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A B S T R A C T   

Autophagy is a primary mechanism for maintaining cellular homeostasis. The synergistic actions of autophagy- 
related (ATG) proteins strictly regulate the whole autophagic process. Therefore, accurate identification of ATGs 
is a first and critical step to reveal the molecular mechanism underlying the regulation of autophagy. Current 
computational methods can predict ATGs from primary protein sequences, but owing to the limitations of al
gorithms, significant room for improvement still exists. In this research, we propose EnsembleDL-ATG, an 
ensemble deep learning framework that aggregates multiple deep learning models to predict ATGs from protein 
sequence and evolutionary information. We first evaluated the performance of individual networks for various 
feature descriptors to identify the most promising models. Then, we explored all possible combinations of in
dependent models to select the most effective ensemble architecture. The final framework was built and 
maintained by an organization of four different deep learning models. Experimental results show that our pro
posed method achieves a prediction accuracy of 94.5 % and MCC of 0.890, which are nearly 4 % and 0.08 higher 
than ATGPred-FL, respectively. Overall, EnsembleDL-ATG is the first ATG machine learning predictor based on 
ensemble deep learning. The benchmark data and code utilized in this study can be accessed for free at https:// 
github.com/jingry/autoBioSeqpy/tree/2.0/examples/EnsembleDL-ATG.   

1. Introduction 

In 1963, at the CIBA Foundation Symposium on Lysosomes, Christian 
de Duve created the term “autophagy” to refer to the cellular process of 
breaking down its own cytoplasmic components using lysosomes [1]. 
The 2016 Nobel Prize in Physiology or Medicine was bestowed upon 
Yoshinori Ohsumi for his groundbreaking discoveries related to the 
mechanisms involved in autophagy [2]. Maintaining cellular homeo
stasis and adapting to diverse cellular stresses are critical functions of 
autophagy, which is a lysosome-dependent intracellular catabolic 

process that is highly conserved among eukaryotes [1,3]. Autophagy can 
be categorized into three primary types based on how the cargo is 
transported to the lysosome or vacuole [4]: macroautophagy [5], 
microautophagy [6], and chaperone-mediated autophagy [7]. In addi
tion, it can also be selective or nonselective, depending on the type of 
cargo that is sequestered. Most cytoplasmic contents are turned over by 
nonselective autophagy, while substrates and organelles can be 
degraded via selective autophagy in some cases, such as aggrephagy, 
ferritinophagy, glycophagy, lipophagy, lysophagy, mitophagy, nucle
ophagy, pexophagy, reticulophagy, ribophagy, and xenophagy [8–10]. 
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Increasing evidence suggests that autophagy dysregulation has been 
implicated in a broad spectrum of human diseases [11,12], including 
cancer [13–18], neurodegenerative diseases [19–22], infectious disease 
[23,24], and autoimmune disorders [25,26]. 

Over the past decade, numerous efforts have been made to elucidate 
the molecular mechanisms underlying autophagy regulation [3]. The 
initiation of autophagy involves the creation of a double-membrane 
vesicle, known as an autophagosome, which engulfs portions of the 
cytoplasm. This process involves the coordinated action of a group of 
conserved proteins coded by autophagy-related (ATG) genes, and 
among them, the Atg1/unc-51-like kinase (ULK) kinase complex is the 
most advanced part that plays a vital role in initiating autophagosome 
formation [27–29]. During autophagosome formation, the 
LC3/Atg8-phosphatidylethanolamine (PE) and the ATG12-ATG15 
ubiquitin-like protein conjugation systems, as well as the ATG9/Atg9 
cycling system, are crucial components [30,31]. Furthermore, in addi
tion to autophagosome formation, ATGs are also involved in other 
sequential steps of the autophagy process by forming different protein 
complexes, including cargo recognition and engulfment, 
autophagosome-lysosome fusion, and autophagosome elongation, 
maturation, and degradation [32,33]. In general, autophagy is highly 
dependent on the availability of ATGs, which are the major executor and 
organizer of the autophagy machinery [34]. Therefore, detailed 
knowledge of the molecular mechanisms mediated by these ATGs would 
provide valuable insight into the intact autophagy process. 

There is a growing interest in exploring the role of ATGs in auto
phagy regulation mechanisms, particularly in their involvement in 
constructing and predicting related biological networks. For example, 
Türei et al. developed the Autophagy Regulatory Network (ARN) to 
comprehensively collect interactions between human autophagy com
ponents or their protein regulators with transcription factors and miR
NAs [35]. Wu et al. developed ncRDeathDB to archive ncRNA-associated 
cell death interactions, including apoptosis and autophagy [36]. Zhang 
et al. constructed GAMDB to manually curate and predicted the intricate 
relationships between microRNA-regulated autophagic mechanisms and 
gerontology [37]. Jacomin et al. developed the iLIR database to store all 
putative canonical Atg8-interacting proteins predicted from the pro
teomes of eight model organisms [38]. Deng et al. developed THAN
ATOS to integrate biological information about proteins and 
posttranslational modifications in the regulation of autophagy [39]. As 
research has progressed, numerous ATGs have been identified in various 
organisms, especially mammals. However, it is likely that there are other 
proteins, perhaps some yet undiscovered ATGs, involved in the molec
ular control of autophagy. Wet-lab identification experiments can 
characterize the biological activities of ATGs, but they are expensive, 
time-consuming, or both. Since ATGs are highly conserved genes, their 
paralogs as well as orthologs can be readily identified in different spe
cies. Taking advantage of this fact, several machine learning-based 
computational models have been presented to extract discriminative 
features of ATGs and non-ATGs, and make large-scale predictions for 
multiple species [40]. One representative example is ATGPred-FL, 
which was constructed based on optimal 14-dimensional 
sequence-derived features and a support vector machine algorithm 
[41]. ATGPred-FL performed favorably on the benchmark datasets with 
high classification accuracy. Nevertheless, there is still much room for 
improvement on autophagy-related protein prediction due to the lack of 
important evolutionary information on ATGs. 

To address the above limitations and further improve the prediction 
performance, we have proposed a new method, EnsembleDL-ATG 
(https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/Ensem
bleDL-ATG), which uses a novel ensemble framework to integrate pro
tein sequence and evolutionary information from complementary deep 
learning models to identify ATGs. For sequence information, we 
designed five sequence-level deep learning (DL) models, including 
convolutional neural networks (CNNs), recurrent neural networks 
(RNNs) with bidirectional long short-term memory (BiLSTM) or 

bidirectional gated recurrent units (BiGRU), and the combination of the 
two networks (CNN-BiLSTM and CNN-BiGRU), to progressively extract 
higher-level abstract features from ATG primary sequences. On the other 
hand, to fully characterize the evolutionary history of a given ATG, we 
generated nine types of feature descriptors based on evolutionary in
formation embedding in a position-specific scoring matrix (PSSM), 
including AAC-PSSM, DP-PSSM, DPC-PSSM, Pse-PSSM, PSSM-AC, 
PSSM400, SVD_PSSM, Single_Average, and DFMCA_PSSM. The PSSM 
contains the probability of occurrence of each type of amino acid resi
dues at each position and hence can be considered as a measure of 
residue conservation at a given position [42]. We used several densely 
connected neural networks (DNNs) to further extract more information 
from each PSSM-based feature vector. We first investigated various 
single deep learning models and performed a systematic grid search in 
the hyperparameter space of layer depth and neuron width to generate 
optimized, more informative prediction models. After that, all single 
models with the best performance were combined to establish the 
ensemble architecture framework. Here, we enumerated and tested all 
possible combinations of single deep learning models, which would 
involve 511 combinations. Instead of averaging results from individual 
models, as is traditionally done [43], we weighed the outcomes of each 
model to maximize the model’s respective strengths. We showed that 
this ensemble deep learning approach can accurately identify autophagy 
proteins and outperform the existing method on the same task. Finally, 
our ensemble deep learning framework was developed, trained, and 
evaluated in the autoBioSeqpy tool. We also provided detailed de
scriptions of various deep learning models, as well as a step-by-step 
guide on how to execute them. 

2. Materials and methods 

2.1. Datasets 

To maintain consistency with the previous ATGPred-FL approach, we 
utilized the datasets constructed by Jiao et al. to develop, train, and 
assess deep learning models that predict ATGs [41]. Initially, the authors 
gathered the ATG sequences, which possessed experimentally verified 
functional annotation data, from the most recent version of the Uni
versal Protein KnowledgeBase (UniProtKB) [44]. Second, non-ATG se
quences were collected and filtered from the protein family database 
(PFAM) [45] based on two principles: (i) protein families associated 
with ATGs were removed; (ii) each protein was the longest sequence 
from the remaining protein families. Third, the CD-HIT program was 
applied to avoid homology bias [46]. Finally, a benchmark dataset 
containing 986 sequences was obtained, including 493 ATGs and 493 
non-ATGs. According to Jiao et al.’s work, four-fifths of the sequences 
were used for training the model, and the remaining data were used as 
independent samples to test the model (see Table S1). 

2.2. Feature representation algorithms 

In this study, the dictionary-embedding encoding method and nine 
PSSM-based features were used to encode the protein sequences in the 
datasets. 

2.2.1. Dictionary-embedding encoding 
Each protein primary sequence is considered a sentence, and the 

amino acid symbols are used as words that make up the sentence. We 
created a dictionary of amino acid symbols to map each residue by 
integer encoding, where naturally occurring residues were transformed 
into index-based integers in the range of 1–20 (e.g., A is given a value of 
1) [47]. In addition, pseudo-amino acids or unknown “X” symbols were 
all assigned to 0. Such encoded sequences were then passed to the 
embedding layer, and a lookup table was used to map these inputs into 
low-level features. Specifically, each protein sequence was converted 
into a 2D vector (128, L), in which L represents the length of the input 
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sequence and 128 is the output dimension. The embedding weight 
matrix was initialized with random weights, and these weights were 
learned during training. 

2.2.2. Evolutionary-based descriptors 
As the most commonly used descriptor for characterizing the 

evolutionary information of protein sequences, position-specific scoring 
matrix (PSSM) is a special substitution matrix that contains the align
ment position information. Several previous studies have reported that 
PSSM-based descriptors could enhance the performance of protein 
property predictors [48–50]. First, a search for homologous protein se
quences was carried out with the PSI-BLAST program [51] against 
nonredundant sequence databases such as NCBI or Swiss-Prot. Having 
multiple sequence alignments performed, an original PSSM matrix was 
subsequently created, where the rows indicate the positions of amino 
acid residues in an alignment, the columns stand for the names of resi
dues, and the values inside are binary logarithms of residues derived 
from multiple alignment scores. In such a matrix, positive values denote 
identical or similar sequences that have been aligned, while negative 
values mean nonconserved alignments. Finally, different types of 
derived features can be extracted directly from the original PSSM matrix 
by three forms of matrix transformations, including row trans
formations, column transformations, and their combinations. Here, we 
selected 9 PSSM-based features to describe the evolutionary information 
of ATGs, which are AAC-PSSM, DP-PSSM, DPC-PSSM, PSe-PSSM, 
PSSM-AC, PSSM400, SVD_PSSM, Single_Average, and DFMCA_PSSM. All 
these features were implemented by the PSSMCOOL package [52], and a 
detailed description of them is given below. 

2.2.2.1. AAC-PSSM. This descriptor is the column average of a PSSM 
matrix, and each protein sequence is transformed into a 20D vector. It is 
calculated by Eq. (1). 

AAC − PSSMj =
1
L
∑L

i=1
Pi,j (1)  

2.2.2.2. DPC-PSSM. As a variant of the dipeptide composition (DPC), 
this descriptor is also defined as a 400-dimensional vector. When 
computing it, the elements of two consecutive rows and two different 
columns are multiplied together. It is worth noting that the action is run 
on different rows and columns. Later, a summation operation is imple
mented for the calculated values. For each two consecutive rows, the 
summation value is divided by L-1. The formula for generating this 
descriptor is provided in Eq. (2). 

PDC − PSSMi,j =
1

L − 1
∑L− 1

k=1
Pk,i × Pk+1,j (2)  

2.2.2.3. PSSM-AC. This descriptor represents autocovariance trans
formation, and computes the correlations of the same attribute between 
two amino acid residues spaced along the protein sequence as L-g. The 
length of it is determined by the parameter L-g. When L-g is set to 10, all 
protein sequences are translated into 200D vectors. The formula for 
creating this feature is given in Eq. (3). 

PSSM − ACi,j =
1

(L − g)

∑L− g

i=1

(

Pi,j −
1
L
∑L

k=1
Pk,j

)(

Pi+g,j −
1
L
∑L

k=1
Pk,j

)

(3)  

2.2.2.4. PSe-PSSM. This feature vector is a combination of the AAC- 
PSSM feature vector and a vector of correlation factors corresponding 
to 20 columns in the PSSM matrix. The values of correlation factor 
vectors are calculated for each column, and the parameter lag could be 
set to any integer between 1 and 15. Thus, for all protein sequences, 
(20 + 20 × lag)-dimensional feature vectors can be obtained by this 
way. The formula for generating this descriptor is afforded in Eq. (4). 

p(k) =
1

(L − lag)

∑L− lag

i=1

(
Pi,j − Pi+lag,j

)2 (4)  

lag = 1, 2,…, 15, k = 20+ j+ 20(lag − 1)

2.2.2.5. PSSM400. For each standard amino acid, all corresponding 
rows in a PSSM matrix are first collected to generate a submatrix. 
Computing the average of the columns in this submatrix, a 20-dimen
sional feature vector is achieved for each amino acid. By combining 
the feature vectors of all 20 amino acids, a 400-dimensional vector could 
be gained finally. 

2.2.2.6. DP-PSSM. This feature first calculates the average of the pos
itive and negative values in each column of the PSSM matrix and con
catenates them together. Next, the differences between the values in the 
rows with distance k are computed. Finally, the square averages for 
these differences with positive and negative scores are computed 
respectively. 

2.2.2.7. DFMCA_PSSM. The PSSM matrix columns could be viewed as 
20-time series. Based on this assumption, this feature uses the detrended 
moving-average cross-correlation analysis (DMCA) algorithm for each 
column and each pair of columns of the PSSM matrix to measure the 
level of cross-correlation between two detrended nonstationary time 
series. 

2.2.2.8. SVD_PSSM. As a popular matrix decomposition method for 
effectively reducing a matrix, the singular value decomposition (SVD) 
has been successfully applied in many fields. In computational biology, 
it is frequently used to reduce the dimensionality of a protein matrix to 
make some subsequent matrix calculations easier. Through this method, 
each protein sequence is finally transformed into a 20D vector. 

2.2.2.9. Single_Average. This feature is developed to combine the rows 
associated with the same amino acid in a PSSM matrix, and the domains 
with analogous conservation rates are taken into account for each pro
tein sequence. The formula for generating this descriptor is offered in Eq. 
(5). 

Single Average(k) = avgi=1,…,LMat(i, j) ∗ δ(R(i), Ƚ(z) ), (5)  

z = 1,…, 20, k = j+ 20 × (z − 1)

2.3. Single model architectures 

We first evaluated four types of neural network architectures and 
trained a total of fourteen single models to predict ATGs. For the CNN, 
RNN, and CNN-RNN architectures, each primary protein sequence is 
coded by the dictionary encoding method and a score between 0 and 1 is 
exported, which represents the probability of the query protein being an 
ATG or a non-ATG. The fourth DNN architecture takes PSSM-based 
features as inputs and gives a probability score. To obtain the best 
possible results from each model, a grid search approach was used to 
determine the combination of hyperparameters that maximizes the 
performance (Fig. S1-S3). Details about the model architectures are 
provided below (Table S2). 

2.3.1. Convolutional neural network architecture (CNN)  

(1) Embedding layer (input_dim: 26; output_dim: 128; input_length: 
2000)  

(2) Dropout layer (20 % dropout)  
(3) Convolution layer (250 filters; kernel size: 13; ReLU activation; 

0 % dropout; step size, 1)  
(4) Pooling layer (global maximum value) 
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(5) Fully connected layer (125 units)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.2. Bidirectional long short-term memory architecture (BiLSTM)  

(1) Embedding layer (input_dim: 26; output_dim: 128; input_length: 
2000)  

(2) Bidirectional LSTM layer (64 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)  

(3) Bidirectional LSTM layer (64 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)  

(4) Pooling layer (global maximum value)  
(5) Fully connected layer (125 units)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.3. Bidirectional gated recurrent unit architecture (BiGRU)  

(1) Embedding layer (input_dim: 26; output_dim: 128; input_length: 
2000)  

(2) Bidirectional GRU layer (64 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)  

(3) Pooling layer (global maximum value)  
(4) Fully connected layer (125 units)  
(5) Dropout layer (20 % dropout)  
(6) Activation layer (ReLU activation)  
(7) Output layer (1 units, sigmoid activation) 

2.3.4. Convolutional-bidirectional long short-term memory architecture 
(CNN-BiLSTM)  

(1) Embedding layer (input_dim: 26; output_dim: 128; input_length: 
2000)  

(2) Convolution layer (250 filters; kernel size: 11; ReLU activation; 
0% dropout; step size, 1)  

(3) Bidirectional LSTM layer (64 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)  

(4) Pooling layer (global maximum value)  
(5) Fully connected layer (125 units)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.5. Convolutional-bidirectional gated recurrent unit architecture (CNN- 
BiGRU)  

(1) Embedding layer (input_dim: 26; output_dim: 128; input_length: 
2000)  

(2) Convolution layer (250 filters; kernel size: 15; ReLU activation; 
0% dropout; step size, 1)  

(3) Bidirectional GRU layer (64 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)  

(4) Fully connected layer (125 units)  
(5) Dropout layer (20 % dropout)  
(6) Activation layer (ReLU activation)  
(7) Output layer (1 units, sigmoid activation) 

2.3.6. Densely connected neural networks with AAC-PSSM (DNNs- AAC- 
PSSM)  

(1) Fully connected layer (15 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (10 units, ReLU activation)  

(4) Dropout layer (20 % dropout)  
(5) Activation layer (ReLU activation)  
(6) Output layer (1 units, sigmoid activation) 

2.3.7. Densely connected neural networks with DPC-PSSM (DNNs- DPC- 
PSSM)  

(1) Fully connected layer (350 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (300 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Fully connected layer (250 units, ReLU activation)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.8. Densely connected neural networks with PSSM-AC (DNNs- PSSM- 
AC)  

(1) Fully connected layer (150 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (100 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Fully connected layer (50 units, ReLU activation)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.9. Densely connected neural networks with PSe-PSSM (DNNs- PSe- 
PSSM)  

(1) Fully connected layer (35 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (30 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Activation layer (ReLU activation)  
(6) Output layer (1 units, sigmoid activation) 

2.3.10. Densely connected neural networks with PSSM400 (DNNs- 
PSSM400)  

(1) Fully connected layer (350 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Activation layer (ReLU activation)  
(4) Output layer (1 units, sigmoid activation) 

2.3.11. Densely connected neural networks with DP-PSSM (DNNs- DP- 
PSSM)  

(1) Fully connected layer (200 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (150 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Fully connected layer (100 units, ReLU activation)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.12. Densely connected neural networks with DFMCA_PSSM (DNNs- 
DFMCA_PSSM)  

(1) Fully connected layer (200 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (150 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Activation layer (ReLU activation) 
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(6) Output layer (1 units, sigmoid activation) 

2.3.13. Densely connected neural networks with SVD_PSSM (DNNs- 
SVD_PSSM)  

(1) Fully connected layer (15 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (10 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Fully connected layer (5 units, ReLU activation)  
(6) Dropout layer (20 % dropout)  
(7) Activation layer (ReLU activation)  
(8) Output layer (1 units, sigmoid activation) 

2.3.14. Densely connected neural networks with Single_Average (DNNs- 
Single_Average)  

(1) Fully connected layer (350 units, ReLU activation)  
(2) Dropout layer (20 % dropout)  
(3) Fully connected layer (300 units, ReLU activation)  
(4) Dropout layer (20 % dropout)  
(5) Fully connected layer (250 units, ReLU activation)  
(6) Dropout layer (20 % dropout)  
(7) Fully connected layer (200 units, ReLU activation)  
(8) Dropout layer (20 % dropout)  
(9) Fully connected layer (150 units, ReLU activation)  

(10) Dropout layer (20 % dropout)  
(11) Activation layer (ReLU activation)  
(12) Output layer (1 units, sigmoid activation) 

2.4. Ensemble deep learning framework design 

An ensemble deep learning framework was developed to effectively 
improve the performance of the base model and has been successfully 
applied to the classification of various biological sequences in recent 
years [53–57]. In present study, the ensemble DL model was established 
depending on the kind of input dataset. The ATG primary sequences 
were coded using the dictionary-embedding representation. The coding 
array was employed in the CNN and CNN-RNN layers to automatically 
gain sequence information, which not only includes the local informa
tion from the convolution layers, but also the global information from 
RNN layers. Subsequently, the DNN layers were utilized as the projec
tion layers to deal with the 9 discrete features. In this process, all 9 
PSSM-based descriptors were used for prediction independently. Ulti
mately, by performing multiple concatenation operations in the 
descriptor dimension, we tested all possible combinations of the 
sequential and discrete descriptors for prediction. While different 
feature combinations of DNN were chosen as additional information, 
connecting to the last fully connected layer of the core architecture. 
Considering all possible combinations of the 9 PSSM-based descriptors 
(AAC-PSSM, DP-PSSM, DPC-PSSM, PSe-PSSM, PSSM-AC, PSSM400, 
SVD_PSSM, Single_Average, and DFMCA_PSSM), 511 (i.e., 29-1) DNN 
models were built to link to the core architecture. To find the best per
forming core architecture, we used the same training dataset to test the 
performance of five sequence-level DL models (CNN, BiLSTM, BiGRU, 
CNN-BiLSTM, and CNN-BiGRU). Later, the core architecture with the 
best performance was selected to connect the DNN models. For all 
models, regardless of whether they are single or multi-model, during the 
training phase, the data were initially re-shuffled and then randomly 
divided into three segments: training (70 %), validation (10 %), and 
testing (20 %). The validation set served the purpose of assessing the 
binary cross-entropy loss after each epoch, while the test set was 
employed for model evaluation. To mitigate the influence of random 
variables in data sampling and model fitting, each training process was 
replicated five times. The final prediction was derived by averaging the 
results from these five separately trained models. As a result, a total of 

2625 model training sessions were conducted, with 70 performed for an 
individual model and 2555 for the ensemble deep learning framework. 

2.5. Implementation 

We employed the autoBioSeqpy tool [58] with the Keras backend 
[59] to design, train, and evaluate both the individual deep learning 
models and the ensemble deep learning framework mentioned above. 
The experimentation was conducted on a workstation running Windows 
10, equipped with an NVIDIA GeForce RTX GPU and CUDA 10.2.95. 

2.6. Performance measurement 

Several standard metrics and plots are employed, including accuracy 
(ACC), precision (PRE), F value, recall, specificity (SPE), Matthew’s 
correlation coefficient (MCC), receiver operating characteristic (ROC), 
precision-recall (PR) accuracy and loss (acc-loss) curves. All metrics are 
stated as below. 

ACC =
TP + TN

TP + FP + TN + FN
(6)  

PRE =
TP

TP + FP
(7)  

F − value = 2 ×
TP

2TP + FP + FN
(8)  

Recall =
TP

TP + FN
(9)  

SEP =
TN

TN + FP
(10)  

MCC =
(TP × TN) − (FN × FP)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

√ (11)  

where TP, TN, FP, and FN are the numbers of true positives, true neg
atives, false positives, and false negatives, respectively, of a binary 
classification. ROC is utilized to make a visual performance comparison, 
and PR plots precision against the recall at all possible thresholds. The 
areas under the two curves fall in the interval of [0,1] (0.5 = random 
choice, 1 = perfect classification), which can reflect the overall perfor
mance of the model. 

3. Results 

3.1. Performance comparison of different single DL models 

The performance of 14 single DL models was first estimated, 
including 1 CNN model, 2 RNN models, 2 CNN-RNN models and 9 DNN 
models. In order to achieve optimal performance on the training dataset, 
we fine-tuned the hyperparameters and optimized the architectures of 
each individual DL model. Next, we will provide a detailed explanation 
of how to implement and train these individual models in autoBioSeqpy 
by presenting two representative examples. Fig. 1 first shows an 
example view of the CNN in use. The protein primary sequence was 
designated as the input data type (–dataType protein). Using the 
parameter “–dataEncodingType dict”, each sequence was transformed 
as a 2D vector (1, L), in which L stands for the length of a protein 
sequence. To match the longest ATG and non-ATG in the training 
dataset, we set the protein sequence length to 2000 (–spcLen 2000). The 
autoBioSeqpy splits the input datasets into training-validation and test 
sets, with a split scale of 0.8 and stratification by category, using the 
“–dataSplitScale” parameter. Specifically, label 1 represents positive 
samples (ATGs), and label 0 represents negative samples (non-ATGs), 
which are stratified using the “–dataTrainLabel 1 0″ parameter. To avoid 
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overfitting and ensure that the model is exposed to different examples at 
each run, the order of the training data, including positive and negative 
samples, is shuffled using the “–shuffleDataTrain 1″ parameter. During 
training, the model was trained for 20 epochs with a batch size of 128 
using the “–epochs 20″ and “–batch_size 128″ parameters, respectively. 
The training process was performed on an NVIDIA GeForce RTX 3070 
GPU, as specified by the “–noGPU 0″ parameter. The Adam optimizer 
was used to minimize the categorical cross-entropy loss between the 
target and predicted outputs, and the learning rate of the optimizer was 
set to 0.001 using the “–optimizer optimizers.Adam(lr=0.001,ams
grad=False, decay=False)” parameter. Once the training is completed, 
autoBioSeqpy saves all result files, including prediction performance, 
prediction probabilities, command-line arguments, epoch-loss curve, 
ROC curve, PR curve, and model weights, in the “tmpOut” folder 
(–outSaveFolderPath tmpOut). It’s worth noting that the above example 
of the CNN model can also be applied to other sequence-level deep 
learning models, such as BiLSTM, BiGRU, CNN-BiGRU, and CNN- 
BiLSTM. This means that users don’t need to modify most of the 
command-line arguments, they only need to change the model file 
name, for instance, from ‘CNN.py’ to ‘BiLSTM.py’. Experimental results 
of all five sequence-level DL models are depicted in Table 1. Obviously, 
the CNN model with dictionary encoding gained the best overall per
formance among the five models, providing the highest average scores 
of ACC (87.0 %), F value (87.1 %), Recall (88.9 %), SEP (85.0 %), PRE 
(85.4 %), and MCC (0.740). This architecture is composed of seven 
layers such as the input, embedding, dropout, convolutional, global max 
pooling, fully connected, and output layers in order. The input sequence 
is converted into a 128-dimensional vector by the dictionary encoding 
method in the embedding layer. To avoid over-fitting, a dropout of 0.2 is 
set to the embedding layer. A total of 250 filters exist in the convolu
tional layer, and the kernel size is assigned as 13. After that, the global 
max pooling is carried out to acquire the maximum value for each filter. 
After the pooling operation, the resulting features are passed to a fully 
connected layer with 125 hidden neurons. The output of this layer is 
then fed into a sigmoid activation function to obtain the final prediction 
probability. 

Fig. 2 shows another use case and example application of autoBio
Seqpy. The DNN model used feature vectors as input data format 
(–dataType other). To enable this, the “–dataEncodingType” parameter 
was set to “other” in autoBioSeqpy. This turns off the built-in encoding 
method (dictionary) and allows the program to read in the externally 
calculated features directly. The 210-dimensional DFMCA_PSSM fea
tures were calculated and used as input to the DNN model. The example 

of the DNN model is also applicable to other PSSM-based features, and 
the results of all single DNN models with different PSSM-based de
scriptors are listed in Table 1. Clearly, PSSM-AC got the best overall 
predictive performance and offered the highest average ACC (92.0 %), F 
value (92.0 %), SEP (94.3 %) and MCC (0.841). This architecture is 
established from three fully connected layers with 150, 100, and 50 
hidden units each. Two dropout interfaces exist between the three 
layers, the dropout probability of which are set to 0.2. Furthermore, the 
DPC-PSSM model, which also comprises three fully connected layers 
with 350, 300, and 250 hidden units, achieved the second-best predic
tion performance, with an average ACC of 90.2 %, F value (90.7 %), and 
MCC of 0.809 (Table 1). 

3.2. The ensemble deep learning framework further improve predictive 
performance 

Following a thorough analysis of the prediction results obtained from 
the 14 individual deep learning models, we propose an ensemble deep 
learning framework that effectively combines the strengths of various 
DL algorithms. All possible combinations of the 9 PSSM-based de
scriptors (AAC-PSSM, DP-PSSM, DPC-PSSM, PSe-PSSM, PSSM-AC, 
PSSM400, SVD_PSSM, Single_Average, and DFMCA_PSSM) were gener
ated using the concatenated DNN architectures and the best performing 
core architecture (CNN with dictionary encoding). By doing this, a total 
of 511 combinations were obtained. For each combination, the training- 
testing procedure was also repeated five times, and the average of out
puts was considered as the final result for comparison. The performance 
of the ensemble deep learning framework with different combinations of 
descriptors is outlined in Table S3. It is clear that different performances 
could be achieved from different combinations of descriptors, and the 
ensemble deep learning framework outperforms any of single DL 
models. The ensemble deep learning framework with the 
‘DFMCA_PSSM+DP-PSSM+PSSM-AC’ descriptor group gained the best 
results, providing an average ACC (96.2 %), F value (96.0 %), Recall 
(95.8 %), SEP (96.6%), PRE (96.4 %), and MCC (0.924) (Table 2).  
Fig. 3A depicts the optimal ensemble deep learning framework. In 
practical applications, the new version of autoBioSeqpy supports the use 
of multiple models for different types of data. The output layers of each 
model are merged into a new output layer through a dense layer. For 
example, if users want to integrate the above single models to construct 
the ensemble framework, they can use the following command-line 
commands (Fig. 3B). The parameter ‘–dataTrainModelInd’ is designed 
to specify which model the dataset belongs to, so the value should not be 

Fig. 1. The use of autoBioSeqpy is illustrated in a schematic diagram. The “data” fold requires the user to provide the data that will be used for modeling in fasta 
format, while the “model” fold necessitates the provision of the neural network model as Python code. Upon completing these prerequisites, the user can perform a 
series of operations by using special commands from the command line. These operations include data reading, sequence encoding, model loading, initialization, 
training, prediction, evaluation, and visualization. Once completed, all the results are stored in the tmpOut folder, which includes prediction results, prediction 
probabilities, training parameters, and various graphical representations. 

Table 1 
Performance comparison of different deep learning models on the training dataset.  

Encoding Architecture ACC (%) F-value (%) Recall (%) SEP (%) PRE (%) MCC 

Dictionary CNN 87.0 ± 1.6 87.1 ± 2.0 88.9 ± 2.5 85.0 ± 1.8 85.4 ± 4.3 0.740 ± 0.032 
Dictionary RNN (BiLSTM) 76.5 ± 3.6 77.5 ± 4.0 85.4 ± 8.2 63.1 ± 9.4 71.6 ± 5.5 0.546 ± 0.057 
Dictionary RNN (BiGRU) 75.1 ± 1.5 76.0 ± 5.8 80.9 ± 16.4 69.6 ± 8.4 74.1 ± 6.7 0.519 ± 0.035 
Dictionary CNN-RNN (BiLSTM) 79.5 ± 0.6 79.6 ± 2.6 83.8 ± 7.3 74.7 ± 5.2 76.2 ± 2.5 0.595 ± 0.016 
Dictionary CNN-RNN (BiGRU) 81.6 ± 3.3 83.1 ± 2.8 86.9 ± 5.0 76.5 ± 4.3 79.6 ± 2.2 0.635 ± 0.070 
AAC-PSSM DNN 60.2 ± 7.0 65.1 ± 7.6 77.9 ± 19.7 47.4 ± 14.2 58.4 ± 6.2 0.250 ± 0.131 
DPC-PSSM DNN 90.2 ± 3.7 90.7 ± 3.3 94.9 ± 2.7 86.8 ± 2.8 87.0 ± 5.0 0.809 ± 0.070 
PSSM-AC DNN 92.0 ± 2.0 92.0 ± 2.2 91.6 ± 4.3 94.3 ± 3.7 92.4 ± 2.2 0.841 ± 0.039 
PSe-PSSM DNN 69.9 ± 6.4 72.6 ± 6.6 80.4 ± 13.4 61.8 ± 9.1 66.8 ± 3.2 0.416 ± 0.146 
PSSM400 DNN 81.8 ± 3.3 80.5 ± 5.1 76.5 ± 10.7 86.1 ± 7.5 86.1 ± 5.9 0.645 ± 0.069 
DP-PSSM DNN 83.8 ± 3.9 84.0 ± 4.6 88.4 ± 11.5 75.9 ± 9.2 81.6 ± 8.6 0.694 ± 0.059 
DFMCA_PSSM DNN 82.9 ± 8.8 84.3 ± 5.6 91.3 ± 4.9 71.4 ± 4.6 79.0 ± 9.6 0.665 ± 0.171 
SVD_PSSM DNN 63.4 ± 10.1 69.2 ± 6.5 76.0 ± 16.0 56.9 ± 13.3 65.5 ± 9.1 0.329 ± 0.193 
Single_Average DNN 82.5 ± 1.9 78.4 ± 2.5 69.1 ± 9.4 89.4 ± 5.9 93.1 ± 10.8 0.674 ± 0.038  
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Fig. 2. The autoBioSeqpy supports the input of external features, in addition to the fasta format, as depicted in a manner similar to Fig. 1.  

L. Yu et al.                                                                                                                                                                                                                                       



Computational and Structural Biotechnology Journal 21 (2023) 4836–4848

4844

greater than the model’s index. Specifically, the parameter ‘0 0 1 1 2 2 3 
3′ after ‘–dataTrainModelInd’ means that the first two dataset files 
(positive.txt and negative.txt) will be fed into the first model file (CNN. 
py), and the remaining six dataset files (po-DFMCA_PSSM.txt, ne- 
DFMCA_PSSM.txt, po-pssm_ac.txt, ne-pssm_ac.txt, po-DP_PSSM.txt, and 
ne-DP_PSSM.txt) will be fed into DFMCA_PSSM.py, pssm_ac.py, and 
DP_PSSM.py, respectively. 

3.3. Performance evaluation of the ensemble deep learning framework 
with the independent test dataset 

To assess the ability of the proposed ensemble deep learning 
framework to generalize, we tested it on an independent dataset con
sisting of 100 ATGs and 100 non-ATGs. Our ensemble approach exhibits 
excellent performance, providing an overall ACC of 94.5 %, F value of 
94.4 %, Recall of 93.0 %, SEP of 96.0 %, PRE of 95.9 %, and MCC of 
0.890. Moreover, the ROC and PR curves are selected to further estimate 
its performance (Fig. 4A and B), and the concrete values of the area 
under the two curves are also given here (0.972 for ROC and 0.971 for 
PR). Finally, we used layerUMAP [60] to dissect the ensemble deep 
learning framework. Fig. 4C displays the 2D UMAP maps that represent 
the distribution of ATGs (labeled as 1 and shown in red) and non-ATGs 
(labeled as 0 and shown in purple) in the latent space of the last hidden 
layer. The UMAP parameters n_neighbors, min_dist, and metric were set 
to 28, 0.8, and cosine, respectively, spread out the distribution of data 
points in the projection (Fig. S4). We observed that the features 
extracted by the ensemble deep learning framework make a clear sep
aration between ATGs and non-ATGs. Taken together, these results 
validate the effectiveness and stability of the ensemble deep learning 
approach, which is called EnsembleDL-ATG in this work. 

3.4. Performance comparison of EnsembleDL-ATG with the state-of-the- 
art method 

Due to training and testing on the same datasets, we compared the 
performance of our proposed EnsembleDL-ATG with the exiting tool 
ATGPred-FL. Table 3 shows the prediction results of these two methods, 
the latter of which are acquired from Jiao et al.’ work [41]. Clearly, 
EnsembleDL-ATG yields higher ACC (96.2 % and 94.5 %), Recall (95.8 % 
and 93.0 %), SEP (96.6 %, 96.0 %) and MCC (0.924 and 0.890) scores for 
the training and independent test datasets, respectively. In addition to 
the comparison of predictive performance, we further analyzed the 
differences in the prediction results between the two methods 
(Table S4). We identified five ATG proteins that were missed by 
ATGPred-FL but correctly predicted by EnsembleDL-ATG. These pro
teins are ULK1, ATG7, ATG9A, BECN2, and ATG9. Further analysis of 
the functions of these proteins revealed that they are all classic 
autophagy-related proteins (Table S5). The comparison results again 
demonstrate the strong predictive power of our ensemble deep learning 
framework for ATGs. 

4. Discussion and conclusion 

As a self-degradative and evolutionarily conserved process, auto
phagy plays essential roles in multiple cellular physiological activities, 

and has been associated with various human diseases. This process is 
regulated by autophagy proteins (ATGs), which are involved in a variety 
of diseases and have received increasing attention in recent years 
[61–64]. Several useful databases have been developed to advance the 
study of ATGs and their functions, such as the aforementioned ARN 
[35], ncRDeathDB [36], GAMDB [37], iLIR [38], and THANATOS [39]. 
Meanwhile, network biology approaches and multiomics techniques are 
commonly used for the systematic study of ATGs, but only one machine 
learning tool (ATGPred-FL) has been proposed to identify ATGs from 
protein sequences thus far [41]. 

In the present study, our aim is to propose a new computational tool 
for identifying ATGs using deep learning algorithms. Deep learning is 
widely recognized for its remarkable ability to approximate nearly any 
function and has shown impressive predictive accuracy that often ex
ceeds that of human experts [65]. Despite the remarkable accuracy of 
deep learning models, they have certain limitations. These models are 
prone to overfitting, which may lead to high variance, and they can 
easily get stuck in local optima during training. To overcome these 
challenges, ensemble methods that combine the predictions of multiple 
deep learning models have been shown to achieve superior generaliz
ability compared to a single model [66–68]. Therefore, we try to adopt 
the idea of ensemble deep learning, where multiple and often inde
pendent deep learning models are combined to enable multifaceted 
abstraction of data. To establish an effective ensemble deep learning 
framework, six different types of neural network architectures and nine 
PSSM-derived features were first employed to develop the single-model 
classifier for ATG prediction. Subsequently, an enumeration strategy 
was adopted to optimize the ensemble framework, and the final pre
diction model EnsembleDL-ATG was trained on the aggregation of a 
CNN model and three DNN models (DFMCA_PSSM, DP-PSSM, and 
PSSM-AC). The results suggest that the ensemble framework combining 
heterogeneous models leads to better learning outcomes. A comparative 
study of the proposed EnsembleDL-ATG with the previous method was 
conducted to validate the efficiency of the ensemble deep learning 
strategy. 

Although EnsembleDL-ATG has achieved highly competitive per
formance for the identification of ATGs, we believe that there is still 
room for further improvement, and more work should be focused on the 
study of ATGs and their functions. To ascertain the real-world effec
tiveness of EnsembleDL-ATG, we undertook a rigorous reprocessing of 
the training data, resulting in a less redundant dataset with an inherent 
imbalance between ATGs and non-ATGs. Subsequently, we retrained 
EnsembleDL-ATG on this updated dataset. Notably, we observed that 
EnsembleDL-ATG’s performance remained unaltered throughout this 
process, reaffirming the robustness and reliability of our methodology 
(Table S6 and S7). ATGs can regulate the autophagic process by forming 
various complexes through interactions with other proteins, but there 
are still many questions regarding the specific interactions and coordi
nation processes. These questions are the focus of our next research. 

To summarize, our proposed ensemble deep learning method effec
tively predicts ATGs by incorporating the strengths of multiple DL 
models and achieving better generalizability. By leveraging primary 
sequences and evolutionary information, our method has the potential 
to improve our understanding of autophagy, diagnose and treat related 
diseases, and facilitate the design of novel drugs. 
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Table 2 
Performance of the best ensemble deep learning framework on the training 
dataset.  

Round ACC (%) F-value (%) Recall (%) SEP (%) PRE (%) MCC 

1  95.6  95.6  96.2  95.1  95.1  0.911 
2  96.2  96.0  96.0  96.2  96.0  0.924 
3  96.2  95.6  93.0  98.9  98.5  0.924 
4  96.2  96.1  97.4  95.0  94.9  0.924 
5  96.8  96.9  96.3  97.6  97.5  0.937 
Average  96.2  96.0  95.8  96.6  96.4  0.924  
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Fig. 3. The computational framework of the optimal ensemble deep learning architecture. (A) The optimal ensemble framework leverages the power of multiple 
neural network models to achieve higher prediction accuracy and robustness. The framework consists of several neural network architectures, which are arranged in 
a specific order from left to right: Convolutional Neural Network (CNN), Deep Neural Networks (DNNs) using DFMCA_PSSM, DNNs using PSSM-AC, and DNNs using 
DP-PSSM, respectively. (B) An example that implements the architectures described in (A) is available using Keras libraries and autoBioSeqpy. See ‘Materials and 
methods’ section for more details. 
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