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Background: Due to high heterogeneity andmortality of low-grade gliomas (LGGs), it is of
great significance to find biomarkers for prognosis and immunotherapy. Pyroptosis is
emerging as an attractive target in cancer research for its effect on tumor immune
microenvironment (TIME). However, the investigation of pyroptosis in LGGs is insufficient.

Methods: LGG samples from TCGA and CGGA database were classified into two
pyroptosis patterns based on the expression profiles of 52 PRGs using consensus
clustering. A prognostic model was constructed by using the LASSO-COX method.
ESTIMATE algorithm and single sample gene set enrichment analysis (ssGSEA) were used
to characterize the TIME. Based on the differentially expressed genes between two
pyroptosis patterns, favorable and unfavorable pyroptosis gene signatures were
determined. Pyroptosis score scheme was constructed to quantify the pyroptosis
patterns through gene set variation analysis (GSVA) method. Two external datasets
and immunotherapy cohort from CGGA and GEO database were used to validate the
predictive value of the pyroptosis score. The Human Protein Atlas website and Western
blotting were utilized to confirm the expression of the selected genes in the prognostic
model in LGGs.

Results: Distinct overall survival and immune checkpoint blockage therapeutic responses
were identified between two pyroptosis patterns. A low pyroptosis score in LGG patients
implies higher overall survival, poor immune cell infiltration, and better response to
immunotherapy of immune checkpoint blockage.

Conclusion: Our findings provided a foundation for future research targeting pyroptosis
and opened a new sight to explore the prognosis and immunotherapy from the angle of
pyroptosis in LGGs.
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INTRODUCTION

Low-grade gliomas (LGGs) represent a group of common
malignant tumors in the central nervous system especially for
younger patients, mainly composed of grade II-III gliomas
including astrocytoma, oligoastrocytoma, and
oligodendroglioma according to the World Health
Organization classification system, and differ with high-grade
glioma (glioblastoma, GBM) in biological and clinicopathological
characteristics (Cancer Genome Atlas Research et al., 2015;
Hoshide and Jandial, 2016; Ostrom et al., 2018; Sidaway,
2020). Due to the high heterogeneity of LGGs, the traditional
classification is not satisfactory for predicting the prognosis even
for patients with the same diagnosis. Considering the limited
therapeutic effects and related complications, conventional
strategies including surgical resection, chemotherapy, and
radiotherapy cannot reverse the poor prognosis of LGG
patients (Duffau and Taillandier, 2014; Darlix et al., 2018). As
a novel therapeutic strategy, immunotherapy has been extensively
investigated in more and more cancers and durable responses to
immune checkpoint blockage (ICB) treatment in many other
forms of cancers have drawn increasing attention in gliomas
(McGranahan et al., 2019). However, not all patients could get
efficient responses to immunotherapy due to lack in precise
selection with predictive biomarkers (Chiocca et al., 2019).

Pyroptosis, recently identified as gasdermins (GSDMs)-
mediated programmed cell death, is characterized by lytic,
featuring cell swelling, and large bubbles blowing from the
plasma membrane (Jorgensen and Miao, 2015). Previous study
revealed that low expression level of gasdermin D (GSDMD)
correlated with a favorable prognosis in non-small-cell lung
cancer (Gao et al., 2018). The expression of GSDMA in
human gastric cancers was suppressed and considered as a
tumor suppressor gene (Saeki et al., 2000). For its immune
defense function, pyroptosis is recognized as a general innate
immune effector mechanism and involved in the regulation of
tumor-immune microenvironment (TIME) (Jorgensen and
Miao, 2015; Erkes et al., 2020). The infiltrating immune cells
in TIME are closely related to the prognosis for LGG patients
(Hottinger et al., 2016). CD8+ T cell-dependent antitumor
immunity was activated by the induction of pyroptosis in
melanoma. A number of studies demonstrated that pyroptosis
plays a crucial role in antitumor immunity and the induction of
pyroptosis has been emerging as a promising therapeutic strategy
in cancers (Johnson et al., 2018; Fan et al., 2019; Erkes et al., 2020).
To date, there are rare studies focusing on the pyroptosis related
molecular patterns with implications in prognosis and
immunotherapy in LGGs. Considering the effect of pyroptosis
on TIME and antitumor immunity, identification of the
pyroptosis patterns, and related gene signatures displays an
indispensable advantage in predicting prognosis and
immunotherapy response in LGGs.

In this study, we identified two pyroptosis related molecular
patterns with distinct prognosis and TIME, based on which we
developed a pyroptosis scoring scheme with appealing
implications in predicting the prognosis and immune therapy
in LGGs. Additionally, a prognostic model was constructed based

on 52 pyroptosis related genes (PRGs) to confirm the prognostic
values of PRGs. Our findings provided a foundation for future
research targeting pyroptosis and opened a new sight to explore
the prognosis and immunotherapy from the angle of pyroptosis
in LGGs.

MATERIALS AND METHODS

Multiomic Data Acquisition
The RNA sequencing (RNA-seq) data consisting of 508 LGGs
samples and the corresponding clinical information were
obtained from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) database. The RNA annotation file of
Genome Reference Consortium Human Build 38 (GRCh38) was
downloaded from the Ensembl website (http://asia.ensembl.org/)
for annotation of RNA-seq data. The data set (DataSet ID:
mRNA-array_301) including 159 LGG samples, were
downloaded from the Chinese Glioma Genome Atlas (CGGA,
http://cgga.org.cn/index.jsp) (Fang et al., 2017;Wang et al., 2017).
We collected a total of 52 PRGs through scanning the associated
literatures (Shi et al., 2017; Wang et al., 2020a; Wang et al., 2020b;
Broz et al., 2020; Zhou et al., 2020; Tan et al., 2021). Based on the
transcriptomic data, the correlation among the PRGs was
identified through co-expression analysis in which the cut off
of the correlation coefficient was set at 0.7. The somatic mutation
data (MAF format) of 503 LGG samples based on the whole
exome sequencing platform were also downloaded from the
TCGA database. The mutation types and frequencies of PRGs
were analyzed and visualized in oncoplot by using the maftools
package in R (Mayakonda et al., 2018). Tumor mutation burden
(TMB), which was closely related to immune microenvironment,
was defined by the cumulative nonsynonymous mutations in per
million bases in coding regions. The copy number variation
(CNV) data (n � 527) for LGG samples were downloaded
from the University of California Santa Cruz (UCSC) Xena
browser (https://xena.ucsc.edu/) (Goldman et al., 2020). The
variation frequencies for the gain/loss alterations of PRGs were
analyzed and visualized in a bar plot. The chromosomal positions
of the crucial PRGs were displayed by Circos plot using the
RCircos package in R (Zhang et al., 2013). Perl software (version
5.32.1.1) and R software (version 4.1.0) were involved in the
processing of the data.

Identification of Pyroptosis Related
Molecular Patterns Through Consensus
Clustering Analysis
The RNA-seq data of LGG samples from the TCGA database
were transformed to transcripts per million (TPM) values and
log2-scale transferred and subsequently merged with
transcriptomic data of LGG samples from the CGGA database
(DataSet ID: mRNA-array_301). The transcriptomic data were
normalized and corrected batch effect for further analysis by
using the sva package in R (Leek et al., 2012). The unsupervised
consensus clustering method was utilized to determine the
pyroptosis related molecular patterns based on the expression
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profiles of PRGs in LGGs by using ConsesusClusterPlus package
in R software (Wilkerson and Hayes, 2010). The clustering
procedure, with 50 iterations, was performed based on 80% of
the samples in the dataset in each iteration. The optimal number
for the classification of LGG patients was determined by
comprehensive analysis of the consensus matrix heatmap and
the relative change in the area under the cumulative distribution
function (CDF) curves of consensus scores. Principal component
analysis (PCA) was employed to examine the subtype assignment.
Kaplan-Meier analysis was used to compare the overall survival
between different pyroptosis patterns in which the log-rank test
was used for statistical analysis.

Identification of the Tumor Immune
Microenvironment and Immunogenomic
Features
The scores of tumor-infiltrating immune cells and the associated
immune functions for each LGG sample were estimated through
single sample gene set enrichment analysis (ssGSEA) based on the
expression levels of marker genes in the input data set by using
GSEABase and GSVA R packages (Hänzelmann et al., 2013). The
comparisons of the infiltrating immune cells and immune
functions were conducted and visualized in box plots.
ESTIMATE algorithm was used to evaluate the TIME of each
sample (Yoshihara et al., 2013). The response to immune
checkpoint blockage (ICB) was estimated by Tumor Immune
Dysfunction and Exclusion (TIDE; http://tide.dfci.harvard.edu/
login/) website.

Gene Set Variation Analysis
GSVA was applied to explore the underlying molecular
mechanisms for different pyroptosis patterns by using the
GSVA package in R (Hänzelmann et al., 2013). The
significantly enriched gene ontology (GO) molecular function
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways between the two pyroptosis patterns were analyzed by
using the limma package in R (Smyth et al., 2005). |log2 fold
change (FC)| > 0.1 and false discovery rate (FDR) adjusted p
values < 0.05 were considered statistically significant.
“c5.go.mf.v7.4.symbols” and “c2.cp.kegg.v7.4.symbols”
downloaded from GSEA database were selected as the
reference files.

Construction of the Prognostic Model
Based on PRGs
First, the RNA-seq data of LGG samples from the TCGA
database, which were treated as the training cohort, were TPM
and log2-scale transferred as described above. The
transcriptomic data of LGG samples from the CGGA
database (DataSet ID: mRNA-array_301) were treated as
the validation cohort. The transcriptomic data involved in
the validation cohort and training cohort were normalized and
corrected batch effect for further analysis. The expression
profiles of 52 PRGs in the two cohorts were obtained.
Univariate cox regression analysis was utilized to screen out

the PRGs with prognostic values by using survival package in
R, in which p < 0.05 was considered as statistically significant.
Afterward, the least absolute shrinkage and selection operator
(LASSO) regression algorithm was employed to construct the
prognostic model based on the expression profiles of
prognostic PRGs. The receiver operating characteristic
(ROC) curves were used to evaluate the predictive efficacy
of the prognostic model in which survival, glmnet, survminer,
and timeROC packages in R were employed. The risk score for
each patient was calculated following the formula: risk score �
∑n

i�1coefPRGi*EXP PRGi in which the coefPRGi means the
coefficient for the i th PRG, and the EXP PRGi represents the
expression level of the i th PRG in the prognostic model.
Univariate and multivariate cox regression analysis were
conducted to explore the prognostic value of the risk score.
Patients were divided into high-risk group and low-risk group
according to the cut off of the median risk score. PCA and the
t-distributed stochastic neighbor embedding (tSNE)
algorithm were utilized to evaluate the assignment of the
subgroups.

Nomogram combing risk score and clinicopathological factors
were introduced to fulfill the prognostic model by using “rms”
and “regplot” R package. Predictions for survival at the time of 1,
3, and 5 years were accomplished. Calibration curves were carried
out to evaluate the accuracy of the nomogram.

Pyroptosis Scoring via GSVA
Differentially expressed genes (DEGs) between the two
pyroptosis patterns were identified with |log2 FC| > 0 and
FDR < 0.001 by limma package in R. Univariate cox
regression analysis was carried out to screen out DEGs with
prognostic values by using survival package in R, in which p <
0.05 was considered as statistically significant. Based on the
expression profiles of DEGs with prognostic values, which
were considered as pyroptosis gene signatures, LGG patients
were separated into two gene clusters by unsupervised
consensus clustering analysis.

The pyroptosis gene signatures which had favorable and
unfavorable correlations with the prognosis of LGG patients
were respectively defined as favorable and unfavorable
pyroptosis related gene sets. GSVA method was utilized to
evaluate the enrichment score (GSVA score) of the two
pyroptosis related gene sets (unfavorable and favorable gene
sets) for each LGG sample by using the GSVA package in R
software (Hänzelmann et al., 2013). GSVA is a popular method
for scoring individual samples based on molecular characteristics
or gene sets and a gene expression dataset. GSVA represents a x
method that estimates the variation of a specific function activity
over a sample population in an unsupervised manner.
According to the method described by
Hänzelmann et al., GSVA score of the unfavorable and
favorable gene sets for each sample was calculated. The
pyroptosis score for each sample was calculated as follows:
pyroptosis score � GSVAscore2 − GSVAscore1, where
GSVAscore2 represented the GSVA score of the unfavorable
pyroptosis related gene set and GSVAscore1 represented the
GSVA score of favorable pyroptosis related gene set.
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Survminer package in R was used to determine the optimal cut-
off value of the pyroptosis score for each subgroup.

Validation of Pyroptosis Score for
Predicting the Prognosis and
Immunotherapy Response in External Data
Sets
LGG samples involved in four data sets (GSE4271, GSE4412,
GSE43378, GSE84010) obtained from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih. gov/geo/) database
were merged into one data set to verify the prognostic value of
pyroptosis score in LGGs. The RNA-seq data of LGG samples
(DataSet ID: mRNAseq_325) from CGGA database were defined
as another validation cohort (Bao et al., 2014; Zhao et al., 2017).
Furthermore, the GSE78220 data set from the GEO database was
applied to validate the predictive value of the pyroptosis score in
anti-PD1 immunotherapy response.

Validation of the Selected Genes in the
Prognostic Model at Protein Level
We randomly selected four genes (CASP3, CASP8, GSDMD,
PLCG1) from the unfavorable gene set and identified the
differential expression of the four unfavorable pyroptosis genes
at the protein level between normal brain tissues and LGG tissues
on the Human Protein Atlas website (https://www.proteinatlas.
org/) (Colwill et al., 2011).

Western blotting was applied to verify the differential
expression of the four unfavorable pyroptosis genes. Brain
tissues obtained from patients with epilepsy who received
temporal lobe resection were treated as control groups.
Astrocytoma tissues which were histologically diagnosed as
grade II (G2) gliomas were obtained from LGG patients who
received tumor resection. Oligodendroglioma tissues which were
histologically diagnosed as grade III (G3) gliomas were obtained
from LGG patients who received tumor resection.

The collected frozen tissues were homogenized and lysed in
ice-cold lysis solution consisting of 1.0 mmol/L PMSF
(phenylmethylsulfonyl fluoride), 2.5 mmol/L EDTA, 1 mmol/L
EGTA, 15 mmol/L Tris (pH 7.6), 2.5 mg/ml aprotinin, 1.25 mg/
ml pepstatin A, 10 mg/ml leupeptin, 1 mmol/L dithiothreitol,
2.0 mmol/L Na4P2O7, 1.0 mmol/L MgCl2, 0.1 mmol/L
Na3VO4, 50 mmol/L NaF, and 250 mmol/L sucrose. The
homogenized suspension was centrifuged at 1000 g for 15 min
at 4°C and the protein content in the supernatant was examined
and regulated to equal level by using Bio-Rad protein assay kit.
Loading buffer including sodium dodecylsulfate (SDS) was
homogenized with the protein suspension and then boiled for
5 min at 100°C. The same amounts of samples were added and
electrophoresed on 10% SDS gels at 100 V for 50 min. Afterward,
the protein on the gels was transferred to PVDF membranes at
60 V for 45 min. The membranes were immersed in 3% bovine
serum albumin for 45 min and then incubated in antibody
solutions containing anti-caspase3 (1:1000), anti-caspase8 (1:
1000), anti-caspase4 (1:1000), anti-PLCG1 (1:1000), anti-TP63
(1:1000), anti-caspase9 (1:1000), and anti-β-actin (1:1000)

antibodies, respectively at 4°C for 12 h. Subsequently, the
membranes were rinsed in TBS (Tris buffered saline) for
30 min and incubated with horseradish peroxidase-conjugated
goat anti-rabbit or anti-mouse IgG (1:2000) solutions for 2 h.
Then the blot membranes were rinsed and visualized on Kodak
X-omat LS films with enhanced chemiluminescence.

Statistical Analysis
The Wilcoxon test was implemented to compare two groups.
Kruskal-Wallis tests were used to compare the differences
between multiple groups. The distribution of categorical
variables between subgroups was compared by Chi-square
tests. The Student’s t-test was utilized to compare the
continuous data between two groups. Two-sided p < 0.05 was
considered statistically significant.

RESULTS

Genomic Variations of the PRGs
The CNVs including gain and loss alterations of the 52 PRGs in
LGG samples are shown in Figure 1A. As the pyroptosis
executioner, GSDMD displayed significant amplifications of
copy number (18), while GSDMA and GSDMB showed
deletions. The corresponding chromosomal locations of the
PRGs were displayed in Figure 1B. Most of the PRGs showed
low or nomutations in LGGs (Figure 1C). Co-expression analysis
noted that CASP1 and CASP4 positively correlated with most of
the PRGs (Figure 1D). Moreover, the positive correlation across
GSDMD, CASP1, and CASP4 suggested the underlying molecular
interactions.

Pyroptosis Related Molecular Patterns with
Distinct Prognosis and TIME Features
Based on the expression profiles of 52 PRGs in LGG samples from the
TCGA database and the CGGA database (DataSet ID: mRNA-
array_301), LGG samples were divided into two molecular
patterns. As shown in Supplementary Figure S1A, two samples
weremore likely to be grouped into the same cluster when there was a
higher consensus score between them in the consensus matrix
heatmap. We found extremely high consensus scores between
samples in the same cluster and low consensus scores between
samples in different clusters when samples were classified into two
clusters (k � 2). In addition, no appreciable increase (the relative
change� 0.4) was observed in the area under theCDF curvewhen the
number of clusters was determined to be two (k � 2). Hence, LGG
patients were categorized into two clusters, which were termed as two
pyroptosis related molecular patterns. PCA of the expression profiles
of PRGs from LGG samples confirmed the two pyroptosis related
molecular patterns, suggesting that we could distinguish two clusters
based on the expression profiles of PRGs in LGGs (Supplementary
Figure S1B). Patients in C1 presented significantly lower overall
survival compared with those in C2 (p < 0.001; Figure 2A).
Furthermore, the expression levels of most of the PRGs were
higher in C1 and the clinicopathological characteristics differed
between the two pyroptosis patterns (Figure 2B). As shown in

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7638074

Zhou et al. Pyroptosis Patterns in Low-Grade Gliomas

https://www.ncbi.nlm.nih
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Figure 2C, almost all the immune cells significantly infiltrated in the
TIME of C1 (p < 0.001). All the immune response involved in this
study tended to be more active in C1 especially cytolytic activity (p <
0.001; Figure 2D). Molecular functions such as peptidase activator
activity involved in apoptosis process, death receptor activity, and
immune related functions significantly enriched in C1 (Figure 2E).
KEGG pathway enrichment analysis suggested more apoptosis and
immune related pathways were active in C1 (Figure 2F). All these
findings indicated the pyroptosis related molecular biological
processes were more active in C1. Based on the expression
profiles of DEGs between the two pyroptosis related molecular
patterns, LGG patients were further classified into two gene
clusters (Supplementary Figure S1C). PCA revealed that the two
subgroups can be well distinguished (Supplementary Figure S1D).
The overall survival for LGG patients in gene cluster A was
significantly lower than those in gene cluster B (p < 0.001;
Figure 2G). The expression levels of the PRGs were significantly
higher in gene cluster A which seemed consistent with the
classification based on the pyroptosis patterns.

Construction of the Prognostic Model
Based on PRGs
Based on the expression levels of 22 prognostic PRGs which
were screened out through univariate cox regression analysis

(p < 0.001; Figure 3A), the LASSO regression algorithm was
used to construct the prognostic model (Figure 3B). Six PRGs
involved in the prognostic model were listed in Figure 3C. The
risk score for each patient was calculated following the formula
described above. Patients were classified into high- and low-risk
group with the cut off of the median risk score in the training
and validation cohort, respectively. PCA and t-SNE verified the
assignment of the subgroups (Supplementary Figures S2A and
S2B). Patients in the low-risk group exhibited significantly
longer survival time either in the training or the validation
cohort (p < 0.001 and p � 0.003, respectively, Figures 3D,E).
The ROC curves indicated that the risk score based on the
prognostic model can be a reliable predictor for prognosis either
in the training cohort (AUC for 1, 3, 5 years: 0.878, 0.858, 0.760,
respectively, Figure 3F) or validation cohort (AUC for 1, 3,
5 years: 0.723, 0.759, 0.705, respectively, Figure 3G). The
heatmap in Figure 3H displayed the expression patterns of
the six PRGs involved in the model and the correlation between
the risk score and the multiple clinicopathological features. The
univariate and multivariate cox regression analysis confirmed
the prognostic values of the risk score in the training (p < 0.001;
Figures 3I,J) and validation cohort (p < 0.001; Supplementary
Figures S2C and S2D). Nomogram integrating risk and
multiple clinicopathological features was established for
clinical practice in the training (Figure 3K) and validation

FIGURE 1 |Genomic variations of the PRGs in LGGs. (A) Bar plot displaying the copy number variation frequencies of gain/loss alterations of the PRGs. (B) Circos
plot showing the positions of the PRGs in chromosomes in which red dots indicate amplifications, blue dots indicate deletions, and black dots represent no significant
variations. (C)Oncoplot of six mutated PRGs in LGG samples. (D)Co-expression analysis revealed the correlation among the 52 PRGs. PRGs, pyroptosis related genes;
LGGs, low-grade gliomas.
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cohort (Supplementary Figure S2E). Calibration curves for
predicting 1 year, 3 years, and 5 years overall survival were
close to the actual observed values in the training (Figure 3L)
and validation cohort (Supplementary Figure S2F).

Additionally, the values for AUC of the nomogram for
predicting 1 year, 3 years, and 5 years overall survival were
0.885, 0.877, 0.809, respectively, in the training cohort
(Figure 3M) and 0.831, 0.802, 0.795, respectively, in the

FIGURE 2 | Identification of pyroptosis-related molecular patterns and gene clusters in LGGs. (A) Kaplan–Meier survival analysis between two pyroptosis patterns.
(B)Heatmap displaying the differential expression patterns of the PRGs between two pyroptosis patterns. (C)Differential analysis of the abundance of infiltrating immune
cells between two pyroptosis patterns. (D)Differential analysis of the immune responses between two pyroptosis patterns. (E,F) Functional enrichment analysis between
two pyroptosis patterns. (G) Kaplan–Meier survival analysis between two pyroptosis-related gene clusters. (H) Differential analysis of the expression levels of PRGs
between two pyroptosis-related gene clusters. * means p < 0.05, ** means p < 0.01, and ***means p < 0.001. PRGs, pyroptosis related genes; LGGs, low-grade
gliomas.
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FIGURE 3 | Construction of the prognostic model based on PRGs. (A) Forest plot showing the prognostic PRGs based on univariate cox regression analysis. (B)
The optimal parameter (lambda) selection and coefficient profile plot against the log (lambda) sequence in the LASSO model. (C) The critical PRGs with the
corresponding coefficients in the prognostic model. (D,E) Kaplan–Meier survival analysis between the low- and high-risk groups in the training and validation cohort,
respectively. (F,G) ROC curves for the prognostic model in the training and validation cohort, respectively. (H) Heatmap displaying the expression patterns of six
PRGs involved in the model in the training cohort. (I,J) Forest plots showing the results of univariate and multivariate cox regression analysis for the risk score in the
training cohort. (K) Nomogram integrating risk and multiple clinicopathological features in the training cohort. (L) Calibration curves of the nomogram in the training
cohort. (M)ROC curves for the nomogram in the training cohort. * means p < 0.05, ** means p < 0.01, and ***means p < 0.001. PRGs, pyroptosis related genes; LASSO,
least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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FIGURE 4 | Identification of the correlation between pyroptosis score and prognosis. (A) Comparisons of the GSVA scores for favorable and unfavorable gene set
between the low- and high-risk groups. (B) Kaplan–Meier survival analysis between the low- and high-pyroptosis score groups. (C) ROC curves for pyroptosis score.
(D,E) Forest plots showing the results of univariate and multivariate cox regression analysis for pyroptosis score. (F,G) Verification of the above results in the validation
cohort from the CGGA database (DataSet ID: mRNAseq_325). (H,I) Verification of the above results in the validation cohort from the GEO database. (J,K)
Identification of the differential expression patterns of the PRGs between the low- and high-pyroptosis score groups. (L) Kaplan–Meier survival analysis between the low-
and high-pyroptosis score subgroups with different clinicopathological features. * means p < 0.05, ** means p < 0.01, and ***means p < 0.001. GSVA, gene set variation
analysis; ROC, receiver operating characteristic; PRGs, pyroptosis-related genes.
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validation cohort (Supplementary Figure S2G). All these
results revealed the powerful performance of the nomogram
in predicting prognosis in LGG patients.

Pyroptosis Score Served as a Powerful
Prognostic Factor
The GSVA scores for favorable pyroptosis gene set in the low-
risk group were significantly higher than those in the high-risk
group, while the GSVA scores for unfavorable pyroptosis gene
set in the low-risk group were significantly lower compared
with the high-risk group implying that the GSVA scores for
the pyroptosis gene signatures closely correlated with
prognosis (p < 0.001; Figure 4A). Based on the GSVA
scores for the pyroptosis gene signatures, pyroptosis scores

were calculated according to the mentioned method. The
clinical data for LGG samples with low and high pyroptosis
scores are demonstrated in Tables 1 and 2. Kaplan–Meier
survival analysis revealed that LGG patients with higher
pyroptosis scores presented pessimistic prognosis (p <
0.001; Figure 4B). The ROC curves with AUC for 0.819,
0.821, and 0.748 (for predicting 1, 3, and 5 years overall
survival, respectively) verified the accuracy of the
pyroptosis score for predicting prognosis (Figure 4C). The
univariate cox analysis indicated that the pyroptosis score
significantly correlated with survival (p < 0.001; Figure 4D).
The multivariate cox analysis suggested that the pyroptosis
score can be an independent factor for predicting prognosis in
LGGs (p < 0.001; Figure 4E). Two validation cohorts from the
CGGA database (Figures 4F,G) and the GEO database

TABLE 1 | Clinical features of patients with low-grade gliomas in TCGA database.

Covariates Total High-pyroptosis score Low-pyroptosis score

Gender Female 226 (44.49%) 42 (44.21%) 184 (44.55%)
Male 282 (55.51%) 53 (55.79%) 229 (55.45%)

Age <60 439 (86.42%) 68 (71.58%) 371 (89.83%)
≥60 69 (13.58%) 27 (28.42%) 42 (10.17%)

Grade G2 246 (48.43%) 14 (14.74%) 232 (56.17%)
G3 261 (51.38%) 81 (85.26%) 180 (43.58%)
Unknown 1 (0.2%) 0 (0%) 1 (0.24%)

Histologic type Astrocytoma 192 (37.8%) 66 (69.47%) 126 (30.51%)
Oligoastrocytoma 128 (25.2%) 15 (15.79%) 113 (27.36%)
Oligodendroglioma 188 (37.01%) 14 (14.74%) 174 (42.13%)

IDH1 mutation YES 91 (17.91%) 8 (8.42%) 83 (20.1%)
NO 34 (6.69%) 19 (20%) 15 (3.63%)
Unknown 383 (75.39%) 68 (71.58%) 315 (76.27%)

TABLE 2 | Clinical features of patients with low-grade gliomas in CGGA database (DataSet ID: mRNA-array_301).

Covariates Total High-pyroptosis score Low-pyroptosis score

Type Primary 143 (89.94%) 28 (80%) 115 (92.74%)
Recurrent 16 (10.06%) 7 (20%) 9 (7.26%)

Grade G2 106 (66.67%) 12 (34.29%) 94 (75.81%)
G3 53 (33.33%) 23 (65.71%) 30 (24.19%)

Gender Female 69 (43.4%) 12 (34.29%) 57 (45.97%)
Male 90 (56.6%) 23 (65.71%) 67 (54.03%)

Age <60 146 (91.82%) 28 (80%) 118 (95.16%)
≥60 11 (6.92%) 6 (17.14%) 5 (4.03%)
Unknown 2 (1.26%) 1 (2.86%) 1 (0.81%)

Radio status Treated 136 (85.53%) 29 (82.86%) 107 (86.29%)
Untreated 21 (13.21%) 6 (17.14%) 15 (12.1%)
Unknown 2 (1.26%) 0 (0%) 2 (1.61%)

Chemo status (TMZ) Treated 69 (43.4%) 23 (65.71%) 46 (37.1%)
Untreated 85 (53.46%) 12 (34.29%) 73 (58.87%)
Unknown 5 (3.14%) 0 (0%) 5 (4.03%)

IDH status Mutant 105 (66.04%) 14 (40%) 91 (73.39%)
Wildtype 53 (33.33%) 20 (57.14%) 33 (26.61%)
Unknown 1 (0.63%) 1 (2.86%) 0 (0%)

1p19q codeletion status Codel 16 (10.06%) 0 (0%) 16 (12.9%)
Non-codel 34 (21.38%) 10 (28.57%) 24 (19.35%)
Unknown 109 (68.55%) 25 (71.43%) 84 (67.74%)

MGMTp methylation status Methylated 43 (27.04%) 10 (28.57%) 33 (26.61%)
Un-methylated 107 (67.3%) 23 (65.71%) 84 (67.74%)
Unknown 9 (5.66%) 2 (5.71%) 7 (5.65%)
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(Figures 4H,I), respectively, verified the predictive values of
the pyroptosis score. The corresponding clinical information
for two validation cohorts was listed in Supplementary
Tables S1 and S2. The expression levels of most of the
PRGs were significantly higher in the high-pyroptosis score
group (Figures 4J,K). LGG patients in the high-pyroptosis
score subgroups with distinct clinicopathological features
tended to get worse prognosis compared with the low-

pyroptosis score subgroups (all p ≤ 0.001; Figure 4L),
which was consistent with the above results.

Pyroptosis Score Served as a Predictor for
TIME and Immunotherapy Response
The immune, stromal, and ESTIMATE scores were distinctly
higher in the high-pyroptosis score group indicating more

FIGURE 5 | Identification of distinct TIME and immunotherapy response between different pyroptosis score groups. (A) Comparisons of immune, stromal,
ESTIMATE scores, and tumor purity between two groups. (B) Comparisons of the expression levels of immune check points between two groups. (C) Correlation
between the pyroptosis score and infiltrating immune cells. (D) Comparisons of the abundance of infiltrating immune cells between two groups. (E) Comparisons of the
immune functions between two groups. (F) Comparison of TIDE scores between two groups. (G) Kaplan–Meier survival analysis between the low- and high-
pyroptosis score groups in GSE78220 data set. (H) Bar plot showing different responses to anti-PD1 immunotherapy between two groups. * means p < 0.05, ** means
p < 0.01, and ***means p < 0.001. TIME, tumor immune microenvironment; TIDE, Tumor Immune Dysfunction and Exclusion; CR/PR, complete response/partial
response; PD, progressed disease; SD, stable disease.
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immune and stromal cells in TIME. On the contrary, lower
tumor purities were determined in the high-pyroptosis score
group compared with the low-pyroptosis score group (p <
0.001; Figure 5A). The expression levels of immune check
points including PDCD1, CD274, PDCD1LG2, CTLA4, CD80,
and CD86 were significantly higher in the high-pyroptosis
score group (p < 0.001, Figure 5B). As shown in Figure 5C,

the pyroptosis score positively correlated with most of the
infiltrating immune cells in TIME especially activated
dendritic cells, Gamma delta T cells, natural killer cells,
and type 1 T helper cells. The high-pyroptosis score group
presented significantly higher scores of infiltrated immune
cells than the low-pyroptosis score group (Figure 5D).
Patients in the high-pyroptosis score group exhibited

FIGURE 6 | Correlation between pyroptosis score and clinicopathological features. (A) Identification of the correlation between pyroptosis score and TMB. (B)
Kaplan–Meier survival analysis between the low- and high-TMB score groups. (C) Kaplan–Meier survival analysis for patients with different pyroptosis and TMB scores.
(D,E) Correlation between pyroptosis score and age. (F,G) Correlation between pyroptosis score and gender. (H) Correlation between pyroptosis score and grade. (I)
Correlation between pyroptosis score and risk group. (J) Comparisons of pyroptosis score between pyroptosis-related molecular patterns and gene clusters. (K)
Alluvial diagram of pyroptosis patterns, gene clusters, pyroptosis score group, risk group, grade, and survival status. TMB: tumor mutation burden.
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higher scores of immune functions such as checkpoint,
cytolytic activity, and para-inflammation (Figure 5E).
TIDE scores for the low-pyroptosis score group were
significantly lower indicating patients with low pyroptosis
scores tended to get effective response to immunotherapy
(Figure 5F). The prognostic values of the pyroptosis score
were confirmed in GSE78220 by Kaplan–Meier survival
analysis (Figure 5G). Furthermore, patients with low
pyroptosis scores were more likely to respond to anti-PD1

immunotherapy which was consistent with the above results
(Figure 5H).

Identification of the Correlation Between
Pyroptosis Score and Clinicopathological
Features
TMB, which closely correlated with TIME and served as a
potential biomarker for immunotherapy response, was

FIGURE 7 | Validation of the selected genes in the prognostic model at the protein level. (A–F) Identification of the six selected genes in the prognostic model in
immunohistochemistry staining. (G) Identification of the six selected genes in Western blotting in which lane 1 and 2 represented normal brain tissues, lane 3 represented
the center tissues of glioma in grade II, lane 4 represented the margin tissues of glioma in grade II, lane 5 represented the center tissues of glioma in grade III, and lane 6
represented the margin tissues of glioma in grade III. LGG, low-grade glioma.
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investigated in this study. TMB scores in the high-pyroptosis
score group were significantly higher than those in the low-
pyroptosis score group and the TMB score positively correlated
with the pyroptosis score (Figure 6A). Patients with low TMB
scores tended to get higher overall survival (p < 0.001; Figure 6B).
The overall survival for patients with low pyroptosis scores and
high TMB scores was significantly higher compared with patients
with high pyroptosis scores and low TMB scores confirming that
the pyroptosis score may be a robust and independent predictor
for prognosis in LGGs (Figure 6C). Patients with low pyroptosis
scores tended to be younger than those with high pyroptosis
scores (Figures 6D,E). There was no correlation between
pyroptosis score and gender (Figures 6F,G). LGG samples
with high pyroptosis scores tended to present higher
histological grade and higher risk score (p < 0.001; Figures
6H,I). The pyroptosis scores for patients in C1 were
significantly higher than those in C2 and the pyroptosis scores
for patients in gene cluster A were significantly higher compared
with gene cluster B (Figure 6J). Alluvial diagram displayed the
distribution of the LGG patients across pyroptosis patterns, gene
clusters, pyroptosis score group, risk group, grade, and survival
status (Figure 6K).

Validation of Differential Expression of the
Selected Genes in the Prognostic Model at
Protein Level
Six selected genes in the prognostic model including CASP3,
CASP8, CASP4, PLCG1, TP63, and CASP9 were scanned on The
Human Protein Atlas website. We found that these genes were
widely expressed in LGG tissues except CASP9 which acted as
favorable genes and were lowly expressed in LGG tissues (Figures
7A–F). In addition, Western blotting further verified the above
results in which the expression levels of the unfavorable genes
were relatively lower in normal brain tissues and the margin
tissues of LGGs while the expression levels were extremely higher
in the center tissues of LGGs (Figure 7G).

DISCUSSION

The workflow for this study was depicted in Supplementary Figure
S3. Based on the expression profiles of 52 PRGs, LGG samples from
TCGA and CGGA database were classified into two pyroptosis
related molecular patterns with distinct prognosis and TIME.
Besides, the prognostic model was constructed by using the
LASSO-COX method to confirm the prognostic values of PRGs.
Nomogram combing risk score and multiple clinicopathological
characteristics were established for clinical practice. Furthermore,
the pyroptosis score for each LGG sample was calculated through the
GSVA method with appealing implications in predicting the
prognosis and immune therapy in LGGs. The predictive
performance of the pyroptosis score was subsequently validated in
external data sets from CGGA and GEO database, respectively.
Molecular biological experiments such as Western blotting
analysis were employed to confirm the expression of the selected
genes in the prognostic model at the protein level.

As depicted in the alluvial diagram, almost all the LGG
samples in pyroptosis pattern C2 were stratified into gene
cluster B and the latter one was completely defined as the
low-pyroptosis score group. Moreover, LGG patients in C1
and gene cluster A with worse prognosis had significantly
higher pyroptosis scores. Based on the findings in our study,
we came to several conclusions: (1) the expression levels of most
PRGs were highly expressed in pyroptosis pattern C1, gene
cluster A, and high-pyroptosis score group, suggesting that
pyroptosis was extensively activated; (2) to some extent, the
pyroptosis score can serve as an indicator to distinguish
pyroptosis-related molecular patterns and gene clusters for
individuals; and (3) a high pyroptosis score indicated poor
prognosis and immune checkpoint blockage therapeutic
response while more immune cells infiltrated in the TIME of
LGGs with high pyroptosis scores.

With the determination of gasdermins (GSDMs) protein
family and inflammasomes, pyroptosis is emerging as an
attractive target in cancer research for its indispensable effect
on TIME and antitumor immunity (Zhang et al., 2020). To date,
there are rare studies focusing on the topic of pyroptosis in
gliomas and no pyroptosis related gene signature has been
determined which were proved to have an important role in
discriminating the prognosis and immunotherapy response in
glioma patients in our study. Although pyroptosis was involved in
various cancers, the specific roles for it can be complicated
(Zhang et al., 2021). The tumor-suppressive effect of
pyroptosis is proved in colorectal cancer, liver cancer, and skin
cancer (Zaki et al., 2010; Ellis et al., 2011; Ma et al., 2016), but a
double-edged effect is demonstrated in breast cancer (Chen et al.,
2012). We cannot directly determine the effect of pyroptosis on
the prognosis of patients based on the expression patterns of
pyroptosis executors or regulators such as GSDMs alone. Thus,
through scanning literatures, we screened out 52 PRGs involved
in all the known pathways associated with pyroptosis to identify
pyroptosis-related molecular patterns, followed which DEGs
between two pyroptosis patterns were determined as
pyroptosis-related gene signatures. Gasdermins (GSDMs)
represent a recently identified protein family which is
considered as the mediator and executor of pyroptosis.
GSDMD, which was extensively investigated in various
cancers, was involved in the unfavorable pyroptosis gene set in
this study. The high expression of GSDMD in pyroptosis pattern
C1 and gene cluster A accounted for the activation of pyroptosis
in LGGs to some extent. A recent study indicated that pyroptosis
can be triggered through TNF-mediated death receptor signaling
pathway (Hou et al., 2020). Consistently, the function enrichment
analysis in our study revealed that tumor necrosis factor activated
receptor activity, Toll-like receptor signaling pathway, and
natural killer cell mediated cytotoxicity pathway were
significantly enriched in C1, which probably suggested the
activation of pyroptosis in C1. Even though high expression of
PRGs indicated poor prognosis in LGGs in our study, the specific
effects of pyroptosis on the prognosis of patients remained
unclear.

Our study provided strong evidence for the clinical
management of LGG patients and made a step in the
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identification of pyroptosis in LGGs at the transcriptional and
protein levels. First, given that the pyroptosis score was calculated
for each sample, it can be an indicator for the heterogeneity of
tumors and contribute to the development of personalized
medicine. Second, the pyroptosis score took favorable and
unfavorable gene signatures into account and closely
correlated with prognosis which differed with other prognostic
models mainly consisting of tumor promoting genes. Third,
except for the prognostic values, the pyroptosis score
significantly correlated with multiple clinicopathological
features such as TMB and histological grade. Moreover, it can
serve as a predictor for immune checkpoint blockage therapeutic
response. Finally, the pyroptosis scoring scheme was verified in
melanomas implying that it may also apply to other types of
tumors.

Although multi-level and multi-database research were
involved in the validations, there are still some limitations
for our research. Tumor heterogeneity was not fully
investigated even though the personalized differences were
taken into consideration in this study. As shown in the
Western blotting, the expression levels of the six selected
genes involved in the prognostic model differed between
tissues from the central area and margin area of LGGs.
Single cell analysis focusing on the alterations of PRGs may
be required in future research to explore the heterogeneity of
LGGs. Previous studies revealed the tumor suppressive effect
of pyroptosis in cancers (Saeki et al., 2009; Grivennikov et al.,
2010; Wang et al., 2018), while in this study, we found that
LGG patients with high pyroptosis scores exhibited poor
prognosis. The activation of pyroptosis in which PRGs
were highly expressed may act as an indicator or result of
tumor progression. As for LGGs with high aggressiveness and
proliferation, pyroptosis may raise as a general innate
immune effector mechanism to sustain the balance of
TIME, therefore, induction of pyroptosis by targeted drugs
may augment the antitumor effect. Additionally, this study
concentrated on the alterations of pyroptosis related genes or
proteins and more in vitro and in vivo experimental evidence
at the resolution of cells might be needed for extensive
research of pyroptosis in the future. Moreover, pyroptosis
has been recently defined as a type of PANoptosis which
represents an inflammatory programmed cell death pathway.
PANoptosis can be regulated by the PANoptosome complex
that shares common features with pyroptosis, apoptosis, and/
or necroptosis but that cannot be accounted for by any of
these three pathways alone (Wang and Kanneganti, 2021).
Although our study provided a comprehensive analysis of
pyroptosis related genes in LGGs and shed light on the
investigation of PANoptosis, an in-depth analysis focusing
on the exploration of PANoptosis would draw more attention
in the future.

In conclusion, we classified LGG patients into subgroups
with different pyroptosis related molecular patterns.
Pyroptosis scoring scheme was developed to further
characterize pyroptosis in LGGs with implications in

discriminating the prognosis and immunotherapy
responses. LGG patients with lower pyroptosis scores
usually got better prognosis and tended to benefit from
immune checkpoint blockage therapy.
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