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Abstract Artificial intelligence (AI) has made considerable progress within the last decade
and is the subject of contemporary literature. This trend is driven by improved computational
abilities and increasing amounts of complex data that allow for new approaches in analysis and
interpretation. Renal cell carcinoma (RCC) has a rising incidence since most tumors are now
detected at an earlier stage due to improved imaging. This creates considerable challenges
as approximately 10%e17% of kidney tumors are designated as benign in histopathological eval-
uation; however, certain co-morbid populations (the obese and elderly) have an increased
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peri-interventional risk. AI offers an alternative solution by helping to optimize precision and
guidance for diagnostic and therapeutic decisions. The narrative review introduced basic prin-
ciples and provide a comprehensive overview of current AI techniques for RCC. Currently, AI
applications can be found in any aspect of RCC management including diagnostics, periopera-
tive care, pathology, and follow-up. Most commonly applied models include neural networks,
random forest, support vector machines, and regression. However, for implementation in daily
practice, health care providers need to develop a basic understanding and establish interdis-
ciplinary collaborations in order to standardize datasets, define meaningful endpoints, and
unify interpretation.
ª 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Renal cell carcinoma (RCC)

RCCs make up 3.0% of all known cancer cases with a
worldwide increasing incidence of 2.0% per year [1].
Currently, the highest occurrence is noted in North America
and Western Europe, while an emerging disease burden can
be seen for Latin America, Asia, and Africa as adaption to
the Western lifestyle proceeds [2]. As of 2018, RCCs ac-
count for 1.8% of global cancer deaths with approximately
114 000 and 61 000 deaths in men and women, respectively.
After a peak in mortality rates of 4.3/100 000 in the early
1990s, a continuous decline was noted most likely due to
advancing diagnostic modalities and treatment options [3].

Histopathology of RCC comprises numerous entities with
clear cell, papillary, and chromophobe RCC being the most
common subtypes [4]. Important benign lesions constitute
angiomyolipomas and oncocytomas that occur in 0.4% and
3.0%e7.0% of solid renal tumors [5]. In the context of
emerging and novel therapeutic agents, pre-therapeutic
classification of RCC subtypes becomes increasingly rele-
vant [6].

Approximately 60% of RCC are diagnosed incidentally
due to the frequent use of imaging modalities [7]. Thus,
detection of renal tumors shows a decreasing trend in
tumor size and stage, while the incidence of small renal
masses (SRMs) rises [8]. Symptoms such as flank pain, he-
maturia, and palpable tumors have become rare and may
indicate advanced disease [4]. SRMs can be defined as
contrast-enhancing lesions with a maximum diameter of
4 mm [9] that are typically characterized by a slow growth
rate, low malignant potential, and an increasing risk for
metastatic disease above 3 mm [10].

Concerning SRM, the concept of active surveillance be-
comes increasingly relevant especially for the elderly and
comorbid patients, who have higher associated peri-
interventional risk factors [11]. Jewett et al. [12] re-
ported low local progression rates and rare occurrence of
metastases in 2-year follow-up in a study of 178 patients
under active surveillance.

The choice for the treatment of localized RCC is surgical
resection, while nephron-sparing approach is preferred
whenever possible to preserve renal function. However,
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10%e17% of kidney tumor specimens are designated benign
by histopathological evaluation [13]. Thus high precision in
diagnostic evaluation is needed in order to enable adequate
oncological management and prevent overtreatment.

Prior to active surveillance, a renal mass biopsy (RMB)
can be performed in order to identify the risk of progression
depending on histopathological subtype and stage [14].
Additionally, before initiation of ablative or systemic
treatment, histological confirmation is required using RMB
[15]. The role of RMB in advance of surgical treatment is
controversial. In a large retrospective, multicenter study
including 516 patients after surgery of SRM, Richard et al.
[16] described a lower rate of postoperatively identified
benign tumors when routine RMB was performed preoper-
atively. However, RMB as invasive diagnostic tool can incur
risks, such as tumor seeding, development of perinephric
hematomas, or bleeding. Marconi et al. [17] conveyed a
systematic review and meta-analysis including data of 57
studies showing a low rate of hematomas (4.3%) and rare
occurrence of clinically significant bleeding (0e1.4%).
Diagnostic accuracy of RMB in terms of sensitivity and
specificity to detect malignancy was high with 99.1% and
99.7%, respectively. On the other hand, in a study by Moch
et al. [5], only 64.6% of oncocytomas diagnosed by RMB
were found to be benign lesions by histopathological eval-
uation after surgical resection. Therefore, diagnostic
methods of RCC need to be refined in order to obtain pre-
therapeutic diagnostic accuracy for adequate disease
management, while simultaneously reducing invasiveness.

1.2. Basics of artificial intelligence (AI) and
machine learning (ML)

AI is broadly defined as the ability of machines to perform
tasks and solve problems for which they have not been
explicitly programmed. Recently, AI and its subdomain ML
have seen a tremendous rise in medical utility within the
last decade [18,19]. However, these methods are often
criticized to be a black box which is poorly understood,
especially by medical staff [20]. Still, the majority of al-
gorithms follow basic principles that are easy to under-
stand, even without a strong background in mathematics or
statistics (Fig. 1). Nevertheless, a major problem is that the
actual decision-making of the applied AI method itself is
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Figure 1 Basic principles of supervised ML models for renal cancer. Available data from different aspects of clinical care can be
used as input. Following manual annotation, ML algorithms are trained to create the models. Unused test data are used for
validation and to determine the final model which can assist during care of future patients (adopted from Garrow et al. [21]).
1253 mm�714 mm (38�38 DPI). SVM, support vector machine; RF, random forest; ANN, artificial neural networks; ML, machine
learning; BMI, body mass index.
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often very difficult to comprehend (especially in deep
learning [DL] methods) which represents a relevant hurdle
for clinical implementation, especially with regard to
medical product laws.

To start, all algorithms first need data. This includes not
only traditional data such as baseline patient characteristics
(i.e., age or comorbidities), but any information that can be
documented during the course of (surgical) treatment,
which can include surgical video, staff participation, intra-
peritoneal pressure, or table position [21]. The application
of AI to the amount and variety of data affords new op-
portunities and insights into the interpretation and
complexity of data often overlooked by the human eye. It
should be noted, however, that the importance of high data
quality cannot be emphasized enough. An AI model is only as
good as the data it is trained on. Before (supervised) AI
models can be trained, available data usually undergo some
kind of pre-processing, such as segmentation or annotation
by human experts. During this step, raw data need to be
labeled with meta-data that contain identifiers, time
stamps, segmentations, and/or frames [22]. The process of
annotation is time-consuming and represents a major
drawback for the implementation of AI as meaningful
assistance in real-world settings [23e25]. However, once
the data are in their final form, they are usually divided into
training and test sets. This step is crucial to avoid overfitting
of the models. Overfitting is observed when models achieve
high performance on the training data, while showing poor
performance when applied to (unseen) test data [26]. Based
on the results of the test set, the final model can be chosen
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and applied to future data for either classification of binary
data (“Will complications occur postoperatively?”) or
regression in instances of continuous data (“How long will
the hospital stay be?”) [27,28]. In contrast to supervised
models, unsupervised models are used to recognize pattern
within data (clustering) and follow different principles that
are beyond the scope of this review. Last but not least, it
should be mentioned that statistical models and ML should
not be used synonymously, despite some similarities and
depending on different definitions in the literature. Broadly,
statistical models aim at characterizing the relationship
between observations, which is termed inference; in
contrast, ML models are concerned with prediction. In
addition, statistical models make assumptions about
normality, linearity, or residuals that are not needed when
applying ML approaches [29,30].

1.3. Aim

Aim of the current non-systematic narrative review was to
provide a comprehensive overview of current AI and ML
techniques for RCC. In the following, applications of AI
during the process from diagnosis, treatment, histology,
and follow-up were discussed (Fig. 2).

2. Imaging

Different imaging modalities are necessary for RCC diag-
nosis. Ultrasound is a valid screening method that can



Figure 2 Applications of artificial intelligence during the course of treatment. 401 mm�112 mm (38�38 DPI).
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reliably distinguish between solid and cystic renal lesions.
However, for definitive diagnosis, cross-sectional imaging,
such as computed tomography (CT) or magnetic resonance
imaging (MRI) is required [31].

Multiphase contrast-enhanced CT imaging is recom-
mended as gold standard for RCC, which offers specific
enhancement characteristics captured in serial imaging of
pre-contrast, corticomedullary, nephrographic, and (facul-
tative) excretory phases [32]. Sensitivity for the detection of
renal masses is at about 90% and even higher for lesions
greater than 2 cm [33]. However, the challenge of an RCC
diagnosis is not only in its detection, but more importantly,
in the subtype division. Homogeneity, vascularization, and
enhancement patterns are common features and histological
subtypes of renal biopsies, but as of now, accurate distinc-
tion of renal lesions is not reliable, especially SRM [31]. MRI
is utilized only in cases where the patient has an allergy to
contrast medium, impaired renal function, or suspected
renal vein infiltration or thrombus [34]. Unlike CT, MRI has
added value because of its ability to differentiate between
solid and cystic masses. According to the study by Kaur et al.
[32], the diagnostic accuracy of MRI in relation to RCC sub-
type discrimination offers sensitivities as high as 86%e90%
and specificities of 76.2%e93.8%.

Recently, the use of multi-parametric MRI (mpMRI) has
been introduced as an auxiliary tool to overcome present
limitations of conventional CT and MRI. mpMRI uses fea-
tures, such as T2-weighted signals and apparent diffusion
coefficient signals to differentiate subtle characteristics
(e.g., thin septa or contrast enhancement) with higher
accuracy [31]. Kay et al. [35] demonstrated an 81% diag-
nostic accuracy for detecting clear cell and a 91% diagnostic
accuracy for detecting papillary RCC using mpMRI. Simi-
larly, Cornelis and Grenier [36] reported a 100% detection
rate for fat-poor angiomyolipomas with 89% specificity.
Additionally, the use of contrast-enhanced ultrasound, op-
tical coherence tomography, and positron-emission to-
mography are presented in literature with limited use in
clinical practice.

Contrast-enhanced ultrasound offers the advantage of a
non-invasive method with excellent temporal and spatial
resolution and high predictive value of renal lesions [37].
However, the differentiation of benign versus malignant
lesions was poor [38]. The administration of optical
coherence tomography, a method creating two- or
three-dimensional images by capturing low-coherent,
emitted light from biological tissue, has been analyzed in
studies and showed promising results concerning the char-
acterization of benign renal tumors, though literature re-
mains limited [32].
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In general, radiologic reports are highly dependent on
the radiologist’s subjective interpretation and experience
[39]. As a solution, radiomics comprises various parame-
ters, such as voxel, texture, and histogram analysis, in
order to extract more information from conventional CT or
MRI imaging than perceptible with the human eye [40].
Radiomics follows the predefined steps of image acquisi-
tion, identifying volume of interest, segmentation (com-
puter-aided edge detection followed by manual
correction), quantitative data extraction, and building da-
tabases [41]. It is an innovative concept in oncology for
cancer detection, diagnostic as well as prognostic assess-
ment, and monitoring treatment response.

As aforementioned, one of the biggest challenges in
diagnosing RCC has been in differentiating between benign
and malignant lesions to prevent overtreatment. A sys-
tematic review and meta-analysis conducted by Mühlbauer
et al. [42] reported promising results for the discrimination
of angiomyolipoma from RCC and oncocytoma from RCC
with the log of the odds ratios of 2.89 and 3.08, respec-
tively. In a pooled analysis of 30 studies discriminating
between benign and malignant lesions, the log of the odds
ratio was 3.17 (p<0.001) [42]. Ma et al. [43] analyzed data
of 84 histopathologically examining renal masses and
showed that radiomics-based evaluation was superior to
conventional CT analysis in differentiating fat-poor angio-
myolipoma from clear cell RCC. In another study investi-
gating imaging follow-up under systemic therapy, Goh et al.
[44] identified CT texture analysis as an independent pre-
dictor of tumor progression and response to targeted
therapy.

Despite the evaluation of large data sets, radiomics is
still limited by the necessity to manually predefine quan-
titative metrics. The utilization of ML algorithms and DL
promotes further automatization, as images are examined
on the basis of AI pattern recognition [13]. With regards to
prostate cancer, AI has been used to detect malignancy on
mpMRI with high accuracy [45] or predict cancer grading
with comparable precision to expert radiologists [46]. The
preparation of raw data for ML based analysis includes a
specific workflow (see supplementary fig. 1). After data
acquisition, the first step was the segmentation of medical
images followed by image annotation of regions of interests
[23]. Afterward specific features are to be extracted based
on enhancement or voxel characteristics such as histogram
distribution, skewness, and kurtosis [47]. Hereby a model is
created relating annotations with feature details. This
procedure can be facilitated by DL algorithms that extract
information from annotated data and can identify further
features of predictive value [13]. The model then needs to
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be validated as these algorithms can improve and revise
themselves through experience. For this purpose, one
database is divided into a training and a validation set. The
final model is then applied to the test data set. Finally, in
order to implement in clinical practice, the model needs to
be externally validated [23].

Li et al. [48] analyzed the benefit of radiomics for dif-
ferential diagnosis of chromophobe RCC and renal oncocy-
toma using multiphase CT scans of 61 patients and applied
five ML algorithms (K-nearest neighbors, support vector
machine, random forest, logistic regression, and multi-
layer perception). All ML models proved high diagnostic
accuracy, especially when combining data from cortico-
medullary and nephrographic phases [48]. Nassiri et al. [49]
presented a radiomic-based ML algorithm tested on 684
patients as feasible tool to discriminate dignity of renal
masses with an area under the curve (AUC) of 0.84.
Numerous studies have investigated ML and DL algorithms
as future tools for assessing RCC subtype classification
[50,51], Fuhrman grade [52], and prognosis [53], and
showed promising results. In a study of 217 patients with
pathologically confirmed renal tumors, Xu et al. [13]
compared diagnostic accuracy of distinguishing benign from
malignant masses by radiomics-based models including
random forest and DL to radiologists’ evaluation. Best re-
sults were obtained for the combination of the two imaging
sets using DL and radiomics with an AUC of 0.925 and 0.826,
respectively, outperforming assessment of the two radiol-
ogists (AUC 0.724 and 0.667) [13]. A systematic review
conducted by Kocak et al. [54] analyzed the methodologic
quality of 30 studies on the application of AI for renal mass
characterization and highlighted the importance of the
implementation of AI for clinical integration.
3. Perioperative applications

During the perioperative phase, AI algorithms can be useful
in workflow recognition, detection, and the visualization of
at-risk structures, and can also be used to differentiate
tissue during surgery. During the postoperative care,
intraoperatively recorded parameters and events may help
to predict the risk for complications. According to the study
by Doyle and Kavoussi [55], the optimal AI system would
incorporate all of the aforementioned features in order to
provide real-time assistance. Such a system would need to
be able to recognize a patients’ individual anatomy, track
surgical tools, and adapt continuously to the changing
intraoperative environment. However, today’s technology
is not yet progressed enough to make this vision a reality.
However, promising research has addressed the next steps
in actualizing this potential; an excerpt of these studies is
summarized below.

3.1. Surgical workflow recognition

In order to provide surgeons with real-time feedback,
automated workflow recognition is crucial. Garrow et al.
[21] provided a comprehensive overview of currently
applied ML algorithms and useable data streams to enable
surgical phase recognition. They found that the most
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commonly used input data were surgical videos and
manual annotation of instruments when applied to artifi-
cial neural networks and hidden Markov models. Other
studies evaluated armbands attached to the surgeon’s
forearm or infrared sensors for workflow detection
[56,57]. Specific to surgical technique, Nakawala et al.
[58] applied “Deep-Onto” to surgical videos to obtain a
comprehensive surgical workflow with context recognition
in order to not only detect surgical phases, but also the
steps, anatomy, instruments, and actions involved in
completing specific tasks. The “Deep-Onto” platform was
described as framework for DL models and knowledge
management tools. The authors used more than 700 000
frames derived from nine full robotic-assisted partial ne-
phrectomy (RAPN) videos that were annotated. Subse-
quently, ten different surgical phases were defined and
the data were divided into training, validation, and test
sets. The trained models achieved average success rates
when predicting the RAPN steps of 74.0% for precision
(positive predictive value) and 74.3% for accuracy. In
another study, Zhao et al. [59] built ML models in order to
predict the operating time for a broad range of procedures
including radical nephrectomy and RAPN. Preoperatively
available patient- and procedure-specific parameters
(e.g., tumor localization and comorbidities) were used as
training data for the ML models (e.g., random forest,
regression, and neural networks). All ML models showed a
better prediction compared to the baseline model (which
included scheduled case duration, previous average case
durations, and surgeon adjustments). Consequently, the
authors estimated that the rate of accurately planned
cases can be increased from 35% to over 50%. Focusing on
surgical outcomes, Bhandari et al. [60] conducted a
multi-institutional study to predict intraoperative and
postoperative events for patients undergoing RAPN. ML
models comprising logistic regression, random forest, and
neural networks were trained with patient demographics
and preoperative data to predict intraoperative events,
while all of the three were then used to predict post-
operative events. Overall, data from 1690 patients with 59
variables were available. The best models to predict
intraoperative events achieved performance metrics of
0.858 (AUC) and 0.590 (precision-recall curve), while
models for postoperative events achieved values as high as
0.875 (AUC) and 0.706 (precision-recall curve),
respectively.

Notably, one of the greatest setbacks to AI or ML inte-
gration is the availability of ready-to-use input data for the
training of the AI models. Ross et al. [61] suggested one
solution to overcome this bottleneck of manual annotation
and labeling of data. The authors demonstrated that by the
use of self-supervised learning and a conditional generative
adversarial network on unlabeled data (porcine nephrec-
tomies from the EndoVis 2017 Robotic Instrument Seg-
mentation Challenge), the required amount of labeled data
(image data in this case) can be reduced by approximately
75% [61]. Additionally, reliable data may also be captured
by recording motion of surgical instruments during the
procedure itself. Hung and his group [62,63] pioneered in
this field and implemented AI methods for an interpretation
of automated performance metrics derived from robotic
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instruments to predict postoperative outcomes after
radical prostatectomy. In another study, they were able to
show that these metrics may also be used to differentiate
between experience during RAPN [64].

3.2. AI to enable augmented reality assistance

The idea of superimposing virtual models during RAPN has
been described before [65e67]. Nosrati et al. [68]
described a technique to augment the surgeon’s endoscopic
view by visualizing anatomical structures such as vessels,
the kidney, or the tumor. In order to do so, a ML model
(random forest in this case) was trained to recognize color
and textural patterns and thus to differentiate tissue. The
proposed technique was then tested on 15 RAPNs retro-
spectively and yielded a 45% improvement in detection
accuracy compared to prior work [69]. In order to poten-
tially discriminate benign from malignant tissue, Haifler
et al. [70] tested Ramen spectroscopy on ex vivo specimens
of normal kidney tissue and renal carcinoma. The obtained
spectra from the spectroscopy were fed into a Bayesian and
a logistic regression model used for tissue classification.
Results were promising with sensitivity and specificity of
95.8% and 88.8%, respectively.

4. AI to detect and interpret histopathological
features

AI applications specific to pathology have garnered
increasing interest, with preliminary studies showing that
AI models have the potential to outperform pathologists
[71], and for example, histopathology-based AI analysis can
predict metastases after radical prostatectomy [72]. In a
recent overview, Lee et al. [51] highlighted the potential of
AI frameworks to reduce interobserver variability and
sampling bias introduced by human pathologists.

Holdbrook et al. [73] developed a pipeline to differen-
tiate between high- and low-risk clear cell RCC based on
histopathologic tissue obtained from 59 patients who un-
derwent surgery. The final classification was done by a
support vector machine and achieved F-scores ranging from
0.73 to 0.83 (values ranging from 0 to 1 with 1 indicating
better performance). Tabibu et al. [74] trained convolu-
tional neural networks (CNNs) with hematoxylin and eosin
(H&E) whole-slide images from The Cancer Genome Atlas
(TCGA) to detect clear cell and chromophobe RCC. On the
test set, an AUC of 0.98 was achieved to detect clear cell
RCC while an AUC 0.95 was achieved to detect chromo-
phobe RCC. In addition, the authors developed a risk index
based on tumor shape and nuclei features that was notably
associated with an increased patient survival rate. TCGA
was also used by Tian et al. [75] who predicted a 2-tiered
Fuhrman’s grade for clear cell RCC. Seven ML algorithms
(included regression with different regularization tech-
niques, neural networks, support vector machines, and
random forest) were trained with nuclei histomics features.
The performance of the final models, as evaluated by the
AUC, reached values from 0.781 to 0.839.

Similar approaches were reported by other research
groups. Fenstermaker et al. [76] achieved 100% sensitivity
and 97.1% specificity with a CNN trained on H&E stained
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images from TCGA to differentiate between normal tissue
and RCC. Yeh et al. [77] used H&E stained digitalized slides
that were fed in a support vector machine to detect nuclei
that were used to grade clear cell RCC with an AUC of 0.97.
Likewise, Khoshdeli et al. [78] demonstrated that a deep
model CNN outperforms a shallow model CNN when
differentiating low-grade granular tumors from high-grade
clear cell RCC. This was again based on H&E stained im-
ages from the TCGA.

In contrast to the prior study, He et al. [79] did not use
morphological features of tumor cells but numeric data of
marker proteins that were derived from immunohisto-
chemical images of RCC. The K-nearest neighbor algorithm
was implemented and could link certain proteins to sub-
types of RCC, such as autophagy protein 5 to chromophobe
RCC. Singh et al. [80] have taken a different approach using
gene expression profiles that were downloaded from the
Genomics Data Commons portal (https://gdc.cancer.gov/)
in order to identify biomarkers to differentiate between
early and late stages of papillary RCC. Different ML
algorithms (such as random forests, naı̈ve Bayes, support
vector machines, K-nearest neighbor, and shrunken
centroid classifier) were used for feature extraction and
classification. Shrunken centroid classifiers and random
forests showed the best performances of 0.812 and 0.815,
respectively, as measured by the precision-recall AUC. In
a similar study by the same authors, the relationships of
methylation patterns of papillary RCC and gene expression
from the TCGA were investigated using mostly the same ML
algorithms as before [81]. Additionally, Brennan et al. [82]
aimed at developing a method to distinguish oncocytoma
from chromophobe RCC based on methylation through ML
algorithms, which could be applied to preoperative biopsy
specimens.
5. Predicting long-term follow-up

Predicting overall survival, risk of recurrence, or other
outcomes for cancer patients may be helpful to tailor in-
dividual treatment plans and allow for better patient
counselling. While there is only a moderate amount of
studies using AI models to predict the post-treatment
course for RC, there are a considerable number of AI ap-
plications for prostate and bladder cancer. For example,
Hung et al. [83] used automated performance metrics to
predict urinary continence for patients undergoing
robotic-assisted radical prostatectomy. Here, instrument
motion tracking, clinicopathology features, and event
metrics were used as input data along [84]. The authors
applied random forests and a Cox proportional hazards
deep neural network (named as DeepSurv [85]) to available
data from 100 patients. DeepSurv achieved the best results
with a concordance index of 0.6 and a mean absolute error
of 85.9. Interestingly, automated performance metrics
were more important than clinicopathological features to
predict continence. In another study by Wong et al. [86],
different ML models (such as random forests, K-nearest
neighbor, and logistic regression) were compared to a
traditional Cox regression analysis to predict biochemical
recurrence 1 year after radical prostatectomy. All ML
models outperformed the Cox regression evaluated by the

https://gdc.cancer.gov/


Asian Journal of Urology 9 (2022) 243e252
AUC (Cox: 0.865 vs. K-nearest neighbor: 0.903 vs. random
forest: 0.924 vs. logistic regression: 0.940).

However, with regard to RCC, data were sparse. Kattan
[87] published a study to compare a Cox model with tree-
based ML approaches and neural networks on three large
datasets. One of these researches provided data for
diseases-recurrence of 601 patients who underwent surgi-
cal treatment of RCC [88]. In contrast to the previously
described study, the Cox model achieved the best perfor-
mance assessed by the concordance index. A comprehen-
sive comparison of eight different ML models (included
support vector machines, logistic regression, decision
trees, K-nearest neighbor, naı̈ve Bayes, random forest,
AdaBoost, and gradient boost) based on data from 2814
patients was provided by Kim et al. [89] in order to predict
recurrence after surgical treatment of RCC. Naı̈ve Bayes
outperformed the other models with an AUC of 0.836 at
5 years after surgery and 0.784 after 10 years. In addition,
Guo et al. [90] presented an abstract comparing a neural
network and a boosted decision tree model to predict
recurrence after curative treatment after RCC. Data from
697 patients were available. Final predictors of the opti-
mized model included age, sex, tumor laterality, radical or
partial nephrectomy, T&N status, margin status, and
Fuhrman grade which resulted in an AUC of 0.877.

As discussed in detail earlier, radiomics are helpful as a
means of differentiating between benign and malignant
renal lesions upon first diagnosis. Nazari et al. [53] expanded
upon this and used radiomics to predict death in RCC pa-
tients. In total, available CT scans from 70 patients were
used to train four different classification algorithms
including support vector machines, K-nearest neighbor,
generalized linear model, and XGBoost. The best model was
XGBoost that achieved performances as high as an AUC of
0.95e0.98, accuracy of 0.93e0.98, sensitivity of 0.93e0.96,
and specificity of approximately 1.0, respectively (given in
95% confidence intervals). Furthermore, Brodie et al. [91]
provided a current overview about the capabilities of AI in
renal cancer imaging in combination with radiomics. Based
on the presented approaches, the authors concluded that
this would enable informed shared decision-making in
regards to treatment strategies including active
surveillance.

In the setting of metastatic disease, Buchner et al. [92]
used clinical and histopathological data available at the
beginning of medical treatment to predict survival at 36
months. Data from 175 metastatic RCC patients were pro-
spectively gathered and fed into logistic regression models
and artificial neural networks. In the validation set, the
artificial neural network correctly predicted death in 91% of
patients (overall accuracy 95%), while the logistic regres-
sion only achieved an overall accuracy of 78%.

6. Conclusion

In summary, AI and ML models are evolving quickly in all
aspects of RCC management and perform already as well as
human counterparts. However, to realize implementation
in daily practice, health care providers need to develop a
basic understanding in order to standardize data sets,
define meaningful endpoints, and unify interpretation. This
249
requires interdisciplinary collaboration and the imple-
mentation of AI curricula into medical education. In the
future, large and accessible databases with high-quality
data incorporating all aspects of RCC care from diagnosis to
treatment are necessary which will allow external valida-
tion and continuous training of AI models.
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