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Modulation of late Pleistocene ENSO strength
by the tropical Pacific thermocline
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The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean

interactions and feedbacks, suggesting a tight relationship between ENSO strength and

background climate conditions. However, the extent to which background climate state

determines ENSO behavior remains in question. Here we present reconstructions of total

variability and El Niño amplitude from individual foraminifera distributions at discrete time

intervals over the past ~285,000 years across varying atmospheric CO2 levels, global ice

volume and sea level, and orbital insolation forcing. Our results show a strong correlation

between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and

central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks

as the major factor controlling ENSO strength on millennial time scales. The primacy of the

upwelling feedback in shaping ENSO behavior across many different background states

suggests accurate quantification and modeling of this feedback is essential for predicting

ENSO’s behavior under future climate conditions.
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The tropical Pacific Ocean is home to coupled ocean-
atmosphere interactions and feedback processes that result
in local interannual sea surface temperature (SST) and

wind field anomalies. These anomalies are the expression of the El
Niño Southern Oscillation (ENSO), and they influence tem-
perature and precipitation regimes across the globe1. Multi-model
intercomparison efforts have displayed widely divergent ENSO
responses to future climate conditions2,3, largely due to differ-
ences in model expression of the feedback mechanisms that
promote the growth and decay of the SST anomalies associated
with ENSO4. The warmth and depth of the tropical thermocline
influences the strength of many of these feedbacks by altering the
surface temperature and vertical contrast of the eastern tropical
Pacific where key ocean-atmosphere interactions occur4–7. These
thermocline processes are dominant positive feedbacks in ENSO
models3,7,8, and thermocline conditions have been linked to
ENSO activity in the Holocene9 and the Last Glacial Maximum
(LGM)10. ENSO’s relationship with the background climate state,
and therefore how it will change in the future, remains a central
challenge in climate science.

Data and models support several hypotheses of the ENSO’s
relationship to background climate conditions. Evidence from
many tropical climate archives, including corals, marine bivalves,
lake and marine sediments, and individual foraminifera, have
implicated insolation forcing as a key determinant of ENSO
variability in the Holocene9,11–15. A synthesis of sub-annually
resolved Holocene coral archives16 and model simulations
based on these data17 suggest that internal variability dominates,
however the short duration of these records may obscure long-
term trends. ENSO activity has been linked to tropical Pacific
mean conditions, including the East-West tropical SST gradient
(E-W gradient), SSTs, and thermocline conditions, from sparse
late-Pleistocene coral data18. Coupled ocean-atmosphere model
simulations find that ENSO can be forced by insolation via
alterations of the dynamical feedbacks critical for ENSO initiation
and development. For example, higher insolation during the
growth phase of El Niño events in boreal late summer/early fall
leads to unequal zonal warming that alters the tropical Pacific
wind fields19,20, weakens the Walker circulation21–23, and weak-
ens the upwelling feedback by warming and/or deepening the
tropical Pacific thermocline4–7. The tropical thermocline influ-
ences the SST anomalies in the eastern equatorial Pacific (EEP),
altering zonal E-W SST and atmospheric pressure gradients5,7,24,
which in turn affect the wind fields that drive upwelling, setting
up the ocean and atmospheric coupling important for ENSO4.
These dynamical relationships may be altered during glacial states
when lower sea level increases tropical land area and cooler
SSTs reduce air-sea feedbacks21,25. Thus, both models and data
suggest that the mean background state of the tropical Pacific
Ocean plays a key role in shaping ENSO behavior, but the relative
importance of SSTs, thermocline conditions, and insolation for-
cing remains unclear. Identifying linkages between tropical
Pacific background conditions and ENSO variability may provide
information on ENSO’s relationship to large-scale climate and
clues to future ENSO behavior.

Here, we reconstruct mixed-layer temperature variability
and ENSO amplitude using populations of individual for-
aminifera from the central equatorial Pacific near the Line
Islands spanning the past 285,000 years. We assess changes in
total variability via statistical measures of population dispersion
and also utilize Quantile–Quantile (Q–Q) analysis to determine
specifically where population distributions differ. These tar-
geted snapshots of central tropical Pacific oceanic conditions
allow us to identify key relationships between El Niño ampli-
tude and varying boundary conditions that test hypothesized
links to ENSO behavior.

Results
Study location. The data generated in this study derives from two
sediment cores from near the Line Islands archipelago in the
central equatorial Pacific (CEP). Core ML1208-17PC (hereafter
17PC) was recovered at 0.48°N, 156.45°W, at a depth of 2926 m,
and core ML1208-14MC1 (hereafter 14MC) at 0.22°S, 155.96°W,
from 3049 m water depth. This site lies within the NINO3.4
region and is near the location of Holocene coral16,26 and indi-
vidual foraminifera9 ENSO reconstructions. Here, SSTs have a
small seasonal cycle (±0.3 °C), but are highly variable at the
interannual timescale (Fig. 1) with El Niño anomalies of +3.5 °C
and La Niña anomalies of −2.8 °C. ENSO thus dominates mixed-
layer temperature variability9,27.

Framework for characterizing ENSO change. Distributions of
individual foraminifera have been used to identify ENSO change
in the central and eastern tropical Pacific in the Holocene and
LGM9,10,13,28. The two- to four-week life span of each individual
foraminifer captures monthly snapshots of ocean conditions,
therefore analysis of multiple individuals provides a statistical
sampling of mixed-layer conditions over the period of sediment
accumulation. The total variability and shape of this distribution
is determined by the annual cycle, interannual variability
(including ENSO), and decadal and longer variability. Statistical
modeling suggests individual foraminifera population variability
is diagnostic of ENSO change in the CEP27, and core-top
calibration has demonstrated that individual foraminifera Mg/Ca
captures population variability related to ENSO29. Quantile-
Quantile (Q–Q) analysis has been used to assess ENSO change in
individual foraminifera populations9,10, and supported by with
dispersion statistics provide a framework for determining ENSO
change during specific sample intervals and under particular sets
of climate boundary conditions.

Forward modeling of CEP mixed-layer temperatures was
employed to characterize the changes in temperature distribution
with changing variability parameters. Here we modified the SODA
2.1.6 35m temperature (1958–2008)30 to artificially alter the
seasonal cycle, El Niño frequency, and El Niño amplitude both in
concert and separately (Methods). These tests demonstrate that the
warm and cold tails of the temperature distribution are most
affected by ENSO change (Fig. 2), and that ENSO amplitude
generates larger changes than the seasonal cycle or ENSO frequency
in both statistical measures of temperature dispersion (e.g., standard
deviation, variance, or median absolute deviation) and in the shape
of temperature distribution. Simulated sampling of foraminifera
from synthetic time series with ENSO change and with centennial-
scale variability demonstrate that ENSO change is distinguishable
and that long-term variability of the magnitude observed in coral
records does not impact our interpretations (Supplementary
Note 1). The response of temperature distributions at this location
thus provides a useful framework for interpreting population
changes: total dispersion is dominantly related to ENSO change
(either frequency or amplitude), distinct changes in the population
tails are influenced by ENSO amplitude, while the seasonal cycle has
a minimal effect.

Our analysis of ENSO change for each sediment interval
utilizes both Median Absolute Deviation (MAD), as well as
changes in the tails of sample distributions identified using
normalized quantile–quantile (Q–Q) plots9,10 (See Methods).
MAD change indicates alteration in total variability that, in the
CEP, is highly dependent on ENSO as demonstrated by forward
modeling the effects of ENSO change on temperature distribu-
tions (Fig. 2). Dispersion statistics such as MAD are unable
to distinguish between changes in the warm (El Niño) or cold
(La Niña) regions of the temperature distributions. Therefore, we

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19161-6

2 NATURE COMMUNICATIONS |         (2020) 11:5377 | https://doi.org/10.1038/s41467-020-19161-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


characterize changes in El Niño amplitude, conservatively using
only the warm end (90th–98th quantile) of Q–Q plots to reduce
potential influence of depth habitat and changes in CEP
subsurface structure. A significant change in El Niño amplitude
is deemed to occur when the 90% confidence interval of any
of these quantiles is below (above) the normalized 1:1 line
(in normalized plots, the horizontal 0 line), indicating reduced
(enhanced) El Niño amplitude. We then test these results
for potential false positives (e.g., showing El Niño amplitude
change where none has occurred) by comparing the number of
significantly changed quantiles with randomly selected popula-
tions from our reference interval (Methods). Finally, we use the
mean of the 94th–98th quantile as a single metric for El Niño
amplitude change, as it shows a strong response to El Niño
amplitude (Supplementary Note 1) and has a lower incidence of
false positives than the 98th quantile alone. The common
reference population for all samples is the CEP modern mixed
layer temperatures15m–46,47m from SODA reanalysis data
(1958–2009)30.

Mixed layer variability. We measured Mg/Ca to determine
mixed layer temperature from individual foraminifera at thirteen
discreet intervals spanning 285,000 years and three glacial-
interglacial cycles (See Table 1). Significant changes in total

population variability (Levene’s test of absolute deviation, p <
0.05) are observed (Fig. 3), and we find that there are changes in
total variability that exceed the uncertainty of our MAD mea-
surements. The three intervals with lowest MAD values are
observed at 111 ka, which is the glacial MIS 5d, and during
interglacial periods at 197 ka and 230 ka. The three highest MAD
values, whose lower uncertainty bounds exceed the upper
uncertainties of the previous three intervals, are found at 127 ka,
the warm interval of MIS5e, and in glacial intervals (MIS6) at
152 ka and 162 ka. As we find both relatively low and high MAD
values during both glacial and interglacial periods, these changes
in total variability appear unconnected to glacial state. Our for-
ward modeling indicates that seasonal cycle alteration has little
effect on MAD, and thus such large variability changes are likely
indicative of differences in ENSO activity across these climate
background states.

Quantile–Quantile analysis. We use Q–Q analysis of individual
foraminifera populations from all interval to better characterize
the observed changes in variability (Fig. 4). This analysis focuses
on the warm temperature outliers that are characteristic of
changes in El Niño amplitude. We find evidence of enhanced El
Niño amplitude at 3.4 ka, 25 ka, 30 ka, 127 k, 152 ka, and 268 ka.
Reduced El Niño amplitude is observed at 197 ka and 240 ka,
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Fig. 1 Map of the tropical Pacific Ocean showing the study site, sea surface temperature, and sea surface temperature variability. a Average ERSST
v5 sea surface temperature (SST) 1854–201952. b Total SST variability as shown by the SST standard deviation. c Interannual variability, shown as the
standard deviation of SST anomalies. Interannual variability is dominated by ENSO, thus variability at this site is largely determined by ENSO. The location
of Line Islands cores 17PC and 14MC in the central tropical Pacific (this study) is shown as a white star with black outline; ODP Site 851 in the Eastern
Tropical Pacific is shown as a black star with white outline. The solid black arrow in a schematically shows the mean location of the Equatorial Under
Current. The dotted arrow depicts the location of the Equatorial Counter Current, whose depths are inversely related (based on ref. 36).
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relative to modern mixed layer variability (15–47 m). While
reduced El Niño amplitude is observed only during interglacial
conditions (MIS7 intervals at 197 ka and 240 ka), enhanced El
Niño amplitude is observed during both glacial and interglacial
periods, and thus no consistent pattern emerges. Our finding of
enhanced variability at 3.4 ka is consistent with the observed
~10% increases in EEP individual foraminifera δ18O variability at
3.2 ka13. We find enhanced El Niño amplitude prior to the LGM,
when EEP individual foraminifera δ18O indicates higher varia-
bility13 while Site 849 at the western edge of the EEP cold tongue
experienced lower variability10. Our sample intervals precede
these LGM samples by up to 2ky, so while direct comparison with
these records is not possible, these results suggest possible shifts
in El Niño behavior during the latter portion of MIS3 and the
beginning of MIS2.

We assessed whether these findings were robust with respect to
false positives via bootstrap analysis simulating individual
foraminifera selection (Methods). We find that fewer than 3%
of our simulations falsely report increased El Niño amplitude

when more than one ENSO-sensitive quantile shows statistically
significant amplitude increase, and thus our findings of increased
El Niño amplitude appear robust. The addition of analytical
uncertainty to our temperature calculations leaves MAD values
largely unchanged. The interval at 197ka shows significant El
Niño amplitude reduction in only the 98th quantile, and our
simulations show that over 20% of intervals with only this
quantile reduced may represent a false positive result. Sample
MAD in this interval is among the lowest measured in our study,
and thus supports slightly reduced El Niño amplitude. As mixed
layer variability has multiple sources and the quantile data is
subject to considerable uncertainty, we urge caution interpreting
this finding. The interval at 240 ka, however, has four reduced
quantiles in the 90th–98th quantile band, which is found in fewer
than 7% of our false positive tests. MAD values for this interval
are among the lowest recorded in our sample populations, and
thus both results are consistent with reduced El Niño amplitude.
Higher MAD values, both from our sample populations and from
simulations with added analytical uncertainty, are observed at
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Fig. 2 Quantile–quantile plots of modeled changes in mixed layer temperature with varying ENSO and seasonal cycle parameters at the Line Islands.
Temperature data is from Simple Ocean Data Assimilation SODA 2.1.6 monthly reanalysis (1958–2008)30 at 36 m for the grid box encompassing the core
location. ENSO months are identified by National Weather Service Climate Prediction Center ONI values. The reference interval is the unchanged 36m
data set. Blue lines with square points show quantiles after a reduction in variability factors, red lines with circles show quantiles after increasing variability
factors. The gray shaded regions show the 90% confidence interval of the quantiles of the altered data. The gray box outlines the ENSO-sensitive region of
the population distributions (90th–98th quantiles). a Quantile–quantile (Q–Q) plot showing the changes in SST distributions resulting from a ±25%
modification of the seasonal cycle, ENSO frequency and amplitude simultaneously. b–d Normalized Q–Q plots showing the decomposition of temperature
changes under variation of one parameter: b ±25% alteration of the seasonal cycle, c ±25% change in ENSO frequency via addition or subtraction of ENSO
events, and d ±25% change in ENSO amplitude via enhancement or reduction of temperature anomalies during ENSO events. The largest and most
consistent changes in the ENSO-sensitive region are observed with changed ENSO amplitude. Median Absolute Deviation (MAD) is listed for each
scenario showing the response of MAD to changing sources of variability. MAD changes are more pronounced under altered ENSO amplitude. MAD for
the reference population is 0.71.
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30 ka, 127 ka and 152 ka, intervals of highly likely enhanced El
Niño amplitude. Thus, both total variability, as measured by
MAD and quantile data strongly support the finding of increased
El Niño amplitude at these times.

Relationship with climate boundary conditions. To determine
whether ENSO change was related to changes in the background
state of the tropical Pacific, we tested the relationship between
independent reconstructions of climate boundary conditions and
our reconstructed measures of ENSO change—total variability
(MAD) and the mean normalized temperature anomaly of the
94th–98th quantiles (Q94-98T) (Fig. 5). These independent
boundary condition reconstructions include: Insolation31, a key
control on ENSO in climate models; the position of the Inter-
tropical Convergence Zone (ITCZ) as inferred from Ti in EEP
ocean sediments32, which influences the tropical Pacific wind
fields; and the E-W SST gradient33. We interpolated values of
these boundary conditions to our sample ages, and then calcu-
lated the correlation of these boundary condition reconstructions
with our reconstructed measures of total variability (MAD)
and El Niño amplitude (Q94-98T). Correlations were determined
via linear fit modeling (e.g., simple linear correlation) using
MATLAB R2019a and via bivariate weighted linear regression
(WLR)34 (see Methods). Using these correlation methods, we find
no significant relationship between MAD or Q94-98T and the E-
W SST gradient. Correlation of Q94-98T with insolation is high,
as is the relationship between ITCZ position and both MAD and
Q94-98T, however, these relationships are not significant at the
95% confidence level.

Relationship with tropical Pacific thermocline. To understand
whether thermocline conditions influence ENSO, we compare
both our CEP reconstructions of total variability (MAD) and El
Niño amplitude (Q94-98T) with a reconstruction of EEP mixed
layer depth inferred from the vertical contrast between shallow
and deep dwelling foraminifera δ18O at ODP Site 851 (3 °N,
111 °W). At EEP Site 851, the mixed-layer depth is indicative of
the strength of the Equatorial Counter Current (ECC), respond-
ing to changes in the wind field of the eastern tropical Pacific. The
mixed layer depth and strength of the ECC are inversely related to
the mean depth of the EEP equatorial thermocline35,36. We find
that MAD is significantly correlated with site 851 mixed layer
depth using both linear fit modeling and weighted linear
regression (R=−0.58, p < 0.05). We likewise find that El Niño

amplitude, as characterized by Q94-98T, is significantly corre-
lated with the mixed-layer depth at site 851 (R=−0.79, p < 0.05)
(Fig. 5). This finding links central equatorial Pacific variability, El
Niño amplitude and the mixed-layer depth of the equatorial
Pacific via the inverse relationship between EEP mixed layer
depth at the equator and the mixed layer depth at site 851. Thus,
periods of increased equatorial mixed layer depth, indicative of a
warmer or deeper eastern equatorial Pacific thermocline, are
associated with both reduced CEP variability and reduced El Niño
amplitude. Conversely, periods of a reduced eastern Pacific mixed
layer depth and a colder or shallower EEP thermocline are
associated with increased CEP variability and El Niño amplitude.
This result is consistent with model simulations demonstrating
that warmer upwelling waters and a deeper thermocline reduce
the ocean-atmosphere coupling in the eastern equatorial Pacific,
weakening the feedbacks necessary for the growth of El Niño
events4,6–8. Our results indicate that these feedbacks are impor-
tant controls on the amplitude of El Niño events, and on overall
ENSO variability, across a wide range of background climate
conditions.

Discussion
That we find a significant relationship between CEP variability, El
Niño amplitude and equatorial thermocline structure in the face
of dramatically varying boundary conditions points towards the
importance of the thermocline in controlling El Niño (and
therefore, ENSO) expression across varying climate states. In the
tropical Pacific, the SSTs and the surface wind field are tightly
coupled. Reduced vertical contrast and a warming or deepening
of the thermocline limits thermocline influence on the ocean
surface, which in turn alters both surface and subsurface circu-
lation36. Thus, a warmer thermocline reduces ocean-atmosphere
coupling, limiting the influence of wind-driven upwelling and
reducing the EEP temperature contrast both vertically and zon-
ally. In the case of a warmer / deeper thermocline, the result is a
dampening of the dynamical response of the EEP, and the feed-
backs from these processes further deepen the thermocline and
reduce upwelling, weakening their effect on ENSO growth. The
primacy of thermocline and upwelling feedbacks in determining
ENSO strength over long time periods has been found in simu-
lations of ENSO change over the past 21ky6, and over the past
300ky7, but long-term reconstructions of ENSO have been largely
limited to the Holocene and LGM (e.g., 9, 10, 13, 16, 28), with
only limited data at few discrete time points from the last
130ky15,18. Our findings demonstrate that these processes are the

Table 1 Summary of data from individual foraminifera analysis.

Interval Name Core Depth (cm) Age (ky) Mean T (°C) MAD Q94-98T N ENSO change

Mid-Holocene 14MC 4.5 3.4 28.18 1.00 0.56 150 +
MIS 2 17PC 60 25 26.5 0.96 1.04 65 +
MIS 3 17PC 72 29.6 26.38 1.08 0.61 82 +
MIS 5d 17PC 286 111.8 27.1 0.75 0.30 63 0
MIS 5e 17PC 322 126.9 28.12 1.14 0.74 77 +
MIS 6.1 17PC 378 152.2 26.7 1.21 0.57 79 +
MIS 6.2 17PC 400 162.2 27.18 1.08 0.41 79 0
MIS 6.3 17PC 442 181.3 27.05 1.00 −0.02 80 0
MIS 7a 17PC 475 197.1 28.04 0.83 −0.17 82 −*
MIS 7d 17PC 530 229.7 27.61 0.93 0.43 82 0
MIS 7e 17PC 552 239.9 28.5 0.74 −0.54 78 −
MIS 8.1 17PC 595 268.2 27.97 0.97 0.09 81 +
MIS 8.2 17PC 614 282.4 26.89 0.96 0.47 78 0

Columns are sample interval reference names and Marine Isotope Stage (MIS) names, core ID, sample depth (cm), sample age (ky), mean individual foraminifera temperature (°C), median absolute
deviation (MAD), mean of the 94th–98th quantile normalized temperature (Q94-98T), number of foraminifera analyzed (N), and change in El Niño amplitude. For glacial periods MIS 6 and MIS 8,
decimal notation refers to the indexed number of sampled intervals from that stage. El Niño amplitude change was determined by Q–Q analysis. Plus-signs indicate increased El Niño amplitude, minus
signs reduced El Niño amplitude. The asterisk denotes an interval that displays significantly reduced El Niño amplitude at the 90% confidence level but may be a false positive result.
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best predictor of El Niño amplitude across widely varying climatic
boundary conditions.

Modern data tightly links thermocline structure to the east-
west zonal SST gradient, tropical wind fields, ITCZ position, and
ENSO1,5,37, but this relationship appears more complex across
glacial-interglacial cycles (e.g., 21, 23, 25, 20). We find this
complexity as well. It is possible that ocean circulation changes in
response to exposure of the Sunda Shelf and/or alterations in the
mean position and/or width of the ITCZ as a response to differing
glacial hemispheric temperature gradients alters the Walker cir-
culation intensity and spatial extent in ways not captured by static
cross-basin measurements25. However, the observed changes in
the eastern tropical Pacific thermocline as inferred from the

mixed-layer depth at site 851 are not clearly related to the
reconstructed E-W SST gradient or mean ITCZ position as would
be expected from modern data and theory, thus the origin of the
thermocline signal is not clear from the paleoclimate data.

Model simulations and paleoclimate reconstructions provide
clues to the possible origin of the thermocline signal. A Holocene
El Niño amplitude reconstruction hypothesized that insolation-
forced warming of the thermocline source waters warmed both
the eastern and western equatorial Pacific thermocline, resulting
in reduced El Niño amplitude9. Data show this reduction in El
Niño amplitude was accompanied by warming subsurface tem-
peratures across the equatorial Pacific from the Peru margin38,39,
to the EEP24, and in the western equatorial Pacific40,41. At the
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same time, warm SSTs are also observed near the region where
equatorial thermocline waters are sourced by seasonal subduction
in the Southern Hemisphere42. Comparable records from the
thermocline source regions are lacking for the past 285,000 years.
However, precessional forcing of extra-tropical Southern Hemi-
sphere equatorial Pacific source waters has been linked to
upwelling variations at site 1240 in the EEP cold tongue43.
Southern Hemisphere insolation forcing is also reflected in the
strength of the upwelling and associated feedbacks in the EEP
with subsequent impacts on ENSO strength in model simulations

of the past 300,000 years7. Thus, both model results and
palaeoceanographic data suggest that the tropical thermocline
state is at least in part dependent on insolation signals transmitted
to the EEP from the Southern Hemisphere via the source waters
on millennial and glacial-interglacial time scales. A direct con-
nection to insolation is not apparent in our data, which is not
surprising given the complexity of these relationships. Regardless,
our findings demonstrate that ENSO variability and El Niño
amplitude are robustly linked to the tropical Pacific thermocline
state across varying climate background conditions.
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Our reconstruction of ENSO at discrete time intervals over the
past ~285,000 years demonstrates a significant relationship
between El Niño amplitude and the warmth/depth of the equa-
torial thermocline. Periods with a warmer/deeper equatorial
thermocline exhibit reduced El Niño amplitude, while shoaling of

the thermocline is associated with enhanced El Niño amplitude.
We find that the overall variability of the CEP as measured by the
median absolute deviation (MAD) also has the same relationship.
As total variability in the CEP is dominated by ENSO and our
quantile records reconstruct El Niño amplitude, together these

350

400

450

a

Ju
ne

 E
qu

at
or

ia
l I

ns
ol

at
io

n 
(W

/m
2 )

350 400 450

Insolation W/m2

350 400 450

Insolation W/m2

–1

0

1

2

N
or

m
al

iz
ed

 T
 (

°C
)

LM R = –0.42, p = 0.15
WLR R = –0.44, p = 0.15

0.5

1

1.5

M
A

D

LM R = –0.01, p = 0.96
WLR R = –0.02, p = 0.40

4

6

8

b

E
-W

 S
S

T
G

ra
di

en
t (

°C
)

E-W SST gradient (°C)

–1

0

1

2

N
or

m
al

iz
ed

 T
 (

°C
)

LM R = 0.20, p = 0.52
WLR R = 0.20, p = 0.38

4 6 4 6

E-W SST gradient (°C)

0.5

1

1.5

M
A

D

LM R = –0.02, p = 0.96
WLR R = –0.02, p = 0.94

0

0.5

1

1.5

2

c

d

(N
<

->
S

)
T

i M
A

R
 (

m
gc

m
–2

ky
r–1

)

Ti MAR (mgcm–2kyr–1) Ti (mgcm–2kyr–1)

–1

0

1

2

N
or

m
al

iz
ed

 T
 (

°C
)

LM R = –0.43, p = 0.15
WLR R = –0.44, p = 0.19

0 1 2 0 1 2
0.5

1

1.5

M
A

D

LM R = –0.52, p = 0.07
WLR R = –0.53, p > 0.05

0 100 200 300

KYA

0

1

2

3

M
ix

ed
-la

ye
r

�18
O

 c
on

tr
as

t

�18O Vertical contrast �18O Vertical contrast

–1

0

1

2

N
or

m
al

iz
ed

 T
 (

°C
)

LM R = –0.78, p = 0.00
WLR R = –0.79, p < 0.05

0 1 2 3 0 1 2 3
0.5

1

1.5

M
A

D

LM R = –0.58, p = 0.04
WLR R = –0.59, p = 0.03

June equatorial insolation

E-W SST gradient

Ti-inferred ITCZ position

Eastern Pacific vertical contrast

Median absolute
deviation (MAD)

94th–98th quantile
mean T

Fig. 5 Relationship between hypothesized ENSO-sensitive background conditions and measures of ENSO activity. Records of ENSO-sensitive
background conditions are in the left column. Sample intervals are shown as vertical gray bars with widths proportional to the 1σ age uncertainty. Middle
column shows the relationship between the climate background condition and the mean of the 94th–98th quantiles from our sample intervals. Right column
shows the relationship between the climate background conditions and median absolute deviation (MAD) of calculated temperatures. In the right two
columns vertical gray bars represent the ~1-sigma uncertainty in the mean of the 94th–98th quantile (middle) and standard error of the MAD (right). Gray
horizontal bars depict the age-related uncertainty in the climate background conditions. For the correlation plots, the mid-Holocene interval is shown as an
X, Marine Isotope Stage (MIS) 2–3 intervals are squares, MIS 5 intervals are circles, MIS 6 intervals are triangles, MIS 7 intervals are diamonds, and MIS 8
intervals are inverted triangles as in Fig. 3. Glacial intervals are depicted in blue, interglacial intervals are in orange. Filled markers represent intervals with
altered El Niño amplitude significant at the 90% confidence level (black) or increased El Niño amplitude (gray). Correlation coefficients (R value) and
statistical significance from a linear fit model (LM) and weighted bivariate linear regression (WLR) between each climate parameter and the measures of
ENSO activity are shown. a June insolation at 0°N31. b Multi-proxy tropical Pacific East-West SST gradient33; c Inferred position of the intertropical
convergence zone (ITCZ) from Titanium Mass Accumulation Rate (MAR)32; d Vertical contrast (inversely related to mixed layer depth) from ODP Site 851
in the Eastern Pacific. Vertical contrast is calculated as the difference between G. sacculifer and Globorotalia tumida δ18O36.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19161-6

8 NATURE COMMUNICATIONS |         (2020) 11:5377 | https://doi.org/10.1038/s41467-020-19161-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


findings provide direct connections between ENSO strength and
eastern tropical Pacific dynamics, implicating upwelling and
thermocline feedbacks as the key mechanisms controlling ENSO
expression on glacial-interglacial time-scales. The primacy of
these feedbacks versus other hypothesized influences is demon-
strated by the consistency of the ENSO-thermocline relationship
across widely disparate climate boundary states. The main source
of divergent predictions of ENSO behavior under future warming
scenarios is the thermocline feedback4, and thus our results
provide an important paleoclimate context for such predictions.
While the response of the climate system to future greenhouse gas
forcing need not have the same expression as glacial-interglacial
forcing, our results reinforce the importance of the thermocline in
shaping ENSO behavior under varied climate states.

Methods
Age model. The age for the sample interval from core 14MC is from a previously
published radiocarbon-based age model9. The age model for core 17PC was re-
tuned to the LR04 benthic δ18O stack44 using the original Globigerinoides ruber
δ18O stratigraphy via multiple resampling and averaging of nine age control tie
points to better characterize the major transitions observed in the record and to
align it in its entirety to the LR04 stack. The new age model is within 2.1ky of
previous age models for the last 150ky (Supplementary Note 2).

Analytical methodology. Near-surface ocean temperature variability was recon-
structed by analysis of elemental Mg/Ca ratios on individual specimens of the
mixed-layer dwelling foraminifer Globigerinoides sacculifer (without the final sac).
From each sediment interval, 63-150 individuals were analyzed to provide statis-
tically robust sampling. Each one-cm sample represents ~400–600 years based
upon the average sedimentation rate of 2.2 cm/ky over the last 285ky in core 17PC,
with minimum sedimentation rates of 1.35 cm/ky. At typical bioturbation depths of
5 cm, each sample integrates ~1000–2500 years, providing millennial-scale
resolution.

LA-ICPMS analysis. Individual specimens of G. sacculifer were analyzed for trace
metals via laser ablation inductively coupled mass spectrometry (LA-ICPMS) fol-
lowing the protocol outlined by Sadekov et al.24 and detailed by White et al.9

Individuals were selected from the 355–425 μm size fraction to reduce ontogenetic
effects45. Each individual foraminifer was sonicated in deionized water and washed
with methanol or ethanol. LA-ICPMS trace metal analysis was performed on a
Photon Machines Analyte.193 with HelEx sample cell with a Thermo ElementXS
inductively coupled plasma mass spectrometer. Previous LA-ICPMS reconstruc-
tions analyzed the final chamber from the inside out9,10,46. Here we ablated from
the outside of the test toward the inside (Supplementary Fig. 8) and on multiple
growth chambers. Three 50μm diameter targets were ablated on the final chamber
(f0) of each individual, and two were ablated on the second-to-last chamber (f1).
Elemental abundances (11B, 24Mg, 25Mg, 27Al, 43Ca, 44Ca, 55Mn, 66Zn, 88Sr) were
measured and an average Mg/Ca ratio was calculated for each target. A whole
chamber Mg/Ca value was calculated as the average of all targets on a given
chamber. A whole foraminifer Mg/Ca value was calculated via weighted average of
the f0 (55%) and f1(45%) chambers based upon sequential analysis of individual
foraminifera, first by LA-ICPMS, then by traditional cleaning and dissolution ICP-
OES. These weights give the maximum correlation between the two methods.

Conversion of Mg/Ca ratios to temperature. Mg/Ca ratios from individual
foraminifera were converted to temperature by first applying a multispecies dis-
solution correction47 using modern oceanographic data from CLIVAR P16 at 0°
and 1° N, 151° W48 to calculate values of Δ[CO3

2-] (1.94 μmol/kg) using CO2calc
software49. Temperature was calculated from resulting Mg/Ca ratios using the
multispecies calibration equation Mg/Ca= 0.38 ± 0.02×exp(0.090 ± 0.003 × T),
where T is temperature in Celsius50.

Quantile–Quantile analysis. We use quantile–quantile (Q–Q) analysis to deter-
mine whether the changes in individual foraminifera distributions are the result of
ENSO change by identifying the portions of our sample distributions that differ
from a reference interval. In this analysis, quantiles of a sample population are
compared to quantiles of a reference population. Based on forward modeling,
changes in ENSO parameters are observed as differences in the warm and cold tails
of our sample distributions (Supplementary Fig. 3, Supplementary Note 1). We
calculate the quantiles of our distributions based on the method of Ford et al.10 and
White et al.9, which is summarized here. Individual foraminifera temperatures are
used to calculate an empirical cumulative density function (ECDF) for each sample
interval that is then used to calculate the quantiles of that temperature distribution
at 2% intervals. We resample (with replacement) along this ECDF 10,000 times to
calculate our confidence intervals (90%). This approach assumes our sample

distribution is a reasonable representation of the true distribution and that the
differences between the true distribution and our ECDF are contained within our
error estimates generated by bootstrap resampling. This method does not generate
new or hypothetical data, and is thus limited by the range of the sample population.
This method follows that outlined by Press et al.51, slightly modified to use a
continuous ECDF rather than discrete resampling. In this analysis, we assume that
our sample data is a close approximation of the actual data, and that the actual data
is likely represented within our confidence intervals. Bootstrap confidence intervals
may differ from those calculated via other means, but conform to the statistical
principals outlined by Press et al., and have been previously used to assess for-
aminiferal populations9,10. Sample quantiles are compared to corresponding
quantiles of the common reference population by plotting sample quantiles and
confidence intervals on the y-axis and the reference quantiles on the x-axis.
Identical distributions will plot along a 1:1 line, and distributions that differ in
mean fall along an offset line with slope equal to one. Divergence from a line with
slope equal to one shows the portions of the distribution where the populations
differ. We normalize plots for further analysis by subtracting a line with slope 1
that passes through the mean of the sample distribution, removing the effect of
mean offsets in temperature (such as from glacial cooling). We use the SODA 2.1.6
1958–2008 mixed layer temperature (15–46 m) from the Central Equatorial Pacific
0.5°x0.5° grid box surrounding site 17PC as the common reference interval for all
of our sample comparisons and for computing the normalized quantile tempera-
ture anomalies. These are calculated as the difference between the normalized
reference temperature (zero) and the temperature of the quantile in question.

False positive test. We assessed the likelihood of falsely identifying ENSO change,
specifically changes in El Niño amplitude, via Monte Carlo resampling. We gen-
erated 1000 synthetic populations from our reference population by selecting
80 monthly temperatures values (representative of the number of individuals
foraminifera sampled in an interval) and applying random analytical uncertainty to
simulate foraminifera temperature values. Q–Q analysis was performed on each
population with the original mixed-layer temperature record as the reference
population to determine whether the synthetic populations showed statistically
significant change in the 90th–98th normalized quantiles characteristic of El Niño
amplitude change, and how many quantiles were affected. We find that false
positives for increased El Niño amplitude are rare – fewer than 5% of the synthetic
populations displayed a significant increase any of the 90th–98th quantiles, and
fewer than 3% displayed two significantly increased quantiles. Thus, it is unlikely
that a sample showing increased El Niño amplitude comes from a population with
the same distribution as the reference interval. We find that ~20% of the synthetic
populations contain at least one of the 90th–98th quantiles with a significant El
Niño amplitude reduction, but fewer than 7% of synthetic populations display a
reduction in three or more of the 90th–98th quantiles. Thus, robust identification of
reduced El Niño amplitude requires multiple quantiles in the 90th–98th range to
exhibit a statistically significant reduction.

Correlation with climate parameters. We assessed the relationships between
independent climate parameters and the measures of ENSO activity calculated in
our study using linear modeling (‘fitlm’) in MATLAB 2019a and multiple axis
reduction bivariate weighted linear regression (WLR34), which considers uncer-
tainties (specified as the standard error) in both the reconstructed climate para-
meters and our ENSO activity variables. We generated values from the
reconstructions of climate parameters via linear interpolation at our sample ages.
We generated uncertainty estimates for these values using Monte Carlo methods
that incorporate age and analytical uncertainties from those climate parameters
and age uncertainties in our age model (See Supplementary Note 3). Multiple (103)
age estimates for each sample interval were generated for each independent climate
record using the combined age uncertainty of record and our age model. We then
re-interpolated each independent climate parameter at the generated ages incor-
porating analytical uncertainty from these records. Total uncertainty for each
reconstructed parameter was calculated from the empirical bootstrap results as one
half of the 2.5–97.5 quantiles range to approximate one standard deviation of the
resulting data distributions. Additional uncertainty was added to the interpolated
values of the comparison climate record from site 851 for intervals with data points
outside of our combined age error estimates. We based these additional errors on
the amplitude of the dominant period of this record (obliquity) and the proportion
of that period between our ages and the nearest data point (Supplementary Note 3).
We then determined the correlation coefficients and statistical significance of the
correlations between each calculated climate parameter and the Median Absolute
Deviation (MAD) and mean of the 94th–98th quantiles (Q94-98T) derived from
our central Pacific mixed layer SST data. We use MAD as a robust measure of
dispersion calculated from the median value of population residuals. This measure
is less sensitive to outliers (which is where much of the ENSO variability is found),
but incorporates all sources of variability, including annual, interannual, decadal
and longer change, and does not differentiate between the warm (El Niño) and cold
(La Niña) tails of the distributions. However, today the total variability signal, and
hence MAD, is dominated by ENSO variability in the CEP, and thus this measure
of total variability is indicative of ENSO (Figs. 1 and 2). We estimate the uncer-
tainty of our MAD parameter as the standard error of the MAD. The significance
of our results is not altered by using the variance or standard deviation of the
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calculated interval temperatures. We use Q94-98T to characterize the response of
the warmest tail of the temperature distribution to ENSO change (Fig. 2). This tail
is particularly sensitive to El Niño amplitude, and thus, while related to MAD,
provides additional information regarding the source of observed variability
change. Uncertainty in the 94th–98th quantiles for bivariate regression was calcu-
lated from the distribution of 94th–98th quantile means generated from the Monte
Carlo resampling performed to generate the Q–Q analysis. As with the climate
parameters, we use one half of the 2.5–97.5 quantile range to approximate one
standard deviation of the resulting data distributions. This method provides
uncertainty estimates comparable to the standard deviation, while accounting for
the possible non-normality of our results. Analytical uncertainty is added in
quadrature to determine the total uncertainty about the estimate of the mean.

Data availability
Individual foraminifera data presented here is available via National Oceanic and
Atmospheric Administration National Climatic Data Center archive at https://www.
ncdc.noaa.gov/paleo/study/26871.
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