/41/10/8 99,7 PBP_GOBP (5e-17)

CquiOBP7 EU816362 146/126 14.162 5.25 13/12/3/39/8/8/11 1,2 PBP_GOBP (5e-14)

CquiOBP8* FJ947089 144/121 13.216 8.54 26/3/40/10/8 99,8 PBP_GOBP (1e-12)

CquiOBP9* FJ947090 147/123 13.826 6.51 28/3/40/10/8 99,9 PBP_GOBP (7e-14)

CquiOBP10 XP_001864761 132 14.734 8.2 26/3/40/10/8 NO PBP_GOBP (4e-13)

CquiOBP11* FJ947091 144/121 13.505 8.52 26/3/40/10/8 99,4 PBP_GOBP (5e-17)

CquiOBP12* FJ947092 146/124 14.364 8.17 17/26/3/40/10/8 92,9 PBP_GOBP (2e-16)

CquiOBP13* FJ947093 143/120 13.454 5.45 26/3/39/10/8 76,6 PBP_GOBP (1e-16)

CquiOBP14* FJ947094 170/150 16.797 4.58 45/29/3/33/8/8 100 PhBP (4e-05)

CquiOBP15 XP_001863130 141/113 13.03 4.23 27/3/38/8/8 99,9 PBP_GOBP (6e-08)

CquiOBP16 XP_001863131 134/114 13.043 5.38 27/3/38/8/8 100 PBP_GOBP (5e-08)

CquiOBP17 XP_001863132 132/114 12.577 4.99 27/3/38/8/8 99,9 PBP_GOBP (2e-16)

CquiOBP18 XP_001863133 132/114 12.841 4.92 28/3/38/7/8 100 PBP_GOBP (2e-10)

CquiOBP19 XP_001863134 139/122 13.451 4.76 27/3/38/7/8 100 PBP_GOBP (2e-12)

CquiOBP20 XP_001863135 131/113 12.246 8.5 27/3/38/7/8 100 PBP_GOBP (2e-14)

CquiOBP21 XP_001863136 139/118 13.808 5 31/38/10/5 99,2 PhBP (0,001)

CquiOBP22 XP_001863137 131/112 12.795 4.68 27/3/38/7/8 98,5 PBP_GOBP (1e-11)

CquiOBP23 XP_001843653 136/119 13.3 5.49 29/3/39/8/8 100 PBP_GOBP (7e-08)

CquiOBP24 XP_001864828 137/114 12.957 8.22 28/3/38/7/8 96,6 PBP_GOBP (1e-13)

CquiOBP25 XP_001857294 121/105 12.481 5.59 26/3/41/8/8 99,2 PBP_GOBP (2e-05)

CquiOBP26 XP_001857301 119/104 12.109 4.71 26/3/41/8/8 99,9 PBP_GOBP (4e-08)

CquiOBP27 XP_001857326 126/105 12.042 6.99 26/3/42/8/8 99,7 PBP_GOBP (2e-04)

CquiOBP28 XP_001867251 150/130 14.556 4.5 26/3/42/8/8 100 PBP_GOBP (1e-05)

CquiOBP29 XP_001867252 130 14.624 6.82 26/3/42/8/8 NO PBP_GOBP (5e-07)

CquiOBP30 XP_001867253 143/123 13.828 5.32 26/3/42/8/8 100 PBP_GOBP (4e-04)

CquiOBP31 XP_001849401 124/108 12.379 4.5 26/3/39/8/8 99,9 PBP_GOBP (2e-08)

CquiOBP32 XP_001866636 126/108 12.096 5.06 26/3/44/8/8 99,5 PBP_GOBP (1e-07)

CquiOBP33 XP_001870016 124/105 12.052 4.5 26/3/42/8/8 99,9 PBP_GOBP (7e-08)

CquiOBP34 XP_001870017 116 12.816 4.94 26/3/39/8/8 NO PBP_GOBP (2e-05)

CquiOBP35 XP_001870018 126/108 12.039 5.67 26/3/42/8/8 97,2 PBP_GOBP (1e-04)

CquiOBP36 XP_001870019 146/128 13.97 5.01 26/3/42/8/8/7 100 PBP_GOBP (0,003)

CquiOBP37 XP_001849733 135 14.846 8.98 26/3/42/8/8/18 NO PBP_GOBP (2e-05)

CquiOBP38 XP_001849734 137/117 12.802 4.76 26/3/42/8/8/7 100 PBP_GOBP (0,002)

CquiOBP39 XP_001849735 126/108 12.053 5.9 26/3/42/8/8 98,8 PBP_GOBP (9e-06)

CquiOBP40 XP_001849736 107 11.773 4.69 26/3/39/8/8 NO PBP_GOBP (9e-05)

CquiOBP41 XP_001849737 98 11.012 6.82 3/41/8/8 NO PBP_GOBP (8e-07)

CquiOBP42 XP_001849738 111 12.609 5.12 27/3/42/8/8 NO PBP_GOBP (3e-06)

CquiOBP43 XP_001867883 138/122 14.123 4.86 26/3/38/9/8 100 PBP_GOBP (5e-19)

CquiOBP44 XP_001870734 147/127 14.577 8.73 26/3/41/13/8 91,5 PBP_GOBP (4e-09)

CquiOBP45 AAR18456 139/117 13.209 4.7 26/3/41/13/8 99,8 NO CD (salivary)

CquiOBP46 XP_001861423 150/128 15.071 7.82 26/3/38/20/8 99,2 PBP_GOBP (1e-05)

CquiOBP47 XP_001861424 142/122 14.112 5.51 28/3/38/13/8 100 NO CD (salivary)

CquiOBP48 XP_001861425 139/117 13.153 5.78 26/3/41/13/8 99,9 NO CD (salivary)

Cx. quinquefasciatus OBPs
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group. All these groups are strongly supported by high bootstrap

values ranging from 97 to 100%. Amino acid alignments of

mosquito OBPs from these groups are provided in Figure 3. Other

Cx. quinquefasciatus OBPs, mostly in group B, also share high

identity with OBPs from other mosquito species (Table 2). Group

B is not as strongly supported as others (71% bootstrap support)

and encloses nine different subgroups of orthologous OBPs (98 to

100% bootstrap supports). Group A (90% bootstrap support)

provides an unexpected example of gene expansion in Cx.

quinquefasciatus, enclosing eighteen OBPs of this species

(CquiOBP25 to CquiOBP42) all related to AgamOBP13 and

AaegOBP57. This expansion is a possible explanation for the

highest number of putative OBPs identified in Cx. quinquefasciatus

compared to those found in other mosquito species. The

remaining OBPs share less amino acid identity and are not

clustered together but rather dispersed at the bottom of the tree.

Some of those are classified as putative ‘‘salivary’’ OBPs in NCBI

database (Table 1). Among these proteins, CquiOBP53, 52, 51 50,

49 and 47 display some identity with AaegOBP17, 18, 19 and 64

considered so far as A. aegypti specific [23], but far less with A.

gambiae OBPs (Table 2). Overall, Cx. quinquefasciatus OBPs are more

closely related to A. aegypti than A. gambiae OBPs, reflecting the fact

that both Culex and Aedes species belong to the same Culicidae

subfamily.

Comparative analysis highlights several highly related proteins

in Culex, Anopheles and Aedes, as well as other proteins much less

conserved among these three species. It is tempting to speculate

that highly conserved OBPs should perform a common role within

all species. However conservation of sequences does not

necessarily imply conservation of functions, and only further

OBP Name
GenBank
accession # Amino-acids MW pI Cysteine spacing

Signal
peptide %

CDD prediction
(E-value)

CquiOBP49 XP_001861426 143/123 14.094 5.34 26/3/38/13/8 99,9 NO CD (salivary)

CquiOBP50 AAR18408 148/126 14.678 5.23 28/3/38/13/8 99,9 NO CD (salivary)

CquiOBP51 XP_001861428 144/122 13.954 5.33 26/3/38/9/1/8 100 PhBP (1e-04)

CquiOBP52 XP_001861429 143/122 14.359 5.68 26/3/38/10/1/8 100 PBP_GOBP (2e-05)

CquiOBP53 XP_001861430 145/126 14.439 4.83 27/3/36/13/8 98,9 PBP_GOBP (2e-06)

The number of amino acids is indicated for complete/mature proteins. Molecular weights (MW) and isoelectric points (pI) values were predicted for mature proteins
using ExPASy server. Cysteine spacing patterns were determined manually. The signal peptides probabilities were predicted using SignalP 3.0 server. Conserved protein
motifs result from Blast in NCBI Conserved Domain Database (CDD) with associated E-values. Asterisks indicate when new GenBank accessions have been submitted.
Corresponding GenBank accessions: CquiOBP1 (XP_001848926), CquiOBP2 (XP_001848939), CquiOBP3 (XP_001848933), CquiOBP4 (XP_001843595), CquiOBP5
(XP_001848930), CquiOBP6 (XP_001850448), CquiOBP7 (XP_001843143), CquiOBP8 (XP_001851195), CquiOBP9 (XP_001867234), CquiOBP11 (XP_001848048),
CquiOBP12 (XP_001867235), CquiOBP13 (XP_001867238), CquiOBP14 (XP_001851213), putative salivary OBP1 AAR18408 (XP_001861427), putative salivary OBP2
AAR18456 (XP_001867923).
doi:10.1371/journal.pone.0006237.t001

Table 1. cont.

Figure 1. Amino acids alignment of Cx. quinquefasciatus putative OBPs. Residues conservation is indicated by different levels of shading: dark
grey: 90% conservation; medium grey: 60% conservation; light gray: 40% conservation. The conserved cysteine residues are indicated by the letter C
below the alignment. GenBank accession numbers are available in Table 1.
doi:10.1371/journal.pone.0006237.g001

Cx. quinquefasciatus OBPs
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Figure 2. Phylogenetic relationships of mosquito ‘‘classic’’ OBPs. The unrooted consensus tree was generated with 1000 bootstrap
replicates using the neighbor joining method. Cx. quinquefasciatus OBPs are in black, A. gambiae OBPs are in blue and A. aegypti OBPs are in red. A.
gambiae and A. aegypti OBPs follow the nomenclature established in [21] and [23]. Robust groupings identified by high bootstrap values at nodes are
indicated in bold.
doi:10.1371/journal.pone.0006237.g002

Cx. quinquefasciatus OBPs
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Table 2. Homology relationships of Cx. quinquefasciatus with other mosquito OBPs.

OBP Name
Phylogenetic
group

A. gambiae
homolog

Protein
identity

A. aegypti
homolog

Protein
identity

D. melanogaster
homolog

Protein
identity

CquiOBP1 OS-E/OS-F AgamOBP1/17 90%/79% AaegOBP56/39 88%/87% OS-E/OS-F 64%/64%

CquiOBP2 OS-E/OS-F AgamOBP3 91% AaegOBP38 94% OS-E/OS-F 51%/51%

CquiOBP3 OS-E/OS-F AgamOBP2 53% AaegOBP60 64% OS-F 44%

CquiOBP4 OS-E/OS-F AgamOBP2 39% AaegOBP37 53% OS-F 31%

CquiOBP5 OS-E/OS-F AgamOBP3/15 38%/37% AaegOBP36 58% OS-E 36%

CquiOBP6 LUSH AgamOBP4/5 62%/60% AaegOBP1/34 73%/68% LUSH 40%

CquiOBP7 PBPRP1 AgamOBP7/65 55%/54% AaegOBP27 66% PBPRP1 28%

CquiOBP8 OBP19a AgamOBP20 46% AaegOBP4 76% OBP19a 33%

CquiOBP9 OBP19a AgamOBP20 42% AaegOBP4 67% OBP19a 40%

CquiOBP10 OBP19a AgamOBP20 45% AaegOBP4 56% OBP19a 34%

CquiOBP11 OBP19a AgamOBP20 61% AaegOBP55 70% OBP19a 39%

CquiOBP12 OBP19a AgamOBP19 60% AaegOBP3 74% OBP19a 41%

CquiOBP13 OBP19a AgamOBP6/18 62%/62% AaegOBP2 71% OBP19a 30%

CquiOBP14 PBPRP4 AgamOBP66 50% AaegOBP20/59 74%/74% PBPRP4 28%

CquiOBP15 B AgamOBP68 85% AaegOBP15 92%

CquiOBP16 B AgamOBP27 42% AaegOBP65 65%

CquiOBP17 B AgamOBP67 67% AaegOBP13/14 77%/77%

CquiOBP18 B AgamOBP28 62% AaegOBP12 76%

CquiOBP19 B AgamOBP25 53% AaegOBP11 72%

CquiOBP20 B AgamOBP26 67% AaegOBP35 81%

CquiOBP21 B AgamOBP24 24% AaegOBP66 37%

CquiOBP22 B AgamOBP23 41% AaegOBP9 60%

CquiOBP23 B AgamOBP21 42% AaegOBP8 61%

CquiOBP24 B AgamOBP10 47% AaegOBP10 66%

CquiOBP25 A AgamOBP13 26% AaegOBP57 21%

CquiOBP26 A AgamOBP13 27% AaegOBP57 22%

CquiOBP27 A AgamOBP13 30% AaegOBP57 31%

CquiOBP28 A AgamOBP13 47% AaegOBP57 49%

CquiOBP29 A AgamOBP13 34% AaegOBP57 31%

CquiOBP30 A AgamOBP13 38% AaegOBP57 42%

CquiOBP31 A AgamOBP13 29% AaegOBP57 31%

CquiOBP32 A AgamOBP13 32% AaegOBP57 30%

CquiOBP33 A AgamOBP13 30% AaegOBP57 28%

CquiOBP34 A AgamOBP13 30% AaegOBP57 26%

CquiOBP35 A AgamOBP13 29% AaegOBP57 29%

CquiOBP36 A AgamOBP13 40% AaegOBP57 43%

CquiOBP37 A AgamOBP13 35% AaegOBP57 39%

CquiOBP38 A AgamOBP13 39% AaegOBP57 43%

CquiOBP39 A AgamOBP13 30% AaegOBP57 28%

CquiOBP40 A AgamOBP13 29% AaegOBP57 27%

CquiOBP41 A AgamOBP13 26% AaegOBP57 24%

CquiOBP42 A AgamOBP13 33% AaegOBP57 34%

CquiOBP43 - AgamOBP9 75% AaegOBP22 77% OBP99a 41%

CquiOBP44 - AgamOBP22 27% AaegOBP21 23%

CquiOBP45 - AgamOBP12 16% AaegOBP64 25%

CquiOBP46 - AgamOBP11 19% AaegOBP18/19 18%/17%

CquiOBP47 - AgamOBP9 22% AaegOBP64 36%

CquiOBP48 - AgamOBP22 17% AaegOBP64 24%

Cx. quinquefasciatus OBPs
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functional experiments could shed light on common roles of

mosquito highly ‘‘homologous’’ OBPs. Likewise, divergent OBPs

will have to be investigated to support their potential implication

in species-specific roles.

Genomic organization of putative OBP genes
Genomic organization was studied according to the relative

positions of genes on genomic supercontigs and revealed that most

OBP genes (thirty-six of fifty-three) are not distributed randomly in

the genome but organized in clusters of genes (Table 3). Eight

different clusters ranging from two to eight genes were identified.

The most important in term of number of genes are cluster #8 on

contig 3.315 regrouping eight genes (CquiOBP46 to CquiOBP53)

within 16 kb, cluster #3 on contig 3.424 regrouping eight genes

(CquiOBP15 to CquiOBP22) within 69 kb, cluster #5 on contig

3.181 regrouping six genes (CquiOBP37 to CquiOBP42) within

33 kb, and cluster #4 on contig 3.1894 regrouping four genes

(CquiOBP33 to CquiOBP36) within 26 kb. Two OS-E/OS-F-like

genes (CquiOBP3, 5) are also located at close range on supercontig

3.150 (cluster #1), as well as three OBP19a-like genes (CquiOBP9,

12, 13) on supercontig 3.865 (cluster #2).

OBPs of one cluster always belong to the same phylogenetic

group, indicating that they share more identity among them than

with other OBPs (Fig. 2) (Table 3). From an evolutionary point of

OBP Name
Phylogenetic
group

A. gambiae
homolog

Protein
identity

A. aegypti
homolog

Protein
identity

D. melanogaster
homolog

Protein
identity

CquiOBP49 - AgamOBP22/14 16%/16% AaegOBP64 32%

CquiOBP50 - AgamOBP12 17% AaegOBP64 33%

CquiOBP51 - AgamOBP9 22% AaegOBP19/18 36%/35%

CquiOBP52 - AgamOBP9 20% AaegOBP19/18 38%/37%

CquiOBP53 - AgamOBP22 22% AaegOBP17 44%

Amino acids identity percentages were calculated using GeneDoc software. A. gambiae and A. aegypti OBPs follow the nomenclature established in [21] and [23]. Drosophila
melanogaster OBPs displaying at least 25% identity were included: OS-E (DmelOBP83b, NP_524242); OS-F (DmelOBP83a, NP_524241); PBPRP1 (DmelOBP69a, NP_524039);
LUSH (DmelOBP76a, NP_524162); OBP19a (DmelOBP19a, NP_728338); PBPRP4 (DmelOBP84a, NP_476990); OBP99a (DmelOBP99a, NP_651707). Amino-acids identities over
50% are in bold. Phylogenetic groups are derived from Figure 2.
doi:10.1371/journal.pone.0006237.t002

Table 2. cont.

Figure 3. Amino acids alignments of five groups of mosquito OBPs. (A) OS-E/OS-F-like OBPs; (B) PBPRP1-like OBPs; (C) LUSH-like OBPs; (D)
OBP19a-like OBPs; (E) PBPRP4-like OBPs. Residues conservation is indicated by different levels of shading: dark grey: 100% conservation; medium
gray: 80% conservation; light gray: 60% conservation.
doi:10.1371/journal.pone.0006237.g003
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Table 3. Genomic organization of Cx. quinquefasciatus OBP genes.

OBP Name VectorBase accession # Supercontig Genomic position Cluster #

CquiOBP1 CPIJ007604 3.150 170,719–174,721 -

CquiOBP2 CPIJ007617 3.150 672,931–673,546 -

CquiOBP3 CPIJ007611 3.150 540,281–542,064 1

CquiOBP4 CPIJ001730 3.25 734,060–734,572 -

CquiOBP5 CPIJ007608 3.150 516,885–517,412 1

CquiOBP6* CPIJ008793 3.206 489,697–490,937 -

CquiOBP7* CPIJ001365 3.18 1720,262–1721,216 -

CquiOBP8 CPIJ009568 3.240 122,626–123,234 -

CquiOBP9* CPIJ016948 3.865 41,129–46,297 2

CquiOBP10 CPIJ013976 3.550 256,165–256,681 -

CquiOBP11 CPIJ006551 3.121 270,272–277,928 -

CquiOBP12* CPIJ016949 3.865 46,518–47,165 2

CquiOBP13 CPIJ016952 3.865 54,944–61,815 2

CquiOBP14 CPIJ009586 3.240 569,948–574,407 -

CquiOBP15 CPIJ012714 3.424 103,588–109,982 3

CquiOBP16 CPIJ012715 3.424 112,183–112,979 3

CquiOBP17 CPIJ012716 3.424 113,896–114,578 3

CquiOBP18 CPIJ012717 3.424 122,946–123,411 3

CquiOBP19 CPIJ012718 3.424 131,078–131,864 3

CquiOBP20 CPIJ012719 3.424 135,879–136,509 3

CquiOBP21 CPIJ012720 3.424 171,439–171,968 3

CquiOBP22 CPIJ012721 3.424 172,603–173,060 3

CquiOBP23 CPIJ001876 3.26 255,589–259,525 -

CquiOBP24 CPIJ014525 3.561 24,869–25,524 -

CquiOBP25 CPIJ010723 3.286 224,289–224,718 7

CquiOBP26 CPIJ010724 3.286 228,005–228,420 7

CquiOBP27 CPIJ010728 3.286 489,935–490,384 -

CquiOBP28 CPIJ016965 3.865 148,161–148,975 6

CquiOBP29 CPIJ016966 3.865 149,508–150,489 6

CquiOBP30 CPIJ016967 3.865 154,625–155,111 6

CquiOBP31 CPIJ008285 3.167 404,302–404732 -

CquiOBP32 CPIJ016479 3.770 2,731–3,167 -

CquiOBP33 CPIJ019607 3.1894 15,149–15,587 4

CquiOBP34 CPIJ019608 3.1894 29,115–29,465 4

CquiOBP35 CPIJ019609 3.1894 31,188–31,622 4

CquiOBP36 CPIJ019610 3.1894 41,408–41,883 4

CquiOBP37 CPIJ007931 3.181 460,064–466,993 5

CquiOBP38 CPIJ007932 3.181 467,058–467,528 5

CquiOBP39 CPIJ007933 3.181 481,658–482,092 5

CquiOBP40 CPIJ007934 3.181 487,383–487,920 5

CquiOBP41 CPIJ007935 3.181 488,157–488,453 5

CquiOBP42 CPIJ007936 3.181 492,753–493,384 5

CquiOBP43 CPIJ017326 3.984 153,967–154,634 -

CquiOBP44 CPIJ009937 3.265 418,539–421,106 -

CquiOBP45* CPIJ017340 3.991 152,854–153,246 -

CquiOBP46 CPIJ010782 3.315 176,953–177,463 8

CquiOBP47 CPIJ010783 3.315 183,640–184,122 8

CquiOBP48 CPIJ010784 3.315 186,427–186,913 8

CquiOBP49 CPIJ010785 3.315 187,165–187,722 8

CquiOBP50 CPIJ010786 3.315 187,841–188,288 8
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view, close localization and sequence conservation inside a cluster

suggests that Cx. quinquefasciatus OBP gene family might have

evolved by multiple gene duplication events followed by rapid

diversifications, as already suggested for A. gambiae [21] and A.

aegypti OBP families [23]. Most clustered adjacent genes are

located at close range, but genomic data suggest that such events

might also result into long range duplications. For example, two

OS-E/OS-F-like genes, CquiOBP1 and CquiOBP2 that share

63% amino acid identity and are located on the same supercontig

3.150 are nevertheless separated by more than 342 kb. Another

OS-E/OS-F-like gene, CquiOBP4, is not part of cluster #1 but

we have found an almost identical partial OBP gene

(XP_001848931, CPIJ007609) located between CquiOBP3 and

CquiOBP5 on cluster #1, suggesting that CquiOBP4 might have

arisen from duplication of this gene. Additionally, we have also

found two triplets of adjacent genes located on two different

clusters (clusters #4 and #5) sharing around 90% identity

between each pair (CquiOBP34 and CquiOBP40, CquiOBP35

and CquiOBP39, CquiOBP36 and CquiOBP38), indicating that a

large duplication event involving three genes might have occurred.

Interestingly, eight clustered OBPs (CquiOBP15 to

CquiOBP22, cluster #3) share high identity with related proteins

in A. gambiae (AgamOBP23 to AgamOBP28) and in A. aegypti

(AaegOBP11 to AaegOBP15 and AaegOBP65, 66), which are also

part of a cluster [21,23] (Table 2). These data suggest that

duplication events likely occurred in a common ancestor before

the radiation of the three mosquito species. Detailed comparative

genomic analysis is now needed to confirm the orthology

relationships among mosquito OBPs, as recently demonstrated

for PBPRP1-like genes; CquiOBP7, AgamOBP7, and AaegOBP2

[30]. (Note that the protein referred here as AaegOBP2 [23] is not

the previously isolated AaegOBP2 [33], which has been renamed

AaegOBP27 [34]).

Expression patterns in different tissues
Tissue-specificity of forty-seven OBP genes was studied by non-

quantitative RT-PCR to determine expression profile of the OBP

family members in Cx. quinquefasciatus. Expression studies represent

an important step to determine if putative OBPs are potentially

involved in odorant reception. This assumption is supported by the

fact that hitherto all OBPs with identified function have been

demonstrated to be expressed only in olfactory tissues. There are a

number of OBP-like proteins expressed in non-olfactory tissues,

but their olfactory functions have never been demonstrated or

even examined [2]. Our assumption is that a gene abundantly and

exclusively detected in chemosensory tissues likely encodes an

olfactory protein. Gene-specific primers of forty-seven OBPs were

used in PCR reactions using cDNA templates prepared from adult

antennae, maxillary palps, proboscis, legs and bodies of both sexes.

Four genes (CquiOBP34, 40, 41, 42) were not included in the

experiment and two pairs of highly similar genes (CquiOBP35/39

and CquiOBP36/38) were considered as single genes. Two

distinct cDNA pools were tested, one-day-old and one-to-seven-

days old adults. No bands corresponding to genomic DNA

amplification were observed, confirming the quality of cDNA

samples. In order to examine the transcripts levels between

olfactory and non-olfactory tissues, specific primers of a ‘‘house-

keeping’’ gene encoding ribosomal protein L8 (CquiRpL8) were

used as control to check the integrity of each cDNA preparation.

Non-quantitative RT-PCR experiments showed a high vari-

ability in the expression profiles of putative OBP genes, with

considerable variations both in tissue distributions and also in term

of expression levels. Comparison between sexes did not show a

single sex-specific gene, and no differences were observed between

one-day-old and one-to-seven-days-old adults. Results are com-

piled in Table 4 which lists the presence or absence of the expected

PCR product for each gene in different tissues.

Distribution of Cx. quinquefasciatus OBP transcripts highlights

heterogeneous expression profiles in olfactory as well as non-

olfactory tissues. Thirty-two genes were consistently detected in

antennae (68%), twenty-six in maxillary palps (55%) and twenty-

three in proboscis (49%) but also twenty-two in legs (47%) and

eighteen in bodies (38%). The high proportion of genes detected in

the main olfactory organ, the antennae, is consistent with the

presence of multiple functional classes of sensilla recently described

in Cx. quinquefasciatus [37]. Contrary to antennae, maxillary palps

harbor a single type of olfactory sensillum that has been shown to

respond to a broad spectrum of odorants in Cx. quinquefasciatus

[38]. Even if co-expression of several OBPs can occur in the same

sensillum type [25,27], the unexpected high number of genes

detected in this organ remains to be elucidated. A similar

proportion (thirteen of twenty-five genes, 52%) of OBPs was

detected in A. gambiae maxillary palps by RT-PCR [29]. Proboscis,

the main gustatory organ in mosquito, was demonstrated to be an

accessory olfactory organ in A. gambiae, which expresses at least

twenty-four odorant receptor genes and responds to a small set of

volatile compounds [39]. Consequently, it is reasonable to assume

that such olfactory function might also exist in Cx. quinquefasciatus

proboscis thus requiring the presence of the diverse group of OBPs

observed in this study. Alternatively, OBPs expressed in proboscis

may be involved in gustatory reception.

We have classified Cx. quinquefasciatus OBPs into different

categories according to their expression patterns (Fig. 4). For

simplicity, we grouped antennae, maxillary palps and proboscis as

olfactory tissues, whereas legs and bodies were considered as non-

olfactory tissues. Only thirteen genes (28%) were detected

exclusively in olfactory tissues, whereas twenty-five (53%) were

detected in olfactory as well as non-olfactory tissues, and nine

(19%) were not detected at all. These genes which have not been

detected in any adult tissues might represent pseudogenes, may be

OBP Name VectorBase accession # Supercontig Genomic position Cluster #

CquiOBP51 CPIJ010787 3.315 189,941–190,471 8

CquiOBP52 CPIJ010788 3.315 190,549–191,091 8

CquiOBP53 CPIJ010789 3.315 191,345–193,026 8

Accession numbers and positions of genes on genomic supercontigs are from Cx. quinquefasciatus VectorBase genome annotations. The different clusters of genes are
indicated by different numbers. Asterisks indicate incorrect VectorBase gene annotations.
doi:10.1371/journal.pone.0006237.t003
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Table 4. Expression patterns of OBP genes by RT-PCR in adult tissues.

OBP Name Antennae Maxillary palps Proboscis Legs Bodies Expression patterns

CquiOBP1 Yes Yes Yes No No Olfactory-specific

CquiOBP2 Yes No No No No Olfactory-specific

CquiOBP3 Yes No No No No Olfactory-specific

CquiOBP4 Yes Yes Yes No No Olfactory-specific

CquiOBP5 Yes No No No No Olfactory-specific

CquiOBP6 Yes Yes Yes No No Olfactory-specific

CquiOBP7 Yes Yes No No No Olfactory-specific

CquiOBP8 Yes Yes Yes No No Olfactory-specific

CquiOBP9 Yes No No No No Olfactory-specific

CquiOBP10 Yes Yes Yes Yes No Non olfactory-specific

CquiOBP11 Yes Yes Yes No No Olfactory-specific

CquiOBP12 Yes No No No No Olfactory-specific

CquiOBP13 Yes Yes Yes No No Olfactory-specific

CquiOBP14 Yes No No No No Olfactory-specific

CquiOBP15 No No No No No Not detected

CquiOBP16 No No No No No Not detected

CquiOBP17 Yes No Yes Yes Yes Non olfactory-specific

CquiOBP18 Yes Yes No Yes Yes Non olfactory-specific

CquiOBP19 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP20 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP21 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP22 Yes No Yes Yes Yes Non olfactory-specific

CquiOBP23 No No No No No Not detected

CquiOBP24 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP25 Yes No No Yes No Non olfactory-specific

CquiOBP26 Yes No No Yes No Non olfactory-specific

CquiOBP27 No No No No No Not detected

CquiOBP28 No Yes Yes Yes No Non olfactory-specific

CquiOBP29 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP30 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP31 No No No No No Not detected

CquiOBP32 No No No No No Not detected

CquiOBP33 No No Yes Yes No Non olfactory-specific

CquiOBP34 Not done Not done Not done Not done Not done -

CquiOBP35 No No No No No Not detected

CquiOBP36 No No No Yes No Non olfactory-specific

CquiOBP37 No No No No No Not detected

CquiOBP38 No No No Yes No Non olfactory-specific

CquiOBP39 No No No No No Not detected

CquiOBP40 Not done Not done Not done Not done Not done -

CquiOBP41 Not done Not done Not done Not done Not done -

CquiOBP42 Not done Not done Not done Not done Not done -

CquiOBP43 Yes Yes Yes No Yes Non olfactory-specific

CquiOBP44 Yes Yes No Yes No Non olfactory-specific

CquiOBP45 No Yes No Yes Yes Non olfactory-specific

CquiOBP46 No Yes No Yes Yes Non olfactory-specific

CquiOBP47 No Yes No No Yes Non olfactory-specific

CquiOBP48 Yes Yes Yes No Yes Non olfactory-specific

CquiOBP49 Yes Yes Yes No Yes Non olfactory-specific

CquiOBP50 Yes Yes Yes Yes Yes Ubiquitous

Cx. quinquefasciatus OBPs
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expressed in earlier stages (which are not the focus of this study), or

could be expressed in adults at so low levels that were not detected

under the conditions employed in this study. With four

independent replications, non-quantitative RT-PCR sufficed to

clearly demonstrate differences in bands intensities showing that

the most abundant transcripts detected in antennae, maxillary

palps and proboscis, belong mainly to the olfactory-specific gene

class (data not shown). Among those, CquiOBP1 displayed the

highest transcript level in antennae, which is consistent with a

previous study showing that CquiOBP1 was the most abundant

protein detected in female antennae extracts on a native gel [13].

Based on their high expression levels restricted to chemosensory

tissues, we suggest that these thirteen olfactory-specific genes in Cx.

quinquefasciatus are ‘‘true’’ OBPs, which may be involved

specifically in the reception of important olfactory cues.

Among the twenty-five genes detected in both olfactory and non-

olfactory tissues, some transcripts were detected at very high levels

in legs and/or in bodies indicating that the encoded proteins

probably perform some important but non-olfactory functions in

these tissues. Interestingly, CquiOBP29 was detected in every tissue

but at very high levels in antennae, maxillary palps and proboscis,

comparable with some olfactory-specific OBPs. Without any

functional evidence, we cannot exclude that genes expressed in

olfactory tissues but also in legs and/or in bodies are involved in

olfaction, but it is reasonable to consider that proteins involved in

the sensitivity and selectivity of the insect’s olfactory system are

restricted to the sensillar lymph. Some OBPs have been shown to be

expressed in broad areas including regions without chemosensory

functions, for example in D. melanogaster [16] and A. gambiae [22,29].

In A. aegypti, AaegOBP22 (close to CquiOBP43 and AgamOBP9)

has recently been proposed as a ‘‘multi-functions’’ protein

performing different roles in distinct tissues, including non-olfactory

functions as suggested by its expression in male reproductive

apparatus and in spiracles [40], which are part of the insect’s

respiratory system. We suggest that this class of broadly expressed

OBPs in Cx. quinquefasciatus might be encapsulins [2], probably

OBP Name Antennae Maxillary palps Proboscis Legs Bodies Expression patterns

CquiOBP51 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP52 Yes Yes Yes Yes Yes Ubiquitous

CquiOBP53 No No No No No Not detected

Total number of genes
detected

32 26 23 22 18 13 = Olfactory-specific;
16 = Olfactory and non olfactory
tissues; 9 = Ubiquitous; 9 = Not
detected

Specific primers of forty-seven putative OBP genes were used in non quantitative RT-PCR experiments using thirty-four cycles of amplification. Yes: a PCR product of the
expected size has been detected in a given tissue; No: absence of band. The same primer pairs have been used for CquiOBP35 and CquiOBP39, and for CquiOBP36 and
CquiOBP38. Expression patterns are as follows. Olfactory-specific: detected only in antennae, palps or proboscis; non olfactory-specific: detected in antennae, palps or
proboscis as well as in legs and/or bodies; ubiquitous: detected in every tissue; not detected. Olfactory-specific OBPs are in bold.
doi:10.1371/journal.pone.0006237.t004

Table 4. cont.

Figure 4. Expression patterns of OBP genes in various tissues of adults Cx. Quinquefasciatus. Specific primers of forty-seven putative OBP
genes have been used in non quantitative RT-PCR experiments using thirty-four cycles of amplification. (A) OBP genes can be subdivided into three
main categories. Olfactory-specific genes were detected exclusively in antennae, maxillary palps or proboscis. (B) Distribution profiles of olfactory-
specific genes in olfactory tissues. Details are available in Table 4.
doi:10.1371/journal.pone.0006237.g004

Cx. quinquefasciatus OBPs

PLoS ONE | www.plosone.org 11 July 2009 | Volume 4 | Issue 7 | e6237



involved in other physiological functions most likely unrelated to

odorant reception. On the other hand, the roles of ‘‘true’’ OBPs

might be restricted to transport, protection, and delivery of

odorants. Test of these hypotheses must await functional studies.

Correlation between expression patterns and phylogeny
Comparison between expression and phylogenetic data could

lead to a better understanding of the role(s) of OBP family

in mosquitoes. In Cx. quinquefasciatus, olfactory-specific genes

(CquiOBP1 to 9, CquiOBP11 to 14) are not distributed randomly

in the tree, but along with other mosquitoes related OBPs, belong

exclusively to four strongly supported phylogenetic groups: OS-E/

OS-F, LUSH/OBP19a, PBPRP1 and PBPRP4 (Fig. 2) (Table 2).

These groups, with the exception of one member, CquiOBP10 (an

OBP19a-like, which is also detected in legs), constitute groups of

exclusively olfactory-specific OBPs in Cx. quinquefasciatus. Ortholo-

gous proteins in D. melanogaster were also shown to be exclusively

expressed in chemosensory tissues [16]. In order to study this

correlation in another mosquito species and in the absence of

expression data for A. aegypti OBPs, we have compared our data with

other expression studies performed on A. gambiae OBPs. Interest-

ingly, all but one of the eleven OBPs characterized in [22] as the

most likely to play a role in olfaction (AgamOBP1, 2, 3, 4, 7, 15, 18,

19, 20, 66) belong to the same groups. This comparison was done by

semi-quantitative RT-PCR to determine expression levels of A.

gambiae OBPs in heads, legs and bodies. Results showed that these

eleven genes were expressed exclusively or mainly in head tissues. In

another study [28], A. gambiae antennal cDNA libraries have been

characterized by filter array hybridization. Seven OBPs (Aga-

mOBP1, 2, 3, 4, 5, 6, 7) were shown to be the most abundant

transcripts in antennal cDNA populations. Additionally, RT-PCR

experiment revealed that these genes were exclusively expressed in

heads but not in bodies without heads. These OBPs belong also to

the same groups (AgamOBP66, the PBPRP4-like was not tested in

this study). In a third study [29], the expression patterns and relative

abundances of twenty-five ‘‘classic’’ A. gambiae OBP genes have been

characterized using microarray hybridization, non-quantitative and

quantitative RT-PCR. Results notably showed that eight genes

(AgamOBP1, 2, 3, 4, 5, 7, 17, 20) belonging to the same groups were

among the ten most expressed OBPs in female antennae

(AgamOBP66, the PBPRP4-like was not tested in this study).

Expression studies are not yet available for A. aegypti OBPs.

This comparison suggests the existence of four distinct groups of

‘‘true’’ OBPs in mosquitoes which consistently display high and/or

exclusive expression in chemosensory tissues, both in Cx. quinque-

fasciatus (this study) and A. gambiae. OBPs from these groups are,

therefore, potentially involved in peripheral reception of ‘‘key’’

semiochemicals for mosquito behaviors. Further experiments are

now needed to establish their precise localization in chemosensory

tissues, to determine in which functional sensilla types they are

expressed, and especially to understand which role they play in the

olfactory behavior of mosquitoes. Characterization of their binding

to relevant ligands and unveiling their structural features may open

the door for the identification of novel attractant and/or repellent

compounds. Previously, CquiOBP1 (an OS-E/OS-F-like protein)

was demonstrated to be an olfactory protein and subsequently used

as a molecular target to identify an oviposition attractant, which was

then tested in field tests and is currently employed as lure for

trapping gravid female mosquitoes [15].

Comparison of OBPs expression levels between female
and male antennae

Non-quantitative RT-PCR screening allowed the identification

of thirteen olfactory-specific OBP genes in Cx. quinquefasciatus

(CquiOBP1 to 9 and CquiOBP11 to 14). To identify which of

these genes are more likely involved in sex-specific behavior, we

have carried out semi-quantitative RT-PCR experiments and

determined more accurately the expression ratios between

antennae of both sexes. For such comparison, the choice of a

suitable control gene is of paramount importance. We have

decided to use two different alternatives, an ubiquitous ribosomal

protein encoding gene (CquiRpL8) and the atypical odorant

receptor 7 gene (CquiOR7) [41] to normalize the expression levels

of antennal cDNA samples. After normalization, specific primers

for each OBP and for both control genes were used in

standardized PCR reactions. Quantifications of PCR products

intensities (reflecting the transcripts levels) were used to calculate

the female antennae/male antennae (FA/MA) expression ratio for

each OBP as well as for both control genes.

Semi-quantitative RT-PCR data revealed clear differences in

OBPs expression ratios in RpL8 compared to OR7 normalized

cDNAs (Fig. 5). FA/MA ratios were consistently higher when

RpL8 was used as control (OBPs ratios from 1.45 to 1.81, average

1.65) than when OR7 was used as control (OBPs ratios from 1.07

to 1.35, average 1.17). These values likely reflect the difference in

the antennal structures in male and female adults. Indeed, in Culex

mosquitoes, female antennae harbor about three and a half times

more olfactory sensilla than male antennae, which harbor sensilla

only on the two last distal segments [42]. Thus, the average higher

FA/MA value for OBPs in RpL8 normalized cDNAs (1.65)

compared to OR7 normalized cDNAs (1.17) might represent an

artifact due to a much lower level of OR7 transcript in

corresponding male sample. This discrepancy becomes obvious

when looking at the transcripts levels of RpL8 and OR7 between

sexes. In RpL8 normalized cDNAs, the average FA/MA ratio of

OR7 was 2.25, indicating a clear enrichment of OR7 transcript in

females. Similarly, in OR7 normalized cDNAs, the average FA/

MA ratio of RpL8 was 0.565, indicating a clear enrichment of

RpL8 transcript in males. This difference is highlighted in Figure 6

which compares the PCR amplification products of OBPs and

control genes in both RpL8 (Fig. 6A) and OR7 (Fig. 6B)

normalized cDNAs on agarose gels.

Whereas the ‘‘housekeeping’’ RpL8 gene represents basically

per-cell transcripts comparison, OR7 gene might represent a more

suitable control to quantify olfactory-specific transcripts ratios

considering the structure of Cx. quinquefasciatus antennae. This

atypical receptor, orthologue of D. melanogaster OR83b, is co-

expressed with conventional odorant receptors in almost every

sensilla type, with the exception of basiconica (grooved pegs)

sensilla [41,43,44,45]. Thus, equivalent levels of OR7 transcripts

in male and female antennae cDNAs might reflect more

accurately equivalent levels of sensilla-specific transcripts, if we

assume that both sexes do express the same amount of OR7

transcript in their respective sensilla, which has never been

determined in this mosquito species. In A. gambiae, a mosquito

species which display a similar discrepancy in the number of

sensilla between male and female antennae, OR7 has been shown

to be expressed about twelve times more in female antennae than

in male antennae by quantitative RT-PCR, after normalization by

a ribosomal protein (RpS7) [46]. As one would expect about three

times higher expressions in female antennae for equally expressed

olfactory genes (due to difference in antennal structures), the

authors have suggested that a greater proportion of sensilla on

female than male antennae might express OR7.

Based only on OR7 normalization, our data show that

transcripts levels of olfactory-specific OBPs in Cx. quinquefasciatus

are relatively similar between antennae of both sexes (OBPs ratios

between 1.07 and 1.35) suggesting that none of these genes might

Cx. quinquefasciatus OBPs
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be involved directly in sex-specific olfactory behavior in this

mosquito species. In A. gambiae, mRNA levels of twenty ‘‘classic’’

OBPs have been compared in antennae (or heads) of male and

female by microarray hybridization and quantitative RT-PCR

after normalization by a ribosomal protein (RpS7), and several

transcripts displayed significant enrichment in one or the other sex

[29]. It is not clear whether this difference is due to real species-

specific variation in OBP expression between Culex and Anopheles,

or to the different control genes used (ribosomal protein VS OR7),

or because only a relatively small set of genes (thirteen of thirty-two

genes detected in antennae) was tested in our study.

Materials and Methods

Identification of putative OBP sequences in Culex
quinquefasciatus

Predicted peptide sequences database (CpipJ1.2 geneset) of the

whole genome of Cx. quinquefasciatus (The genome sequence of

Figure 5. Expression of OBP genes in female and male antennae. Expression ratios (FA/MA) of thirteen olfactory-specific OBP genes and two
control genes (RpL8, OR7) were calculated after quantification of bands intensities in semi-quantitative RT-PCR experiments. Antennal CDNAs of both
sexes were normalized to the expression levels of CquiRpL8 (purple) and CquiOR7 (blue). Bars represent standard deviations.
doi:10.1371/journal.pone.0006237.g005

Figure 6. PCR amplification in female and male antennae. Amplification of thirteen olfactory-specific OBP genes and two control genes (RpL8,
OR7) in female antennae (FA) and male antennae (MA) cDNAs. (A) cDNAs normalized to the expression levels of CquiRpL8; (B) cDNAs normalized to
the expression levels of CquiOR7.
doi:10.1371/journal.pone.0006237.g006
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Culex pipiens quinquefasciatus; Culex Genome Consortium) was

downloaded from VectorBase (http://cpipiens.vectorbase.org/

index.php) and entered into BioEdit v7.0.9.0 [47] to perform

homology searches using Blastp algorithm [31]. A. gambiae (thirty-

five sequences), A. aegypti (thirty-four sequences) and D. melanogaster

(thirty-five sequences) ‘‘classic’’ OBP amino-acid sequences were

retrieved from GenBank (NCBI) and used as queries in Blast

searches. Conservation of the six cysteines spacing pattern and

sequence identities with other dipterans OBPs were assessed from

multiple alignments using GeneDoc software (http://www.nrbsc.

org/gfx/genedoc/ebinet.htm) and BioEdit. N-terminal signal

peptide sequences were predicted using SignalP v3.0 server

(http://www.cbs.dtu.dk/services/SignalP) [48]. Molecular

weights and isoelectric points were computed using ExPASy

proteomics server (http://www.expasy.ch/tools/pi_tool.html).

Blast in NCBI conserved domains database (CDD) was used to

identify PBP_GOBP (pfam01395) or PhBP (smart00708) motifs.

Relative positions of putative OBP genes on genomic supercontigs

were studied following VectorBase genome annotations. Cx

quinquefasciatus OBP names (CquiOBP1 to CquiOBP53) were

assigned, when possible, based on their phylogenetic relationships

and positions on genomic clusters.

Phylogenetic analysis of mosquito OBPs
Amino acid sequences of putative ‘‘classic’’ OBPs identified in

three mosquito species (fifty-three in Cx. quinquefasciatus (this study),

thirty-three in A. gambiae and thirty-four in A. aegypti) were used to

create an entry file for phylogenetic analysis in MEGA 4.0.2 [49].

An unrooted consensus neighbor joining tree [35] was calculated

at default settings with pairwise gaps deletions. Branch support was

assessed by bootstrap analysis based on 1000 replicates. Nomen-

clature of A. gambiae and A. aegypti OBPs used in phylogenetic

analysis was the same as described in [21] and [23].

Determination of expression patterns by non-
quantitative RT-PCR

Cx. quinquefasciatus mosquitoes used in this study were from a

laboratory colony originating from adult mosquitoes collected in

Merced, CA in the 1950s and maintained under laboratory

conditions at the Kearney Agricultural Center, University of

California, as previously described [38]. Tissues (antennae,

maxillary palps, proboscis, legs and bodies) from adults of both

sexes were dissected on ice under a light microscope. Total RNA

was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA)

and first-strand cDNAs were synthesized from 0.5 mg RNA using

SuperScript II Reverse Transcriptase (Invitrogen) and an oligo

(dT) primer, following manufacturer’s instructions. Integrity of

each cDNA template was confirmed by amplification of a

‘‘housekeeping’’ gene encoding ribosomal protein L8 (CquiRpL8,

GenBank accession XP_001841927). Gene-specific primers for

forty-seven putative Cx. quinquefasciatus OBPs were designed

manually according to three criteria: spanning at least one

predicted intron in order to be able to distinguish between

genomic DNA and cDNA amplifications, an annealing temper-

ature around 60uC in order to prevent non-specific amplifications

and an expected size around 250–350 bp. PCR reactions were

carried out in a GeneAmp PCR System 9700 (Applied Biosystems,

Carlsbad, CA) using equivalent amount of cDNA and one unit of

Titanium Taq DNA polymerase (Clontech, Palo Alto, CA) in a

final volume of 25 ml. After thirty-four cycles of amplification

(95uC for 30s, 56uC for 30s, 72uC for 30s), PCR products were

loaded onto ethidium-bromide stained agarose gels (1,5% (w/v))

and visualized using a Gel DOC XR Molecular Imager (BioRad,

Hercules, CA). Two replicates were performed on two different

cDNA samples, one-day-old and one-to-seven-days-old adults. All

primers used in RT-PCR experiments are listed in Table 5.

Comparison of OBPs expression levels in male and
female antennae by semi-quantitative RT-PCR

To compare transcripts levels between antennae of both sexes,

antennal cDNA samples (same preparation as described above)

were normalized to the expression levels of two different control

genes, RpL8 (CquiRpL8, GenBank accession XP_001841927)

and OR7 (CquiOR7, GenBank accession ABB29301) [41].

Gradual dilutions and cycle-controlled PCR reactions were used

until amplifying equivalent amounts of RpL8 and OR7 in

corresponding samples of both sexes. RpL8 and OR7 normalized

cDNAs were used in standardized PCR reactions (25 ml, with one

unit of Titanium Taq DNA polymerase) with gene-specific primers

for thirteen olfactory-specific OBP and for both control genes. All

reactions were carried out in the linear range of PCR

amplification, as determined for each gene, to prevent saturation

bias. PCR products (15 ml) were loaded onto ethidium-bromide

stained agarose gels (1.5% (w/v)) and visualized using Gel DOC

XR Molecular Imager (BioRad). Quantification of bands

intensities was done using Quantity One software (BioRad).

Intensity value of each OBP band was divided by those of

corresponding control band prepared from the same reaction mix,

after background removal. Resulting values were used to calculate

the expression ratios between female and male antennae (FA/

MA). Three replicates were performed on two different cDNA

samples (one-to-seven-days-old adults) for both RpL8 and OR7

normalized samples.

Cloning and sequencing
Full-length sequences of CquiOBP2 and CquiOBP6 were

amplified from female antennal cDNA using Smart Race cDNA

amplification kit (Clontech) with specific primers designed from

Culex pipiens OBP2 and OBP6 genes (unpublished) and universal

primers, according to the manufacturer’s instructions. Full-length

sequences of nine putative OBP genes (CquiOBP3, 4, 5, 8, 9, 11,

12, 13, 14) were amplified from female antennal cDNA using Pfu

Ultra II polymerase (Stratagene, La Jolla, CA) with specific

primers designed in 59 and 39 ends of predicted genes (see below).

PCR products were gel purified using QIAquick Gel Extraction

Kit (Qiagen, Valencia, CA) and ligated into pBluescript SK

(Stratagene). Ligation products were used to transform One Shot

OmniMAX competent cells (Invitrogen) and positive clones were

grown in LB medium containing ampicilline. Plasmids were

purified using QIAprep Spin Miniprep Kit (Qiagen) and sent to

Davis Sequencing Inc (Davis, CA). Sequences of all these genes

were deposited into GenBank. Accession numbers are available in

Table 1.

39-RACE-CquiOBP2: 59-GGCCGGCGTGGTGAACGA-

CAAGGGCG-39

59-RACE-CquiOBP2: 59-GCCTTCTCGCACAGATTCTC-

GCCCTGTGGG-39

39-RACE-CquiOBP6: 59-CCGATCCGATCCCGACCCC-

GAACTC-39

59-RACE-CquiOBP6: 59-GAGTTCGGGGTCGGGATCG-

GATCGG-39

f l -CquiOBP3 forward : 5 9 -ATGATCATACTCAG-

TATGGGGTTGCTA-39

fl-CquiOBP3 reverse: 59-CTATAGGCAATTTGGAAAGAG-

CACT-39
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Table 5. List of gene specific primers used in RT-PCR experiments.

OBP Name Primer Forward 59-39 Primer Reverse 59-39

CquiOBP1 AATTGCTGTTGTTGTGTTGGCGG GCCAGAATGCTTTCTCGCATAGA

CquiOBP2 CTCATCAGCTGTGAGGAACCGAG CTTGTTCAGCCAGAATGCCTTCTC

CquiOBP3 ACTTGATGTTCACGCTGGCTGGA AGGCATCTGCTTCCCATCTTCAG

CquiOBP4 TCTGACGGAGCTTCGAGCGGCTA GCACGGGCGCAGTTATCATCTCC

CquiOBP5 CCACCAGCCTCGCTAATTGAACT CATTTGTGGTGAGAAAAGGCTCG

CquiOBP6 CAGTGATGGAGCGATGACGATGA CGCAAGTTTCCTTGTATCCAGCCT

CquiOBP7 CCGATCAAGATGCTGCACAAGAT CAGAACTTGATGACATCGTCGTGG

CquiOBP8 ACCATGGAGCAGTTGGCGAAATC CGCAGCTTCACAGCTGTTCTTCA

CquiOBP9 ACGACCATGGAGCAGTTGCAGAA CAGAAAGGCATACGCAGCTTCACA

CquiOBP10 GGCGACATGATGCGATCAGTTTGC CACAGTTGTTCTTGACCCCGTCGC

CquiOBP11 ACCGGCAAAGTTGAGGGTAAAGC TACACTTGGCCACCGCGTAAGAC

CquiOBP12 TACGCCAAGTTCTGCGGACATGA CAGTTCAACAGGACGTACGCCGA

CquiOBP13 GACCGTTGAAGACATGAGCCGAG CAGGTCAACAGCACGTAGGCAAC

CquiOBP14 TGAATGCCGGTGACGACGACGGT ACCCTCCACCAGATGGCGCGTGC

CquiOBP15 TGGCCGTGCTGATACGACCTAGC AGAAACGGCCGTCTCGTGGATAC

CquiOBP16 CTTGCTGGCGGCCTACAACAATTG GTGCCCCACTTGTCTACGGCGTTC

CquiOBP17 GTCACCGAGCAGGAGAAGGAAGC ATGTAGCACTGCAGCAGGGCAAA

CquiOBP18 CCTGACCGAGGAGCAGCTCAAGA GTCGTCCATCTTCTGGCTGCACT

CquiOBP19 CCACCCAACCTGGAGGACATCAG TATACGCCGTATCGCACGCATCC

CquiOBP20 TGACCATCGAGCAGCAGAAGAAG ACAAGTCCGGCCTTGGTGTTGTA

CquiOBP21 AAGAAGGCCGAAGTCCGGCGGAA CCGACGGCACCTTGTGGTTCTTGA

CquiOBP22 CAGCGCCAACAAGGGGACCTCTT ACCTGGCACCGGTCGATCAGAGC

CquiOBP23 ACTCATGCTTTCTTCACCCCGCA GAAGTAGCACTCGTACAGCCCGTG

CquiOBP24 GATGTGACCAAACTTCCCGACGT AACATATCGTAGGCCGTGTCGCA

CquiOBP25 CGCAGTCGTGACAGCTGATATGGA CACACGCGTCGTCATGTTCCGTT

CquiOBP26 GTGCCAAGAGCAGGTGGATGCCT CCGAAAAAGGCACGCCACAATGT

CquiOBP27 TACTGTACCGTTGGATTGCTGGCA TTCCGATGCTGCCCAAACAGACA

CquiOBP28 TTCAGGCCGATGAGGCTTCAGAC CATGCCCTGTTTGACGCAGGTCA

CquiOBP29 TCCTTCTTGCGGTAAGACGTGGC GCTCACAAAGATCCTCGTTGTCG

CquiOBP30 TTGCGCAGACAGACGAGGAGGTG TCTGCAGTGCCTGTTTGACGCAG

CquiOBP31 AACTTGTCGCGAACAGGAGGGTG CAATATCGGCAGCAAGCTCGCAG

CquiOBP32 AAGTGCATGAAAGAGGAGGGCGC CCCAGCTCACAGCGGTCCTCGTT

CquiOBP33 GTGAAGCAAGCTTGCATGGAACA AACTCGCAGCGATCCTCGTTCTC

CquiOBP34 Not done Not done

CquiOBP35* TTCCATGCCTGCATCGATCAGGA GCTGCCAGGTCGCAACGGTCTAC

CquiOBP36** GATTGGACTCTTGCTGGTCTTGGC AGCTGGCACCGGTCCTCGTTGGT

CquiOBP37 AACTGCAAGTCCAGCGAGGGAGC CAGCTGGCACCGATCGTCGTTC

CquiOBP38** GATTGGACTCTTGCTGGTCTTGGC AGCTGGCACCGGTCCTCGTTGGT

CquiOBP39* TTCCATGCCTGCATCGATCAGGA GCTGCCAGGTCGCAACGGTCTAC

CquiOBP40 Not done Not done

CquiOBP41 Not done Not done

CquiOBP42 Not done Not done

CquiOBP43 CTTTACCGTGAAGACCACGGACG GCAGGTTGTTGGTCTGGAAGCAC

CquiOBP44 CGGTCGTCTGATCAAGGTTTGCA GATCCGTAAACGCGCTCACAATAC

CquiOBP45 GAGCAACCAAATTGGGGAGAAGT CTCTTCTTGCAGTAATCGTCTCCG

CquiOBP46 AAGCTCCGCCTGGACCCCGCACT CGGTAAGGCCGTTCGCACTTCCCC

CquiOBP47 TCGCAGACGAGCCAATCTCCAAG TCGCAGACGAGCCAATCTCCAAG

CquiOBP48 CGCTACCTCCAAGGAACCAAACT GTAATGCTTGGAGCTCTTCTTGCA

CquiOBP49 CTATCATTTCCCTCGCCCTGGGA CTTCTTGCAGTAGTCGTCGCCGT

CquiOBP50 GCGGACCAGAAACCATACGACAA GCCTTCCAGTCGCACTTGAAGTAC
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fl-CquiOBP4 forward: 59-ATGTCGTACAAGTTGCTTG-

TGCTAGCT-39

fl-CquiOBP4 reverse: 59-TCAAATGAGAAAGTAAT-

GAGCTGGA-39

fl-CquiOBP5 forward: 59-ATGACGGTGGCCACCTGGT-

TATCT-39

fl-CquiOBP5 reverse: 59-TCAAAACAGGTAATAGTG-

GACCGG-39

fl-CquiOBP8 forward: 59-ATGATCTGGCGAAGGTTTGC-

GATT-39

fl-CquiOBP8 reverse: 59-TTAAGCGAAGAAATATTT-

GGGGTTAT-39

fl-CquiOBP9 forward: 59-ATGAGTGTTCGCGCATT-

TCTTCCG-39

fl-CquiOBP9 reverse: 59-TTACGCAAAGAAAAACTTGG-

GATTA-39

fl-CquiOBP11 forward: 59-ATGGCCACTCGGGTGGAGC-

TGGCT-39

fl-CquiOBP11 reverse: 59-CTAGGGAAACACAAACTTGG-

GGTTG-39

fl-CquiOBP12 forward: 59-ATGAAGTGCGACAGTTG-

GGCCACC-39

fl-CquiOBP12 reverse: 59-CTAGGGGAAAATAAACTTTG-

GATTGT-39

fl-CquiOBP13 forward: 59-ATGCGATATCTAGTGATTT-

TAGCCATCG-39

fl-CquiOBP13 reverse: 59-CTACGGGAAAAAGAACTT-

GGGCGT-39

fl-CquiOBP14 forward: 59-ATGGGTGTCAAAACGGT-

GATCTTC-39

fl-CquiOBP14 reverse: 59-TTATCGCCTTTTGCTGTCC-

TTGCT-39
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