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Abstract
Susisuchus anatoceps is a neosuchian crocodylomorph lying outside the clade Eusuchia,

and associated with the transition between basal and advanced neosuchians and the rise

of early eusuchians. The specimen MPSC R1136 comprises a partially articulated postcra-

nial skeleton and is only the third fossil assigned to this relevant taxon. Thin sections of a

right rib and right ulna of this specimen have been cut for histological studies and provide

the first paleohistological information of an advanced non-eusuchian neosuchian from

South America. The cross-section of the ulna shows a thick cortex with 17 lines of arrested

growth (LAGs), a few scattered vascular canals, and primary and secondary osteons. This

bone has a free medullary cavity and a spongiosa is completely absent. Thin sections of the

rib show that remodeling process was active when the animal died, with a thin cortex and a

well-developed spongiosa. In the latter, few secondary osteons and 4 LAGs were identified.

According to the observed data, Susisuchus anatoceps had a slow-growing histological

microstructure pattern, which is common in crocodylomorphs. The high number of ulnar

LAGs and the active remodeling process are indicative that this animal was at least a late

subadult, at or past the age of sexual maturity. This contradicts previous studies that inter-

preted this and other Susisuchus anatoceps specimens as juveniles, and suggests that full-

grown adults of this species were relatively small-bodied, comparable in size to modern

dwarf crocodiles.

Introduction
Crocodylomorpha is the most common group of Mesozoic tetrapods in Brazil [1, 2]. Fossils
described in the past years indicate that the maximum diversity of this group took place during
the Cretaceous Period (145–66 Ma), when the Notosuchia dominated the ancient Brazilian ter-
restrial landscapes (e.g., [3–9]), along with other less specialized crocodylomorphs (e.g. [10]).
On the other hand, the fossil record of Neosuchia is relatively poor for Cretaceous deposits of
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this country. This latter clade is often represented by dubious and poorly-preserved material
such as those of “Goniopholis paulistanus” and “Hyposaurus derbianus" [11–13]. The gigantic
Sarcosuchus hartii is an important neosuchian from Brazil; however, a revision of the material
and taxonomic status of this taxon is badly needed [14, 15].

Among the few taxa that are represented by better preserved material is Susisuchus anato-
ceps, a small “advanced neosuchian” (Fig 1) known by well-preserved specimens from the
Crato Formation (Aptian-Albian) Konservat-Lagerstätte of the Araripe Basin, Brazil [16–19].
A second, but less complete species of this genus, Susisuchus jaguaribensis, was later described
from the Early Cretaceous (Berriasian-Barremian) Lima Campos Basin [20].

S. anatoceps shows a combination of plesiomorphic and derived features that makes it a key
taxon for the understanding of the early evolution of the Eusuchia [16, 19, 21–23]. Some morpho-
logical innovations of the Eusuchia are already present in S. antoceps, such as the incipient procoe-
lous cervical vertebrae [19]. Yet, other features suggest a more basal position for this taxon,
excluding it from the Eusuchia. This is the case of the anterior projection of the frontal bone, which
separates the nasals, the absence of both the antorbital and mandibular fenestrae, and the leveling
between the quadrate condyles and the occipital condyle [16, 22]. The exquisite three-dimensional
preservation of the specimens is typical from the lacustrine paleoenvironment of the Crato Forma-
tion, and favors the preservation of much of the internal bone microstructures [24].

Fig 1. Simplified cladistic hypotheses for Neosuchia and the phylogenetic positioning of Susisuchus
anatoceps. (A) Hypothesis of Fortier & Schultz (2009) shows susisuchids as an "advanced neosuchian" and
the sister-taxon of Eusuchia. (B) Hypothesis of Turner & Pritchard (2015) displays a more basal positioning
for S. anatoceps along with the Australian species I. duncani.

doi:10.1371/journal.pone.0155297.g001
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The study of bone microstructure is a powerful tool that complements the traditional mor-
phological descriptions and allows the inference of important information about the biology of
extinct animals, such as growth rates, lifestyle adaptations, and ontogenetic stages [24–29]. The
paleohistology of neosuchian taxa, however, remains still largely unexplored. Up to date, the
only published thin sections regarding these animals are those of the dyrosaurids Dyrosaurus
phosphaticus and Guarinisuchus munizi [28, 29]. Here we provide an histological study of the
ulna and one rib of a referred specimen (MPSC R1136) of Susisuchus anatoceps. This is the
first histological study of an “advanced neosuchian”.

Geological Setting
The Araripe Basin is located in northeastern Brazil, in the central part of the Borborema Prov-
ince [30]. It is an intracratonic basin and the most extensive of the interior basins in northeast-
ern Brazil [31]. The stratigraphy of the Araripe Basin is very complex and remains
controversial (e.g., see [30–42]). In this paper, we follow the terminology proposed by Neu-
mann and Cabrera (1999) [38]. These authors carried out a detailed stratigraphic review of the
Araripe Basin, elevating the former Santana Formation to the status of Group, and the Crato,
Ipubi and Romualdo members to the status of formations (see [42] for more details). The
Crato Formation is the lower most stratigraphic unit in the Santana Group [39]. It consists
mainly of micritic laminated gray and cream limestones with halite pseudomorphs [43]. The
Crato Formation (lacustrine-carbonatic) together with the upper part of the underlying Bar-
balha Formation (deltaic) constitute the lacustrine Aptian_Albian sequence of the post-rift
phase of the Araripe Basin [39, 44]. The fossiliferous record of this formation is abundant and
diverse [34]. The fossils are found in laminated limestones of lacustrine environments that
developed under tropical, arid and semi-arid climatic conditions, with long intervals of dry
weather and periodic precipitation [43]. The Crato Formation has produced an immense vari-
ety of fossils of both, fauna and flora, including plants [43, 45–48], insects [49], ostracods [50],
conchostracans [51] fishes (e.g. [52, 53]), amphibians (e.g. [54, 55]), pterosaurs [56–62], croco-
dylomorphs [17, 19] and feathers (e.g. [63]). The preservation of is the material is often excep-
tional, conferring to the Crato Formation the status of Konservat Lagerstätte [57, 64–68].

Materials and Methods

Specimen
No permits were required for the present study, which complied with all regulations. The speci-
men MPSC R1136 is housed in the paleontological collection of the Museu de Paleontologia da
Universidade Regional do Cariri (Santana do Cariri, Ceará State, Brazil). The material was pre-
viously described and assigned to the species Susisuchus anatoceps by Figueiredo et al. 2011
[20]. MPSC R1136 is recognized as the third specimen of S. anatoceps on the basis of at least
three diagnostic features shared with the holotype, SMNK PAL 3804 (Staaliches Museum für
Naturkunde Kalsruhe, Germany) [20]. Furthermore, the referred material comes from the
same stratigraphic unit as the holotype, which is an important aspect for systematic purposes
regarding fossils (e.g. [69, 70]). Despite the preservation of an almost complete articulated skel-
eton, only the middle shaft of the right ulna and one right thoracic rib were used in this study.

Histological descriptions
We followed the osteohistological terminology of Francillon-Vieillot et al. (1990) [71] and used
the phylogenetic relationships of Turner & Pritchard (2015) [23]. General features of the cross-
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section are described, then microstructures are discussed in detail, from the endosteal margin
to the periosteal surface.

Slide Preparation
For this analysis, the mid- diaphysis of the right ulna and one thoracic rib were sectioned (Fig
2). A 0.5 cm sample was obtained from each specimen in order to prepare the histological
slides.Prior to sampling, all bones were mechanically prepared with the use of airscribes and
manual tools. Molds in silicon rubber (RTV CAL/N—ULTRALUB QUÍMICA LTDA, São
Paulo, Brazil) and resin casts (RESAPOL T-208 catalyzed with BUTANOXM50—IBEX
QUÍMICOS E COMPOSITOS, Recife, Brazil) were produced to preserve the external morpho-
logical information of the specimens. The bones were subsequently measured and photo-
graphed according to the protocol proposed by Lamm 2013 [72].

Thin sections were produced using standard fossil histology techniques [72, 73]. The sam-
ples were embedded in epoxy clear resin RESAPOL T-208, catalyzed with BUTANOXM50,
and cut with a diamond-tipped blade on a saw (multiple brands). The mounting-side of the
sections were wet-ground using a metallographic polishing machine (AROPOL-E, Arotec
LTDA) with Arotec abrasive papers of increasing grit size (60/P60, 120/P120, 320/P400, 1200/
P2500) until a final thickness of 30–60 microns was reached.

Imaging and Image Analysis
Histological structures were observed with an optical microscope in transmitted light mode.
Parallel/crossed nicols and fluorescence filters were used to enhance birefringence. Histological

Fig 2. Sampled bones of MPSC R1136 with respective thin sections. (A) General view of the specimen. Red (marked B) and green
(marked C) arrows (corresponding to rib and ulna respectively) indicate where the cut were made for the sample collection. (B) View of
the cross section of the ulna. (C) View of the cross section of the rib. Scale bar 50 mm in A; 5 mm in B; C.

doi:10.1371/journal.pone.0155297.g002
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images were taken using an AxioCam digital sight camera (Zeiss Inc., Barcelona, Spain)
mounted to an Axio Imager.M2 transmitted light microscope (Zeiss Inc. Barcelona, Spain).
Images were taken at 56 and 106 total magnification.

To access Figshare online data: http://dx.doi.org/10.6084/m9.figshare.1507480

Results

Ulna
The endosteal margin in the ulna is surrounded by the endosteal lamellae. The most striking
feature is the complete absence of spongy tissue, giving rise to a free medullary cavity which is
730 μm in diameter (Fig 3). The marrow cavity extends to the first quadrant (superolateral por-
tion) of the cross-section. The compact cortex is composed of primary parallel-fibred bone tis-
sue that is 1.110 μm in diameter.The vascular network is present only in the inner and mid-
portion, whereas the outer portion is free of vascularization. The vascular canals show a ran-
dom distribution along the cortex, and some of these canals anastomose and run obliquely (Fig
3C). This tissue is characterized by growth cycles (zones-annuli-LAGs). A single primary
osteon appears in the deep cortex between the fourth and fifth LAG. There is no evidence of

Fig 3. Histological characteristics of the Ulna. (A) View of the cross section. Black boxes indicate where
the related images were taken. (B) View of the cortex exhibiting vascular canals parallel-fibered bone
embedded with osteocyte lacunae. Seventeen simple lines of arrested growth—LAGs (partially covered by
lines) can be observed from the inner cortex (endosteal region) to the outer surface (periosteal region) and
seven annulus (marked by A), the white arrows indicate erosion rooms. (C) Detail of the primary bone tissue,
showing the few scattered simple and anastomosed vascular canals composesing the vascular network.

doi:10.1371/journal.pone.0155297.g003
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secondary osteons or spongy bone. There are some small erosion rooms (Fig 3B) near the med-
ullary cavity, which represent signal of remodeling process. These structures are more numer-
ous in the outer cortex than in the deep cortex. The shape of the osteocytes varies along the
tissue, being more flatten periostealy in comparison to the more rounded ones endostealy.
Their orientation follows the same pattern of the fibrillar and lamellar organization.

The growth marks are widespread in the primary cortex. There are 5 complete growth cycles
in the inner cortex (zone-annuli and LAG), followed by a thicker zonecontaining two closely
annuli but no LAGs. The next growth marks is a row of three closely-spaced LAGs with zones
between them. After these triple LAGs, an annulus follows it representing a low bone deposi-
tion with another growth cessation marked by a LAG. The next growth cycle starts with an
annulus and is followed, again, by three close-spaced LAGs. The six last cycles are represented
by zone and LAGs. There was no external fundamental system (EFS) preserved as already
observed in other basal Neosuchia (see [28] for a review).

Thoracic rib
The rib exhibits a parallel-fibered histological pattern that is similar to that of the ulna, yet it
shows some important differences. In general, the cortex in the rib isthinner than in the ulna,
which is 310 μm in diameter. The most notable difference is the deposition of a dense spongy
tissue, which is absent in the ulna. The rib also exhibits a different pattern of cortical LAGs
compared to the ulna; only five of them can be observed in the rib cortex. LAGs can be
observed spreading all over the cortex.

Few secondary osteons are present. They are located in the inner and outer cortex, indicat-
ing that the process of bone remodeling was active in this individual. Therefore, the possibility
of loss of other LAGs by bone resorption cannot be ignored. There was no deposition of the
avascular bone lamellae called external fundamental system (Fig 4).

Discussion
The use of paleohistology allows the identification and characterization of four general signs of
biological properties in microscopic structures; i.e. ontogeny, phylogeny, biomechanics and
habitat (e.g. [74]). These are influenced by age, rate of growth, physiology and other factors at
different moments of the life of a given taxon, and inferences about them can be made if they
are linked to comparative information [75]. Despite the diversity of crocodylomorph taxa,
which show a great variety of habitats and life styles, there is a lack of knowledge about their
histological patterns throughout the fossil record. Until now, the paleohistological studies of
Crocodylomorpha and close-related groups range from the basal Pseudosuchia and Phyto-
sauria [76] through Notosuchia (Simosuchus clarki, [77]. The Thalattosuchia [25] and Dyro-
sauridae [28, 29] represent the only two groups of basal Neosuchia with well-known
paleohistological data. Bones of extant crocodylians have also been sectioned, including those
of Crocodylus niloticus [78, 79], Crocodylus johnstoni [80], Alligator mississipiensis [81, 82] and
Gavialis gangeticus [83].

Bone Tissues and Growth Strategies
The histological pattern observed in Susisuchus anatoceps is parallel-fibered (PFB). This tissue
is often poorly vascularized or avascular, with simple canals or primary osteons distributed
randomly when present. [73,84]. In S. anatoceps the PFP cortex is avascular in the periosteal
region, and the vascular canals increase endostealy towards the inner cortex with some anasto-
moses, as observed in both the ulna and rib. The tissue organization and their fibers can reveal
rates of growth and bone depositionin organisms (e.g [85, 86]). The growth rate increases with
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the amount of vascularization and decreases with the degree of collagenous fibers organization,
starting from fibrous to lamellar [87]. This type of tissue is deposited slower than the fibro-
lamellar [85, 86]. The latter is often found in mammals, birds, synapsids, dinosaurs and ptero-
saurs [24, 27, 84, 88, 89].

The presence of parallel- fibered bone tissue indicates slow bone deposition. However, sev-
eral moments of pause in growth are still present and evidenced by the lines of arrested growth
(LAGs). LAGs are regularly formed throughout the animal’s life [90]. The annual cyclicity of
LAGs have been proposed before for captive crocodylians exposed to constant temperature,
diet, and photoperiod, yet they still exhibit the periodic and cyclical skeletal growth banding of
their wild counterparts [91]. As far as we know from extant crocodylians, the LAGs appear to
be formed in annual periodicity. In a captive-bred four-years-old Crocodylus siamensis three
LAGs were found and one was in process of forming before its death [92]. Crocodylus niloticus
have been shown to have LAGs formed cyclically, after the use of fluorescent markers in dermal
scutes [78], as well as in a population of Crocodylus johstoni [80]. An exception is observed in
Alligator mississipiensis, in which a less distinctive extra growth mark can be formed under arti-
ficially induced periods of cold or heat stress [93].

Despite the huge difference in the growth history patterns between the ulna and the rib of
MPSC R1136, the latter reveals advanced remodeling process due to an enlarged medullary
cavity, large erosion rooms and a thin cortex. Therefore, it could not be considered for

Fig 4. Histological characteristics of the Rib. (A) View of the cortex exhibiting parallel-fibred bone embedded
with osteocyte lacunae and a deposition of spongy tissue highlighted by erosion rooms (ER). Five simple lines of
arrested growth—LAGs (marked by lines) can be observed in the cortex. (B) View of the complete transect. Black
boxes indicates respectively, were the related images were taken. (C) Detail of the outer cortex showing the
intense remodeling process and the presence of few secondary osteons (black arrows) and an isolated simple
vascular canal (red arrow).

doi:10.1371/journal.pone.0155297.g004

Bone Histology and Lifestyle of Susisuchus anatoceps

PLOSONE | DOI:10.1371/journal.pone.0155297 May 5, 2016 7 / 16



skeletochronology. A large number of LAGs (17) and annuli (7) were found in the ulna, repre-
senting the ciclicity of the growth. The first five cycles (zone-annuli and LAG) are followed by
a thicker zone with two closely annuli and no LAG in it, representing the deacrease of bone
deposition. The next GM is a row of three close-spaced LAGs with zones between them. After
these triple LAGs, there is an annulus, representinga period of low bone deposition rate, that
ultimately terminated in a LAG. The next growth cycle starts with slow bone deposition (annu-
lus) and is followed again by three close-spaced LAGs. The last six cycles are represented by
zone and LAGs. Considering that such retention in growth occurs annually, than it is possible
to infer 17 years to this individual at the moment of death. In this bone the remodeling process
was just beginning with three LAGs recovered from the resorption area for the maintenance of
the medullary cavity. This is consistent with the current knowledge for this group, in which
LAGs formation occurs annually [78, 81, 82].

Despite the small size of the individuals assigned to Susisuchus anatoceps, the parallel-
fibered bone with the high number of growth cycles, and the degree of remodeling of the rib,
are indicative that MPSC R1136 was an animal of advanced ontogenetic stage (Fig 5). The liv-
ing genera Paleosuchus and Osteolaemus are considered dwarf crocodylians, with adult average
sizes ranging between 1.0 and 1.5 meters and, therefore, similar to Susisuchus [94]. Paleosuchus
males reach sexual maturity when they have grown to at least 1.4 meters and females about 1.3
meters; this size category likely corresponds to 10–20 years of age [94–96].The holotype of S.
anatoceps is about 60 cm in length, and was supposed to represent a young animal on the basis
of some morphological features [17]. However, S. anatoceps does not reach the length observed
in the extant species cited above. Based on the number of LAGs, the estimated age for MPSC
R1136 is 17 years, within the age range of sexual maturity of dwarf crocodylians. Analysis of
growth rates in various groups of living vertebrates suggests that, in general, small species grow
more slowly than large species [97]. However, smaller species may reach their mature size ear-
lier than larger ones [98].

Within Crocodylomorpha, some extant (Paleosuchus and Osteolaemus) and fossil (e.g. Ato-
posauridae and Susisuchus) taxa are considered dwarves when adult individuals are less than 2

Fig 5. Comparative size of Susisuchus anatoceps to other Brazilian Cretaceous Crocodylomorphs.Comparative size diagram of
Brazilian fossil crocodylomorphs, showing the dwarfism of Susisuchus anatoceps with 70 cm of maximum length. Ilustration by Aline M.
Ghilard.

doi:10.1371/journal.pone.0155297.g005
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m long and apparently retain a certain number of juvenile characters in adulthood, usually
through pedomorphogenic processes [99,100]. This is one possible interpretation for the set of
characteristics observed in Susisuchus anatoceps. In the original description of MPSC R1136,
Figueiredo et al. (2011) [20] stated that some appendicular indicate it is a juvenile, whereas
other traits observed in the osteoderms and axial skeleton were more suggestive of an adult
morphology. Because these conditions are also found in the holotype of Susisuchus, Figueiredo
et al. (2011) [20] concluded that both MPSC R1136 and the holotype were not completely
mature individuals [17, 20]. Salisbury et al. (2003) [17] identify some features in the skull (e.g.
large orbits, short posterior process of the quadrates, feeble ornamentation) and postcranium
(e.g. poorly-torsioned humerus, indistinct muscle scars on the forelimbs) of the holotype of S.
anatoceps that are associated with juveniles in most extant crocodylians, but also with mature
individuals of dwarf taxa such as Osteolaemus tetraspis and Paleosuchus spp. The osteohistolo-
gical features observed here agree with this last interpretation, and MPSC R1136 cannot be
regarded as a young individual as previously suggested. The bone microstructure of S. anato-
ceps presents a pattern consistent with a late subadult animal due to the absence of EFS, and
morphologically their bones show patterns of juvenile/adult transition. This suggests that S.
anatoceps reaches some degree of cranial skeletal maturity before the growth of the appendicu-
lar skeleton was completed.

The absence of deposition of an external fundamental system (EFS) layer in MPSC R1136
could complicate the ontogenetic interpretation. The presence of such layers in the bones of
crocodylomorpha is controversial. The EFS layer has been reported in many different taxa,
such as in Lepidosauria, non-crocodylomorph pseudosuchians, Pterosauria, and Dinosauria
([81] TB Kellner 2013). However, the presence of EFS layers in crocodylomorphs is compara-
tively rare in the evolutionary history of the group. So far, this record of asymptotic growth has
only been found in basal Pseudosuchia [76], the eusuchian Alligator [81] and in the neosuchian
Dyrosauridae [28]. The absence of an EFS indicates that this animal had not reached full size
or the end of its active growth phase at the moment of its death. Because the outermost zones
are all approximately the same width and do not decrease approaching the periosteum (Fig
3B), it was likely capable of further growth potentially lasting many more years.

Lifestyle
S. anatoceps was considered a freshwater semi-aquatic animal based on its external morphol-
ogy and general bauplan [18, 21]. The histological pattern of a given species also provides
information about the body adaptations to different life styles [25, 28, 87]. The thickening of
the cortex is often considered an adaptation for buoyancy in aquatic animals [101–105]. Dense
bones have been reported in aquatic animals such as the basal diapsid Claudiosaurus, the pla-
codont Placodus, and some derived mosasaurids [87,106]. It is notable that the increase in
bone mass and density are common skeletal modifications in terrestrial vertebrates transition-
ing to a semiaquatic existence [107]. Recently, a semiaquatic habit for the theropod dinosaur
Spinosaurus was proposed by Ibrahim et al. (2014) [108] based on its enlarged midline display
structures, the lack of free/open medullary cavities in the long bones, and increased bone den-
sity. In the extant crocodylians Alligator mississippiensis and Osteolaemus tetraspis, the heavy
limbs are used to stabilize the body in water [109, 110].

The ulna of S. anatoceps has a very thick cortex and a narrow free medullary cavity, which
characterizes an osteosclerotic bone pattern. This type of bone comprises an inner compaction
of the bone structure [25, 111], resulting in increased skeletal mass. It is considered to play the
functional role of ballast for buoyancy control and hydrostatic regulation of body trim [28,
106, 111]. If other limb bones present the same pattern observed in the ulna, the presence of an
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osteosclerotic limb allied to a lighter axial skeleton (represented/sampled by the rib of MPSC
R1136) could be related to buoyancy control and swimming capabilities. Those features are
already known for this group and this pattern is present in groups that have to maintain heavy
limbs to control the position of the head above the water, which is also observed in living spe-
cies [78, 81].

Crocodylians are only semiaquatic, so it may be expected that swimming in this group
would be relatively expensive compared to fully aquatic animals. Distribution of body mass
bone tissue is strictly related to buoyancy control, characterizing the strategies of locomotion
in vertebrates [28, 78, 81]. In the extant crocodile Crocodylus porosus, aquatic propulsion by
paddling with limbs is energetically expensive and ineffective relative to axial propulsion by tail
undulation [112–115]. It seems likely that the use of the appendages, which is observed in
hatchling crocodiles and in medium-sized crocodiles at low speed only, is employed to stabilize
the body in the water, particularly at low speeds, rather than to contribute substantially to pro-
pulsion [116]. When Osteolaemus tetraspis, a species morphologically similar to S. anatoceps, is
not able to touch the ground its body floats at a steep angle relative to the water surface, with
the head remaining in a horizontal position [110]. The limbs are held out nearly horizontally
from the body with the fore and hindlimbs extended (Fig 6). If the buoyancy is disturbed, the
animal controls its position in the water by small rowing movements of the limbs [117]. This
kind of resting posture has been already observed in A.mississipiensis, C. niloticus, C. johnstoni,

Fig 6. Schematic representation of resting postures of Susisuchus anatoceps based in extant
crocodylomorphs. (A) Resting in shallow water with both body and tail contacting the bottom. (B) In shallow
water when it is not able to touch the ground the hind limbs and half of the tail helping to support the animal.
(C) When resting in deep water the limbs are held out nearly horizontally from the body, with fore and hind
limbs extended to controls its position in buoyancy.

doi:10.1371/journal.pone.0155297.g006
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C. porosus, Caiman crocodilus and Gavialis gangenticus [110]. This strategy is broadly present
in recent taxa and its compatible with the distribution of the bone pattern of S. anatoceps.
These observations lead to an interpretation that Susisuchus, like modern crocodiles, controlled
buoyancy and aquatic movements by using their limbs. Despite the morphological and histo-
logical similarities between Susisuchus and recent taxa, more sampling on other bones of this
species are needed to validate this hypothesis.

Conclusions
Based on the parallel-fibered bone, vascular network, the high number of annual growth, the
maintenance of the cortical bone in the ulna, and a highly remodeled rib with a thin cortex,
Susisuchus anatoceps (MPSC R1136) is considered to be a late subadult individual. None of the
sampled bones show evidence of EFS deposition, indicating that the growth asymptote was not
reached at the time of its death. Taken together, the histological and morphological evidences
presented here strongly suggest that Susisuchus anatoceps was a dwarf crocodylomorph and
that the specimens collected to date do not represent juveniles. The distribution and number of
cortical growth marksalso suggests that this species had a moderate growth rate. In the rib, the
cortical tissue is thinner and remodeled, indicating that the axial skeleton was less dense than
than the appendicular skeleton.

The distribution of compact and spongy tissues in the ulna suggests that Susisuchus could
control its buoyancy and aquatic movements by using its limbs Similar to extant crocodylians.
The presence of osteoclerotic bone favors a more aquatic lifestyle. However, more sampling of
other bones from this species is needed to test this hypothesis.
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