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A B S T R A C T   

The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which 
could promote progression, metastasis, and invasion in some cancers. Still, its function in the 
tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A 
multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools 
revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, 
which may be related to ITGA3 genomic alterations and methylation modification. In addition, 
ITGA3 was significantly correlated with the poor or better prognosis of cancer patients, immune- 
related pathways in hallmark, immune infiltration, and immune checkpoints, revealing a bio
logical function of ITGA3 in the tumor progression, tumor microenvironment, and tumor im
munity. We also found that ITGA3 could predict the response to tumor immunotherapy based on 
cytokine-treated samples and immunotherapy cohorts. ITGA3 may participate in shaping and 
regulating the tumor microenvironment to affect the tumor immune response, which was a 
promising immunotherapy response predictive biomarker and potential therapeutic target to 
work synergistically with cancer immunotherapy to boost the response and efficacy. Finally, 
potential targeted compound inhibitors and sensitive drugs were screened using databases Con
nectivityMap (CMap) and CellMiner, and AutoDock Tools was used for molecular docking.   

1. Introduction 

Despite the great advances in cancer treatment over the past decades, especially immunotherapy, which has tremendously 
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revolutionized cancer treatment, patients with advanced malignant tumors still suffer from unsatisfactory prognoses [1]. Therefore, 
exploring new prognostic biomarkers and therapeutic targets for cancer is urgent. Increasingly, researchers are realizing the complex 
tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), is the main factor for the poor prognosis of 
cancer patients [2,3]. The deadly tumor microenvironment creates a powerful advantage for the development of cancer. 

Integrins are cell surface adhesion receptors that mediate the interactions between extracellular matrix (ECM) and cells, playing a 
crucial role in cell migration and maintenance of tissue homeostasis [4]. The integrin family consists of 18 α subunits and 8 β subunits, 
which could combine in various combinations to form 24 distinct integrins [5]. Recently, dysregulated integrin signaling, which is 
overly activated in the tumor microenvironment, and could positively impact tumor immunobiology, has gradually been taken 
seriously [4,6]. Integrins have emerged as promising targets for the development of cancer treatment [7,8]. As a member of the 
integrin alpha chain protein family, ITGA3 forms a heterodimer with a β1 subunit to constitute an integrin capable of interacting with 
extracellular matrix proteins [5]. Several previous studies have analyzed the association of ITGA3 with certain cancers. Research 
shows that ITGA3 may be closely related to drug resistance, metastasis, proliferation, and poor prognosis of ovarian cancer [9]. ITGA3 
was upregulated in both colorectal cancer cell lines and tissues, and the upregulation of ITGA3 counteracted the tumor suppressive 
effect of elevated levels of miR-199a-5p [10]. Furthermore, ITGA3 was associated with the proliferative, invasive, migratory, and 
autophagic phenotypes of esophageal squamous cell carcinoma cells [11], as well as the stemness and invasiveness of glioblastoma 
cells [12]. To date, the expression levels and roles of ITGA3 in most human cancers remain elusive, and a comprehensive analysis 
regarding the functional and clinical implications of ITGA3 at a pan-cancer level is still lacking. Additionally, the potential mechanisms 
of ITGA3 in the tumor immune microenvironment and tumor immunotherapy have not been fully explored. 

This study systematically investigated the prognosis implication and immunotherapy response prediction value of ITGA3 at the 
pan-cancer level. The purpose of our investigation is to comprehensively analyze the expression levels, functions, and clinical im
plications of ITGA3 in multiple human cancers, as well as explore its potential role in the tumor immune microenvironment and tumor 
immunotherapy. We aim to provide a new biomarker and target for cancer treatment and to provide a novel member for integrin- 
targeted immunotherapy. 

2. Materials and methods 

2.1. Dataset acquisition and processing 

The cancer cell lines’ transcriptomic data were obtained from the Cancer Cell Line Encyclopedia (CCLE) platform (https://sites. 
broadinstitute.org/ccle/). The log2 (TPM+1) transformed and normalized mRNA expression profile and related clinical data were 
downloaded from the Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEx) databases via UCSC Xena (http://xena. 
ucsc.edu/). The immunotherapy cohorts of urothelial cancer patients (IMvigor210) and melanoma patients (GSE91061 and 
GSE78220) were separately collected from https://www.nature.com/articles/nature25501 and Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/). Perturbagens (compound molecules) that give rise to opposing expression signatures to ITGA3 
were downloaded from the CMap database (https://clue.io/). 

2.2. Protein localization, interaction, and expression validation of ITGA3 

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) data obtained from UALCAN [13] (http://ualcan.path.uab.edu/) was 
utilized to explore ITGA3 expression at the protein level in human cancers. The “subcellular” section of the Human Protein Atlas (HPA, 
https://www.proteinatlas.org/) database was used to display the ITGA3 protein’s subcellular distribution images of immunofluo
rescence in two different cell lines (U-251 and A-431). The ITGA3 protein interaction network analysis was implemented through the 
Compartmentalized Protein-Protein Interaction (ComPPI, https://comppi.linkgroup.hu/) database. Representative immunohisto
chemistry (IHC) staining of ITGA3 (Antibody: HPA008572) in tumors and corresponding normal tissues was obtained from the HPA 
database. 

2.3. Genomic alteration and methylation analyses of ITGA3 

In this study, ITGA3 gene’s alteration frequencies of diverse genomic alteration types were analyzed via cBioPortal (http://www. 
cbioportal.org/). The tumor mutation burden (TMB) and microsatellite instability (MSI) in human cancers were calculated using the R 
package "maftools". Spearman’s method was used to analyze the correlation of ITGA3 expression with TMB and MSI. Moreover, the 
correlation between ITGA3 mRNA expression and methylation or copy number variation (CNV) in pan-cancer was analyzed by the 
Gene Set Cancer Analysis (GSCA, http://bioinfo.life.hust.edu.cn/GSCA/) web tool. The methylated CpG islands most associated with 
ITGA3 expression in each cancer type were identified from GSCA, and their prognostic values in the respective cancers were analyzed 
by MethSurv [14]. 

2.4. Prognostic analysis 

Data obtained from the UCSC Xena database, which included information on ITGA3 mRNA expression and clinical prognosis of 
patients with various cancer types, was utilized to evaluate the prognosis implication of ITGA3 using the following outcome measures: 
Overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). We conducted 
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univariate Cox regression and Kaplan-Meier analysis to investigate the prognostic predictive function of ITGA3 and determined the 
cutoff of the Kaplan-Meier curve analysis using the function “surv-cutpoint” from “survminer” R package (0.4.9). 

2.5. Definition of low- and high-ITGA3 subgroups to ascertain differentially expressed genes (DEGs) 

To ascertain DEGs across diverse cancer types between subgroups with varying levels of ITGA3 expression, we classified patients 
into high- and low-ITGA3 subgroups based on their respective ITGA3 mRNA expression levels. Specifically, patients in the top 30 % 
were designated as high-ITGA3 subgroup, while those in the bottom 30 % were classified as low-ITGA3 subgroup. The “limma” R 
package was utilized to compute the fold change (log2-base) and the adjusted p-value of DEGs. DEGs for 33 types of cancer are 
presented in Table S1. 

2.6. Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows 
statistically significant, concordant differences between two biological states (In this study, we analyzed the low- and high-ITGA3 
subgroups) [15]. Calculation of the Normalized Enrichment Score (NES) and False Discovery Rate (FDR) in 33 cancer types was 
based on the hallmark gene set file (h.all.v7.4.symbols.gmt) obtained from Molecular Signatures Database (MSigDB, https://www. 
gsea-msigdb.org/gsea/index.jsp). The R package “clusterProfiler” [16] was used to implement the GSEA, and the R package 
“ggplot2” was utilized to summarize the outcomes in a bubble plot. 

2.7. Immune infiltration analysis of ITGA3 in pan-cancer 

the "Gene" module of the database Tumor Immune Estimation Resource 2.0 (TIMER 2.0, http://timer.cistrome.org/) was used to 
explore the association of ITGA3 with the immune infiltration level in TCGA pan-cancer project. 21 immune cell subsets were involved 
including eosinophil (Eos), B cells, cancer-associated fibroblasts (CAFs), common lymphoid progenitors, myeloid progenitors, 
granulocyte-monocyte progenitors, myeloid-derived suppressor cell (MDSCs), dendritic cells, endothelial cells (Endo), hematopoietic 
stem cells (HSCs), CD4+ T cells, neutrophils, γδT, NK cells, natural killer T cell (NKT), T cell follicular helper (Tfh), macrophages, 
monocytes, CD8+ T cells, mast cells, and regulatory T cells (Tregs). Visualized outcomes were displayed on a heatmap via the R 
package “ggplot2”. The website Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer (CAMOIP) provides a 
platform for screening various prognostic markers and analyzing the mechanisms underlying their association with tumor immuno
therapy [17]. Based on CAMOIP website, we compared two groups (high- and low-ITGA3 expression groups) of immune-related scores 
(Intratumor Heterogeneity, Lymphocyte Infiltration Signature Score, Macrophage Regulation, TGF-β Response, and Stromal Fraction). 

2.8. Single-cell analysis of ITGA3 

The database CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) aims to provide a functional state atlas of cancers at 
single-cell level to comprehensively decode functional states in diverse cancer types [18]. The relevance between ITGA3 expression 
level and 14 functional states in diverse cancer types was obtained using cancerSEA. Moreover, Tumor Immune Single-cell Hub 2 
(TISCH2, http://tisch.comp-genomics.org/home/) web tool was employed to reveal ITGA3 expression levels quantificationally in 
immune cells, stromal cells, and malignant cells. 

2.9. Immune checkpoints and immune subtypes correlation investigation of ITGA3 

In this study, we analyzed the correlation of immune checkpoints derived from a previous study [19] with ITGA3 expression in 
pan-cancer. Moreover, the association between ITGA3 expression and immune subtypes was analyzed by the “Subtype” module of 
TISDB, a tumor-immune system interaction online web portal [20] (http://cis.hku.hk/TISIDB/). ITGA3 expression levels of these 
subtypes in different cancers are presented visually. 

2.10. Immunotherapy response prediction analysis 

Tumour Immune Syngeneic MOuse (TISMO, http://tismo.cistrome.org/) is a database containing an extensive collection of syn
geneic mouse model data specifically designed for storage, visualization, and analysis [21]. ITGA3 expression level in vivo between 
pre- and post-ICB treated samples, and ITGA3 expression level in vitro between pre- and post-cytokine intervened samples across 
cell-lines, were compared using the “Gene” module of TISMO, Wald test in DESeq2 statistically evaluated differences between groups. 
Comparison of the predictive power of response outcome of ITGA3 with other existing biomarkers was applied using the "Biomarker 
Evaluation " module of Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/). Additionally, we included 
three immune checkpoint blockade (ICB) therapy cohorts to further clarify ITGA3’s response-predictive value in tumor immuno
therapy. The three immunotherapy cohorts included GSE91061 (25 melanoma patients during immunotherapy with Nivolumab), 
GSE78220 (27 patients undergoing anti-PD1 therapy in metastatic melanoma), and IMvigor210 (298 metastatic urothelial cancer 
patients receiving anti-PD-L1 agent atezolizumab). 
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Fig. 1. Comprehensive landscape of ITGA3 expression in human cancers. (A) ITAG3 mRNA expression of 25 types of cancer cell lines in the CCLE 
dataset in the form of violin diagrams combined with box charts. (B) ITAG3 mRNA expression of 31 types of tissues in the GTEx dataset in the form 
of violin diagrams combined with box charts. (C) Box plots of the differential expression of ITGA3 mRNA between tumors and corresponding normal 
tissues (combining data from GTEx and TCGA databases). (D) Box plots of the protein expression (Z-value) differences of ITGA3 between normal and 
primary tumor tissues in 6 cancer types based on UALCAN. (E) The immunofluorescence images of ITGA3 protein, nucleus, endoplasmic reticulum 
(ER), microtubules, and the merged images in U-251 and A-431 cell lines. (F) The protein-protein interaction (PPI) displays an interacting network 
between the proteins with ITGA3. The length of the line corresponds to the interaction score, and the color of the line corresponds to the interaction 
distribution (membrane, extracellular, membrane, mitochondria, nucleus, and secretory pathways). (G) Immunohistochemistry (IHC) staining 
validation of ITGA3 protein expression levels in tumors and corresponding normal tissues based HPA database. *p < 0.05; **p < 0.01; ***p < 0.001; 
ns, not significant. 
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Fig. 2. ITGA3 gene is correlated with cancerous genomic alteration and methylation in pan-cancer. (A) Genomic alteration frequency of ITGA3 gene 
in pan-cancer according to cBioPortal database. Bar diagram classified sample data based upon genomic alteration types: mutation (green), 
structural variant (purple), deep deletion (blue), amplification (red) or multiple alterations (grey). “+” represents that data are available. (B) Radar 
chart of the correlation between ITGA3 expression and TMB. (C) Radar chart of the correlation between ITGA3 expression and MSI. (D) Bubble plot 
of the correlation of CNV with ITGA3 mRNA expression. (E) Scatter plots of the top six cancer types with the highest correlation scores between 
ITGA3 CNV and mRNA. (F) Bubble plot of the correlation of methylation with ITGA3 mRNA expression. (G) Scatter plots of the top six cancer types 
with the highest correlation scores between ITGA3 methylation and mRNA. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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2.11. Potential targeted compound inhibitors screening and drug sensitivity analysis 

The Connectivity Map, a drug discovery database, utilizes pattern-matching algorithms to infer functional associations between 
drugs, genes, and diseases based on gene expression change information [22]. We sorted DEGs between low- and high-ITGA3 sub
groups according to log2 fold change to confirm up- and down-regulated genes to explore compounds that give rise to opposing 
expression signatures to ITGA3 based on the CMap database. Compound inhibitors were screened according to CMap score (score <
− 50), and negative values indicated the potential of the compounds targeting ITGA3. Potential specific compound inhibitors of ITGA3 
enriched in more than 8 types of cancer and their mechanisms of action were presented. Detailed lists of compounds are presented in 
Table S2. Based on these potential specific inhibitors, we performed molecular docking using AutoDock Tools 1.5.7. The 3D structure 
of ITGA3 protein (UniProt: H2QDE3) was obtained from the AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold. 
ebi.ac.uk/), and the 3D structures of compounds were downloaded from PubChem database (https://pubchem.ncbi.nlm.nih.gov/). 
The query tool CellMiner (https://discover.nci.nih.gov/cellminer/), which contains genomic and pharmacological information, was 
included for exploring the association of ITGA3 expression with drug sensitivity in the NCI-60 cancer cell lines [23]. A higher Z score 
(GI 50) equates to a higher sensitivity of cell lines. 

2.12. Statistical analyses 

The Kruskal-Wallis test (when the data is not normally distributed) or one-way ANOVA (when the data is normally distributed) was 
utilized to calculate sample data differences (more than two groups). The Wilcoxon rank-sum test was performed to compute the 
statistical significance of ITGA3 expression differences between tumors and corresponding normal tissues. The prognosis implication 
of ITGA3 expression regarding OS, DSS, DFI, and PFI was validated using univariate Cox regression analysis and the Kaplan–Meier 
method (log-rank test). The correlation of ITGA3 with other factors such as TMB, MSI, CNV, methylation, immune cell infiltration 
levels, and immune checkpoints was accomplished using Spearman’s method. Finally, to calculate whether there was statistical sig
nificance in ICB-therapy response proportions between high and low ITGA3 expression groups, the Chi-square test or Fisher exact test 
was conducted. P value < 0.05 was regarded as statistically significant. 

3. Results 

3.1. Comprehensive landscape of ITGA3 expression in human cancers 

The differences in ITGA3 mRNA expression were obvious in both diverse normal tissues and cancer cell lines. The results revealed 
that ITGA3 expression levels were higher in most cancer cell lines from the CCLE dataset, especially in the central bile duct, nervous 
system, pancreas, and thyroid (Fig. 1A). As presented in Fig. 1B, the top three ITGA3-enriched tissues of healthy people from the GTEx 
dataset were blood vessel, followed by lung and thyroid. In general, ITGA3 expression was elevated in cancer cell lines compared to 
normal tissues. TCGA and GTEx integrated data showed higher ITGA3 expression in 21 cancer types including BLCA, GBM, LIHC, 
PAAD, SKCM, STAD, etc. On the contrary, ITGA3 was lowly expressed in ACC, BRCA, LUSC, SARC, UCEC, and UCS (Fig. 1C). Results 
based on CPTAC demonstrated that ITGA3 protein expression was upregulated in HNSC, PAAD, and GBM and downregulated in LIHC, 
LUAD, and COAD (Fig. 1D). Immunofluorescence images from HPA database showed that ITGA3 was mainly distributed in the plasma 
membrane of two different cell lines (U-251 and A-431). In addition, ITGA3 was also distributed in vesicles in the U-251 cell line, and 
single-cell variation in the staining pattern was observed (Fig. 1E). Based on ComPPI database, we found that cell membrane, 
extracellular, membrane, mitochondria, nucleus, and secretory pathways were the main distributions of proteins interacting with 
ITGA3 (Fig. 1F). We further used IHC staining to validate the differential expression of ITGA3 protein. ITGA3 showed medium staining 
in the liver and lung and high staining in the colon but was not detected in LIHC, LUAD, and COAD. On the contrary, ITGA3 showed 
high staining in PAAD but was not detected in the pancreas. The results were consistent with our analysis based on CPTAC database. 
(Fig. 1G). 

3.2. ITGA3 gene is correlated with cancerous genomic alteration and methylation 

To explore the cause of aberrant ITGA3 expression, we conducted genomic alteration analysis. Incorporating structural variant, 
mutation, and copy number alteration (CNA) data of cancers, we found that "Mutation" and "Amplification" were the most common 
alteration types in cancers, and the top three cancer types of alteration frequency (>6 %) were BRCA, UCS, and MESO (Fig. 2A). As 
well-known tumor immunotherapy predictive biomarkers TMB and MSI could affect the prognosis and therapeutic response of cancer 
patients [24,25], we evaluated the association of TMB and MSI with ITGA3. The results indicated that ITGA3 was positively correlated 
with TMB in 4 cancers (ESCA, LAML, PAAD, and THYM) and with MSI in 5 cancers (COAD, KIRC, LUSC, TGCT, and UVM). By contrast, 
it was negatively correlated with TMB in 6 cancers (ACC, BLCA, BRCA, HNSC, LIHC, and PRAD) and with MSI only in BRCA and PRAD 
(Fig. 2B and C). As displayed in Fig. 2D, ITGA3 CNV was strongly associated with ITGA3 mRNA expression in most cancer types, scatter 
plots of the top six correlation scores were presented in Fig. 2E (ACC, BRCA, MESO, OV, STAD, and TGCT, respectively), and it is worth 
noting that all results are positively correlated. Meanwhile, ITGA3 methylation (β value) was negatively correlated with ITGA3 mRNA 
expression in various cancers (Fig. 2F). Fig. 2G displays the top six scatter plots with high correlation scores (THYM, ACC, GBM, OV, 
PAAD, and PRAD, respectively). The methylated CpG islands most associated with ITGA3 expression in each cancer type are presented 
in Table S3. The univariate Cox regression analysis of four CpG islands (cg10488476, cg12127162, cg14737977, cg26184501) in 25 
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types of cancer were shown in Fig. S1A. Corresponding to Cox regression analysis, we found that the increased methylation β values of 
the ITGA3-Body-S_Shore-cg14737977 site in ACC (HR = 4.514 [95 % CI, 1.072–18.996], P = 0.0011) and the 
ITGA3-Body-Open_Sea-cg26184501 site in BLCA (HR = 1.711 [95 % CI, 1.162–2.52], P = 0.0015) and ESCA (HR = 1.904 [95 % CI, 
1.199–3.023], P = 0.0055) reflected a worse OS of patients (Figs. S1B–D). On the contrary, the increased methylation β values of the 
ITGA3-1stExon; 5′UTR-Island-cg10488476 site in LAML (HR = 0.555 [95 % CI, 0.339–0.908], P = 0.0013) and the 
ITGA3-Body-Open_Sea-cg26184501 site in KICH (HR = 0.21 [95 % CI, 0.056–0.786], P = 0.023), LGG (HR = 0.364 [95 % CI, 
0.252–0.527], P < 0.0001), PAAD (HR = 0.425 [95 % CI, 0.245–0.738], P = 0.00085), and UCEC (HR = 0.47 [95 % CI, 0.293–0.751], 
P = 0.00034) reflected a better OS of patients (Figs. S1E–I). 

3.3. Prognosis implication of ITGA3 in human cancers 

In this analysis, we validated the clinical prognosis implication of ITGA3. As presented in Fig. 3A, ITGA3 showed prominent 
prognostic value in various cancer types except PCPG, PRAD, SKCM, UCS, and UVM. Especially, ITGA3 is a risk factor for CESC, HNSC, 
LUSC, MESO, PAAD, and STAD in all four outcome measures (OS, DSS, DFI, and PFI), indicating that patients with high expression of 
ITGA3 in the above cancers have a poor prognosis. Moreover, ITGA3 is a protective factor that improves prognosis in patients diag
nosed with ACC, BLCA, BRCA, KIRP, and SARC. 

The univariate Cox regression analysis of OS revealed that low ITGA3 expression had a significant association with OS prolongation 
in a variety of tumors. A forest plot was performed in Fig. 3B, demonstrating that low expression of ITGA3 could predict better OS in 
LGG (HR = 1.975 [95 % CI, 1.637–2.384], P < 0.001), PAAD (HR = 1.456 [95 % Cl, 1.195–1.774], P < 0.001), GBM (HR = 1.306 [95 

Fig. 3. Prognosis implication of ITGA3 in human cancer. (A) The heatmap base on univariate Cox regression and Kaplan-Meier models summarizes 
the ITGA3’s prognostic role in pan-cancer with four survival type (OS, DSS, DFI, and PFI). The red represents the risk role in the prognosis of cancer 
patients and the blue represents the protective role in the prognosis of cancer patients. Only p-values <0.05 are shown. (B) The univariate Cox 
regression analysis of OS illustrated by the forest plot reveals the prognosis implication of ITGA3. The hazard ratio (HR) is a relative prognostic 
measure of patients. Cancer types highlighted in red indicate ITGA3 as a significant risk factor, while those highlighted in blue indicated ITGA3 as a 
protective factor. (C–F) Kaplan-Meier OS curves of ITGA3 in HNSC (C), LGG (D), LUSC (E) and PAAD (F). 
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% Cl, 1.121–1.521], P = 0.001), LUSC (HR = 1.175 [95 % Cl, 1.056–1.308], P = 0.003), LIHC (HR = 1.168 [95 % Cl, 1.011–1.35], P =
0.035), as well as overexpression of ITGA3 could predict time delay of OS in BLCA (HR = 0.896 [95 % Cl, 0.81–0.991], P = 0.032), 
ESCA (HR = 0.782 [95 % Cl, 0.618–0.991], P = 0.042), ACC (HR = 0.65 [95 % Cl, 0.459–0.919], P = 0.015). In addition, we further 
conducted Kaplan-Meier curves analysis, four cancers with the most significant results using the log-rank test statistical method were 
HNSC, LGG, LUSC, and PAAD, all indicating that higher ITGA3 expression was related to poor OS prognosis (Fig. 3C–F). 

3.4. GSEA of ITGA3 in pan-cancer 

To ascertain the underlying pathway mechanisms of ITGA3, based on the DEGs of the two subgroups with the highest and lowest 
30 % of ITGA3 expression, the GSEA of hallmark gene sets was implemented. Our results indicated that immune-related pathways 

Fig. 4. Gene set enrichment analysis (GSEA) of ITGA3 in pan-caner. The bubble plot displays the result of the ITGA3 GESA of the hallmarks gene set 
in pan-cancer. The circle size represents the false discovery rate (FDR) value, and the circle color represents the normalized enrichment score (NES) 
value. The level of statistical significance is shown through the FDR value, and the NES value reflects the rank of gene classes in the database. 

J. Gui et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e24236

9

including TNF-α-signaling-via–NF–κB, IFN-γ response, IFN-α response, inflammatory response, IL6-JAK-STAT3 signaling pathway, 
complement activation regulation, and allograft-rejection pathways, were remarkably enriched in most cancers, especially in ACC, 
BLCA, CESC, GBM, HNSC, LGG, LUSC, UCEC, and UCS. These results demonstrated that ITGA3 was significantly correlated with 
immune response processes. It is worth noting that high ITGA3 expression was strongly related to epithelial-mesenchymal transition 
(EMT) in most cancers, suggesting that high ITGA3 expression may promote invasive and metastatic properties of cancers through 
EMT. Activated KRAS signaling pathways are prevalent in cancer and could lead to the proliferation, differentiation, and apoptosis of 
cancer cells [26]. We also found that KRAS signaling pathways are enriched in the high-ITGA3 subgroup, revealing the potential 
biological role of ITGA3. Furthermore, P53 pathways, apoptosis, blood coagulation cascade, and apical junction also enriched in 
high-ITGA3 subgroups in various cancers (Fig. 4). In conclusion, GSEA hallmark analysis suggested that ITGA3 was aberrantly 

Fig. 5. ITGA3 is involved in immune cell infiltration across human cancers. The heatmap illustrates the correlations of ITGA3 expression and the 
infiltration levels of Eos, B cell, CAF, progenitor, dendritic cell, Endo, HSC, macrophage, mast cell, monocyte, MDSC, neutrophil, NK cell, Tfh, γδT, 
NKT, CD4+ T cell, CD8+ T cell, and Treg in pan-cancer. The red square represents the positive correlation and the blue square represents the 
negative correlation. 
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expressed in cancers leading to the related-immune pathways change. 

3.5. ITGA3 is involved in immune infiltration across cancers 

Based on TIMER2.0 database, we performed immune cell infiltration analysis, ITGA3’s positive correlations with the infiltration 
levels of immune cells including CAFs, macrophages, mast cells, MDSCs, Neutrophils, NKT, and Tregs in the TME, were observed in 
various cancers, especially in HNSC, LIHC, LUAD, TGCT, THCA, and THYM. In contrast, we found that ITGA3 expression was nega
tively correlated with the infiltration levels of B cells, HSCs, Tfh, and CD8 T cells across most cancers (Fig. 5). Moreover, we used the 

Fig. 6. Exploration for functional state and distribution of ITGA3 at single-cell level. (A) Heatmap of the associations of ITGA3 with 14 biology- 
related functional states in diverse cancer types at a single-cell resolution based on CancerSEA Portal. (B) ITGA3-related functional states in 
LUAD-EXP0066, which is filtered by correlation strength 0.3. (C) The T-SNE plot describes the ITGA3 expression distribution of cells in LUAD- 
EXP0066. (D) The heatmap displays a comprehensive landscape of ITGA3 expression levels quantificationally in immune, stromal, and malig
nant cells. (E) The distribution of ITGA3 in HNSC based on the GSE103322 database. (F) The distribution of ITGA3 in PAAD based on the 
GSE111672 database. (*p < 0.05, **p < 0.01, ***p < 0.001). 

Fig. 7. ITGA3 is associated with immune checkpoints and immune subtypes in pan-cancer. (A) Bubble plot showing the spearman correlations of 
ITGA3 with immune checkpoints. The circle size reflects the size of the p-value, and the circle color represents the spearman correlation (red 
positive, grey negative). (B) The scatter plots of the correlation between the four immune checkpoints (NRP1, CD276, CD44, and CD40) and ITGA3 
in highly related cancer types. (C) The correlations between ITGA3 and immune subtypes (wound healing, IFN-γ dominant, Inflammatory, 
lymphocyte depleted, immunologically quiet, or TGF-β dominant) in human cancers based on TSIDB web tool. (D) The expression of ITGA3 in 
immune subtypes of 6 cancer types (BRCA, HNSC, KIRC, LGG, LIHC, and TGCT). 
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web-based tool CAMOIP to conduct five immune scores (Intratumor Heterogeneity, Macrophage Regulation, Lymphocyte Infiltration 
Signature Score, TGF-β Response, and Stromal Fraction) of low- and high-ITGA3 expression groups in pan-cancer, the analysis pointed 
out ITGA3 expression was highly associated with these immune scores, especially in BRCA, HNSC, KIRC, LGG, LIHC, LUSC, PRAD, 
SARC, TGCT, THCA, THYM, and UCEC (Fig. S2). The differences in TGF-β response scores were eminently observed in all the above 
cancers. 

3.6. Exploration for functional state and distribution of ITGA3 at single-cell level 

To clarify the potential function of ITGA3 and distribution of ITGA3 expression in single cells, we estimated the associations of 
ITGA3 with 14 biology-related functional states in diverse cancer types at a single-cell resolution based on CancerSEA web portal, 
which indicated that ITGA3 expression was positively associated with functions such as angiogenesis, differentiation, hypoxia and 
metastasis in RCC-EXP0064, RB-EXP0073, NSCLC-EXP0068, MEL-EXP0071, LUAD-EXP0066, HNSCC-EXP0063, GBM-EXP0057, and 
BRCA-EXP0052, but showed an inverse association with DNA repair in most cancers (Fig. 6A). As shown in Figs. 6B and 5 functional 
states are significantly related to ITGA3 in LUAD-EXP0066, which was filtered by correlation strength 0.3. The result indicated that 
metastasis obtained the highest correlation (cor = 0.59), followed by angiogenesis (cor = 0.54), differentiation (cor = 0.46), quies
cence (cor = 0.34), and EMT (cor = 0.31). Additionally, the T-SNE plot described the ITGA3 expression distribution of cells, indicating 
heterogeneity of expression in two different cell groups (Fig. 6C). Furthermore, we also noticed higher ITGA3 expression levels in 
malignant and stromal cells than other cell types in cancer datasets representatively using the TISCH2 (Fig. 6D). Pointedly, in the 
GSE103322 dataset (5902 cells from 18 HNSC patients), ITGA3 was prominently expressed across endothelial, myofibroblasts, and 
malignant cells (Fig. 6E). Based on the analysis of the GSE111672 dataset (6122 cells from three PAAD patients), ITGA3 highly 
expressed cell types in the PAAD microenvironment were tprolif, mast, neutrophils, and malignant cells (Fig. 6F). 

3.7. ITGA3 is associated with immune checkpoints and immune subtypes 

To explore the effects of ITGA3 in immune response, we included commonly recognized immune checkpoints to ascertain ITGA3- 
related immune checkpoints in the context of ITGA3 expression utilizing Spearman’s method. As presented in Fig. 7A we discovered 
that several immune checkpoints was positively associated with ITGA3 in human cancers, such as NRP1, CD276, CD40, and CD44. 
Focusing on cancers, we found that in several cancer types, ITGA3 showed a positive correlation with immune checkpoints, such as 
KICH, KIRC, LGG, LIHC, PRAD, and THCA. The results above suggested ITGA3’s efficacy in ICB therapy. Fig. 7B shows the scatter plots 
of the correlation between the above four immune checkpoints and ITGA3 in highly related cancer types. In addition, we also 
discovered that ITGA3 was differentially expressed in immune subtypes of 16 cancer types based on TISIDB database (Fig. 7C), the top 
six results of cancers were shown in Fig. 7D, including BRCA, HNSC, KIRC, LGG, LIHC, and TGCT. 

3.8. ITGA3 could predict cancer immunotherapy response 

To explore ITGA3’s predictive role in cancer immunotherapy response, we used the TIMSO database to perform analysis. Decreased 
ITGA3 expression levels in vivo across different tumor models and ICB treatments were observed in responders of tumor models 
including CT26 (anti-CTLA4 + anti-PDL1, anti-PD1, respectively), EMT6 (anti-PDL1), T11 (anti-CTLA4 + anti-PD1), and YTN16 (anti- 
PD1). Furthermore, increased ITGA3 expression levels were observed in non-responders of tumor model 4T1 (anti-CTLA4, and anti- 
PDL1, respectively) (Fig. 8A). We also explored ITGA3 expression levels in vitro across cell lines with cytokine treatment, indicating 
that IFN-γ could up-regulate ITGA3 expression in cell lines MOC1 and LCC, but down-regulate in B16. Meanwhile, TGF-β1 could down- 
regulate ITGA3 expression in 4T1 cells, IFN-β could up-regulate ITGA3 expression in Panc 02 cells, and TNF-α treatment had no 
significant effect (Fig. 8B). 

We also observed the ITGA’s predictive power of response outcomes in immunotherapy, comparison concluded that ITGA3 had a 
higher predictive value of response outcome (AUC value > 0.5 in 11 immunotherapy cohorts) than existing biomarkers including TMB, 
T. Clonality, and B.Clonality (AUC values > 0.5 in 8, 7, and 7 in immunotherapy cohorts, respectively), but inferior to TIDE, MSI score, 
CD274, CD8, IFN-γ, and Merck 18 (Fig. 8C). Subsequently, we found that patients with high ITGA3 expression had lower survival rates 
and shorter OS time in GSE91061 (25 melanoma patients during immunotherapy with Nivolumab), the anti-PD1 treatment response 
rate was 26.6 % lower in the group of patients with high ITGA3 expression compared to those with low ITGA3 expression. (Fig. 8D and 

Fig. 8. ITGA3 predicts cancer immunotherapy response. (A) ITGA3 expression levels in distinct tumor models and ICB treatments, both pre- and 
post-ICB intervention, as well as between responders and non-responders. The comparison results between groups are summarized in box plots 
(underscored if the left side is larger). (B) ITGA3 expression levels between pre- and post-cytokine treated samples across cell lines. The comparison 
results between groups are summarized in box plots (underscored if left side is larger). (C) A comparison of ITGA3’s predictive power of response 
outcome with other existing biomarkers was applied using the "Biomarker Evaluation " module of TIDE, showing bar plots. AUC was used as a 
performance indicator to measure the predictive power of biomarkers, a larger AUC (range 0.5–1.0) reflected a better prediction. (D) Kaplan–Meier 
survival curve of the high- and low-ITGA3 expression patient groups in GSE91061. (E) The response proportion of patients in the low- and high- 
ITGA3 expression groups in GSE91061. (F) Kaplan–Meier survival curve of the high- and low- ITGA3 expression patient groups in IMvigor210 
cohort. (G) The response proportion of patients in the low- and high-ITGA3 expression groups in the IMvigor210 cohort. (H) Kaplan–Meier survival 
curve of the high- and low-ITGA3 expression patient groups in GSE78220. (I) The response proportion of patients in the low- and high-ITGA3 
expression groups in GSE78220. The labeled asterisk indicates the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Fig. 9. Compounds targeting ITGA3 prediction and drug sensitivity analysis in pan-cancer. (A) The heatmap exhibits the potential specific inhibitors 
of ITGA3 enriched in more than 8 types of cancer. The darker the blue, the more negative the CMap score of the specific inhibitors. (B) The scatter 
plot depicts the mechanisms of action of specific inhibitors. (C–G) Molecular docking results of ITGA3 protein with five compound inhibitors. (H) 
Heatmap of the association of ITGA3 expression with drug sensitivity (Z-score) in the NCI-60 cancerous cell lines. Scatter plots of the drugs with the 
highest correlation score (positive or negative) are shown. 
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E). IMvigor210 cohort (298 metastatic urothelial cancer patients receiving anti-PD-L1 agent atezolizumab) showed the same trend in 
our research, whose proportion reached 14 % (Fig. 8F and G). Conversely, in the GSE78220 cohort (27 patients undergoing anti-PD1 
therapy in metastatic melanoma), patients with high expression of ITGA3 had a longer OS time and a 44.5 % lower non-response rate to 
anti-PD1 treatment than the low ITGA3 expression group (Fig. 8H and I). The above analysis suggested ITGA3’s potential role in 
predicting cancer immunotherapy response. 

3.9. ITGA3 targeted inhibitors screening and drug sensitivity analysis in human cancers 

Finally, to further explore ITGA3’s promising value, targeted compound inhibitors screening and drug analysis were entered into 
our study. As shown in Fig. 9A, TG-101348 is the compound that involved the most numbers of cancer types, followed by NVP- 
AUY922, AZD-7762, TWS-119, tivozanib, etc., which showed strong potential to target ITGA3. Notably, we found no compounds 
enriched in ACC, MESO, PCPG, READ, and SARC. We also explored the mechanisms of action of these compounds and found that most 
belong to HDAC inhibitors, followed by MEK inhibitors (Fig. 9B). Furthermore, to test the targeting ITGA3 potential of compounds, we 
performed molecular docking. Molecular docking results of ITGA3 protein with the 5 compounds were shown. TG-101348 could 
effectively bind ITGA3, whose docking energies are − 7.41 (kcal/mol) (Fig. 9C). Molecular docking also showed binding energies of 
NVP-AUY922 (− 4.96 kcal/mol) (Fig. 9D), AZD-7762 (− 4.74 kcal/mol) (Fig. 9E), TWS-119 (− 6.13 kcal/mol) (Fig. 9F), and tivozanib 
(− 5.33 kcal/mol) (Fig. 9G). The results of the drug sensitivity analysis are presented in Fig. 9H. We screened 30 drugs whose sensitivity 
was significantly correlated with ITGA3 expression (p < 0.001). Scatter plots displayed that the drugs with the highest correlation 
score (positive or negative) were staurosporine and tamoxifen, respectively. 

4. Discussion 

Immunotherapy, as an emerging and promising treatment modality, has brought revolutionary changes to cancer treatment. ICB 
therapy (targeting PD-1/PD-L1 and CTLA-4, etc.) has achieved promising results in human cancer [27]. Nevertheless, most cancer 
patients still have poor curative effects and poor prognoses on ICB therapy, finding new potential therapeutic targets and in-depth 
exploration of the mechanisms affecting immunotherapy are still problems that need to be resolved. 

ITGA3, as a member of the integrin alpha chain family, is a surface adhesion molecule that acts in the ECM and is involved in many 
steps of cancer progression, especially in promoting cancer invasion, proliferation, apoptosis, and metastasis [11,28,29]. In addition, 
ITGA3 was confirmed to stimulate the migratory and invasive properties of breast cancer cells through interaction with VASP to 
regulate its expression, and the activity of the PI3K-AKT axis could be inhibited by the downregulation of ITGA3 [30]. Shirakihara et al. 
concluded that ITGA3 is positively regulated by the δEF-1 and MEK-ERK pathways, which is a potential marker protein for cells 
undergoing enhanced EMT and invasive cancer cells [31]. ITGA3 is also regulated by various microRNAs, especially the 
microRNA-199 family [10,32]. It is noteworthy that recent studies have proposed several promising mechanisms for integrin-targeted 
immunotherapy. Targeting integrins could enhance the efficacy of PD-1/PD-L1 inhibitors and inhibit the secretion of TGF-β in the 
TME, thereby demonstrating significant anti-tumor activity [7,33]. Interestingly, a recent study demonstrated that increased ITGA3 
expression is associated with a malignant phenotype in pancreatic cancer, characterized by higher PD-L1 expression and decreased 
infiltration of CD8+ T cells [34]. However, the potential mechanisms by which ITGA3 in the TME influences tumor development and 
immune response remain to be further explored. The emergence of various biological information databases has brought a large 
amount of data and tools for our scientific research on the biological function of ITGA3. A comprehensive pan-cancer analysis of ITGA3 
was conducted by us in this study to explore its underlying mechanism. Moreover, we revealed ITGA3 as a potential biomarker of 
response to immunotherapy and screened out several targeted compound inhibitors of ITGA3. 

implications, Firstly, we conducted a multifaceted pan-cancer analysis of ITGA3 at genome, transcriptome, and proteome levels 
based on various databases. ITGA3 expression levels of mRNA and protein significantly increased in most cancers, and expression 
differences in corresponding cancers are consistent with several previous studies [35,36]. TMB and MSI have emerged as major 
response-predictive biomarkers for the effectiveness of ICB therapy [24,25]. CNV, as a form of genomic structural variation, has been 
proven to be involved in the occurrence and development of various cancers and affects the prognosis of patients [37,38], and can also 
be used in cancer diagnosis [39]. As an epigenetic modification, DNA methylation often disrupts gene regulation and affects patient 
prognosis in a variety of cancers [40,41]. Genomic alteration and modification analysis revealed ITGA3 was remarkably related to 
TMB, MSI, CNV, and DNA methylation in specific cancers, suggesting ITGA3 may be aberrantly expressed and could promote cancer 
progression and immunotherapy response through the above processes. It is worth mentioning that we identified several CpG islands 
(cg10488476, cg14737977, cg26184501) that have a significant influence on the mRNA expression of ITGA3 and have prognosis 
implication. Among them cg26184501 could reflect better or worse OS of patients in various cancers. Furthermore, our analysis of OS 
prognostics based on ITGA3 methylation has revealed results that are opposite to those based on ITGA3 transcript levels, thus vali
dating our findings to a certain extent. These findings provide valuable insights into the potential of CpG islands in regulating ITGA3 
expression and their impact on cancer prognosis. 

Next, we explore the predictive prognosis implication of ITGA3 in cancer patients. Based on four outcome measures (OS, DSS, DFI, 
and PFI, respectively), Cox regression and Kaplan–Meier analysis revealed a dual role for ITGA3 as a protective factor in 7 cancer types 
and a risk factor in 12 cancer types. Analysis suggested that ITGA3 is a promising prognostic predictor in cancers, some results could be 
corroborated by previous studies [9,36,42]. 

Then we conducted GSEA, suggesting ITGA3 was strongly relevant to immune-related pathways, including TNF-α-signaling- 
via–NF–κB, IFN-γ response, IFN-α response, inflammatory response, IL6-JAK-STAT3 signaling pathway, complement activation 
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regulation, allograft-rejection pathways. In recent studies, these immune responses or pathways have been shown to influence the 
efficacy of tumor immunotherapy. Sun et al. found that LRRK2 acted as an immunosuppressive gene and was upregulated by CD8+ T 
cells via IFN-γ to affect cancer immunotherapy efficacy [43]. Sorrentino et al. reported that SIK3 regulates tumor resistance to 
cytotoxic T-cell attacks by activating pro-survival and anti-apoptotic genes through the NF-κB pathway, protecting against 
TNF-induced cytotoxicity [44]. The result of GSEA suggests that ITGA3 may interact with related cytokines in the ECM during these 
immune response pathways to participate in cancer progression and immunotherapy response. 

The TME, comprising immune cells, stromal cells, cytokines, and ECM, has been demonstrated to exert a crucial influence on cancer 
progression, while also limiting the efficacy of immunotherapy and imposing formidable obstacles to cancer treatment [27,45]. CAFs 
are important components of the TME. Activated CAFs could promote angiogenesis, cancer progression, invasion, and metastasis, and 
cause ECM remodeling [46]. Moreover, as vital surface adhesion receptors mediate interactions between the ECM, the regulation of 
integrins in the ECM may be closely related to the above processes [4]. In addition, previous studies have found that Tregs and MDSCs 
could help tumors avoid the response to immunotherapy and promote tumor immunosuppression [47–50]. Activated TGF-β could lead 
to the formation of EMT and CAFs, and simultaneously cause the dysregulation of genes in the ECM, which ultimately affects the 
efficacy of immunotherapy [51,52]. To reveal the potential mechanism of ITGA3 in the TME, we conducted immune cell infiltration 
analysis and found that ITGA3 had positively correlated with CAFs, Neutrophils, MDSCs, and Tregs in most cancers. We also found that 
patients of most cancers with high expression of ITGA3 had higher TGF-β scores. A small number of cancers showed the opposite 
results, suggesting that ITGA3 could play different roles in different cancer types. In addition, the results based on single-cell analysis 
revealed that ITGA3 plays a variety of roles in shaping the TME and promoting cancer development, such as angiogenesis, differen
tiation, hypoxia, and metastasis. Notably, combining antiangiogenic therapies and immunotherapies might increase the effectiveness 
of immunotherapy [53], thus further exploration of the mechanism of ITGA3 in angiogenesis could provide strategies for enhancing 
the efficacy of immunotherapy. The above results revealed ITGA3’s vital role in TME. It may regulate the infiltration levels of various 
cells through TGF-β response to affect tumor immunity and immunotherapy response. The strategy for targeted modulation of ITGA3 
may be able to have a positive effect on anti-tumor immunotherapy. 

In this study, we also uncovered ITGA3’s positive association with specific ICPs in cancers, especially NRP1 and CD276. CD271 and 
NRP1 are vital negative immunomodulators in TME, and the immunotherapy regimens targeting CD276 and NRP1 have shown great 
promise [54,55]. Based on these results, studying the potential mechanism of ITGA3 with CD276 and RNP1 will help to optimize 
related cancer immunotherapy further. In addition, CD44 also showed a positive correlation with ITGA3. Many recent studies point to 
the role of CD44 in cancer progression and tumor immunity, as a molecular marker of CSCs, CD44 could promote tumorigenesis and 
has the therapeutic potential to be a molecular target in cancer therapy [56–58]. ITGA3 also acts as a cell surface molecule, which may 
be mechanically associated with CD44. Subsequently, we revealed the ITGA3’s predictive value in immunotherapy response. Based on 
the data from mouse samples with ICB and cytokines treatment, we found that the responders treated with ICB showed lower 
expression of ITGA3, while non-responders showed the opposite. Moreover, tumor lines treated with cytokines showed that IFN-γ 
could significantly down-regulate ITGA3 expression levels in cancer cell lines. Combined with the trend of ICB therapy in vivo, we 
concluded that IFN-γ may be an effective cytokine targeting ITGA3 to increase the immunotherapy response rate. Of course, the 
situation may be different in humans, which requires further research and exploration. Biomarker evaluation based on immunotherapy 
cohorts showed that ITGA3 alone had an AUC >0.5 in 11 immunotherapy cohorts, indicating ITGA3’s predictive power of immu
notherapy response. Benefiting from a growing number of published immunotherapy cohort studies, we also discovered melanoma 
patients (GSE91061) with high ITGA3 expression under anti-PD1 treatment had a poor prognosis, as did metastatic urothelial cancer 
patients (IMvigor210 cohort) under anti-PDL1 treatment. However, the situation was reversed in another cohort of melanoma patients 
(GSE78220) treated with anti-PD1, suggesting that the predictive role of ITGA3 was not set in stone and may be influenced by other 
underlying factors. 

Finally, we predicted several potential inhibitors targeting ITGA3 and sensitive drugs. Through screening, we obtained a series of 
possible specific inhibitors of ITGA3 from the CMap database, such as TG-101348, NVP-AUY922, AZD-7762, TWS-119, tivozanib, etc. 
In addition, we also performed molecular docking utilizing AutoDock Tools to test the targeting ability of these compounds. It is worth 
noting that most of the specific inhibitor compounds belong to HDAC inhibitors and MEK inhibitors. A combination of HDAC inhibitors 
with immunotherapy is a promising cancer treatment strategy [59]. The use of HDAC inhibitors may modulate the effect of ITGA3 on 
the immunotherapy response. MEK inhibitors could target RAS/RAF/MEK/ERK signaling pathway [26]. Combined with GSEA analysis 
results, we concluded that ITGA3 may be involved in the above pathway. Correspondingly, previous research clarified the expression 
of ITGA3 could be downregulated by U0126, a MEK 1/2 inhibitor [31]. In summary, we provided some candidate compounds or drugs 
for the study of targeting ITGA3 in cancer therapy, whose efficacy needs to be verified by subsequent mechanism studies. 

In this study, we conducted a detailed bioinformatic analysis of ITGA3 based on expression profiles, clinical information, and drug 
data from publicly available databases. Admittedly, although we produced several discoveries, there are some limitations to our 
analytical methods. We used univariate Cox regression analysis to identify the prognosis implication of ITAG3, which ignores other 
potential confounding variables that may affect the results. These confounding variables may lead to biases in the effects of risk factors. 
When screening potential compound inhibitors of ITGA3, our analysis involves three main parts. Firstly, we defined low- and high- 
ITGA3 subgroups to ascertain DEGs as disease signatures. More reliable disease signatures may exist. Secondly, we obtained the 
drug signature based on the CMap database. The predictive ability of drug target prediction using Cmap analysis has been partially 
validated by several studies [60]. Drug signatures from other databases may need to be collected in the future to further validate our 
results. Lastly, we utilized the Kolmogorov-Smirnov method to calculate the CMap score. However, this method may not be the best 
computational method for CMap analysis [61]. To address the constraint of limited computing resources, we conducted a preliminary 
screening of drugs for molecular docking using the CMap score. However, due to the unconfirmed structure of the ITGA3 protein, we 
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employed the artificial intelligence system AlphaFold to predict its 3D structure based on the amino acid sequence. It is important to 
acknowledge that this approach may introduce some bias in the results. Furthermore, the efficacy of these potential inhibitors in terms 
of targeting performance requires further validation in future studies. In addition, most of our research was based on open-source 
databases, analysis outcomes without large-scale clinical cohorts to confirm, and the mechanism of ITGA3 in tumor immunity 
needs more cell and animal experiments to clarify. 

5. Conclusions 

In summary, we performed an integrated analysis of ITGA3 in pan-cancer, our analysis indicated that ITGA3 was aberrantly 
expressed in multiple cancers and was associated with genomic alteration, methylation, prognosis, immune infiltration, tumor 
microenvironment, and immunotherapy response, which may be a promising response-predictive biomarker and potential therapeutic 
target. Considering the above functions of ITGA3, we predicted potential inhibitors targeting ITGA3 and sensitive drugs for future 
therapeutic strategies. 
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Abbreviations 

ITGA3 integrin subunit α3 
TME tumor microenvironment 
TIME tumor immune microenvironment 
ECM extracellular matrix 
GSEA gene set enrichment analysis 
CMap ConnectivityMap 
CCLE Cancer Cell Line Encyclopedia 
TCGA The Cancer Genome Atlas 
GTEx Genotype-Tissue Expression 
GEO Gene Expression Omnibus 
HPA Human Protein Atlas 
IHC Immunohistochemistry 
ComPPI Compartmentalized Protein-Protein Interaction 
GSCA Gene Set Cancer Analysis 
TMB tumor mutational burden 
MSI microsatellite instability 
CNA copy number alteration 
CNV copy number variation 
OS overall survival 
DSS disease-specific survival 
DFS disease-free survival 
PFI progression-free interval 
DEGs Differentially Expressed Genes 
NES Normalized Enrichment Score 
FDR False Discovery Rate 
Eos eosinophil 
CAFs cancer-associated fibroblasts 
Endo endothelial cells 
HSCs hematopoietic stem cells 
Tregs regulatory T cells 
ICB immune checkpoint blockade 
EMT epithelial-mesenchymal transition 
ACC Adrenocortical carcinoma 
BLCA Bladder Urothelial Carcinoma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
CHOL Cholangiocarcinoma 
COAD Colon adenocarcinoma 
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
ESCA Esophageal carcinoma 
GBM Glioblastoma multiforme 
HNSC Head and Neck squamous cell carcinoma 
KICH Kidney Chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LAML Acute Myeloid Leukemia 
LGG Brain Lower Grade glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
MESO Mesothelioma 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and Paraganglioma 
PRAD Prostate adenocarcinoma 
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READ Rectum adenocarcinoma 
SARC Sarcoma 
SKCM Skin Cutaneous Melanoma 
STAD Stomach adenocarcinoma 
TGCT Testicular Germ Cell Tumors 
THCA Thyroid carcinoma 
THYM Thymoma 
UCEC Uterine Corpus Endometrial Carcinoma 
UCS Uterine Carcinosarcoma 
UVM Uveal Melanoma 
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