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Introduction

The demand for male fertility preservation in 
the oncological setting has increased steadily over 
the past two decades [1]. A population-based study 

found the annual incidence of new cancer cases 
for patients aged 20–39 to be 43.3 per 100,000 [2]. 
As therapeutic options improve, so does the num-
ber of cancer survivors, and thus an increasing 
number of patients who desire fertility post-treat-
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ment. Studies have shown that more than 50% of 
young male cancer survivors, and up to 75% of 
adult men who did not have a child at the time 
of cancer diagnosis, desire post-therapy paternity 
[3]. Furthermore, less than 60% of patients receive 
information from healthcare providers regarding 
post-cancer infertility treatment, and fewer than 
one-fourth of men without children bank sperm 
before treatment [4]. Therefore, it is important to 
identify methods that may preserve reproductive 
and sexual function, as this translates into an im-
proved quality of life for this survivor population; 
one study found that feeling healthy enough to be 
a good parent after cancer was the strongest predic-
tor of emotional well-being [4]. 

The American Society of Clinical Oncology 
(ASCO) clinical practice guidelines on fertili-
ty preservation for cancer patients emphasize 
the responsibility of healthcare providers to dis-
cuss fertility preservation as a part of the patient 
education and informed consent process, prior to 
initiating cancer therapy, including radiotherapy 
[5]. Therefore, oncological care providers should 
be encouraged to address the possibility of in-
fertility, discuss fertility preservation options, 
and refer patients to appropriate reproductive 
specialists [3, 5, 6]. In settings where the radiation 
oncologist might be the first physician encoun-
ter in the patient’s oncological management, this 
is particularly true (e.g., cancers of the prostate, 
bladder, anus/rectum, penis, and pelvic/upper 
thigh sarcomas). Even treatment of diseases of 
the chest and abdomen may produce significant 
doses to the testes [7] and, thus, the potential for 
impairment in spermatogenesis should be dis-
cussed with these patients as well.

Special consideration must be given to patients 
with Hodgkin’s Disease and other pediatric ma-
lignancies that require irradiation of the pelvis, 
scrotum, or whole body; an additional patient pop-
ulation to be considered are young adults receiv-
ing heterotopic ossification prophylaxis following 
acetabular fracture, where the scrotum may receive 
spermatogenesis-impairing dosage [8]. At the time 
of treatment of pediatric patients, the future re-
productive potential of their children should be 
discussed with the parents, in addition to the full 
implications of cancer therapy. It is imperative, 
therefore, that radiation oncologists do not shy 
away from a discussion of fertility perseveration. 

Functional reproductive anatomy 
and physiology

The testes are predominantly comprised of 
three cell types: germ, Leydig, and Sertoli cells. 
Fetal germ cells (gonocytes) transform into adult 
spermatogonia. Final germ cell transformation oc-
curs at 3–5 years of age to develop primary sper-
matocytes [9]. Leydig cells release testosterone in 
response to rises in luteinizing hormone (LH), 
required for the differentiation of male genitalia 
and brain masculinization [10], while Sertoli cells 
play an important role in providing immune pro-
tection to the developing germ cells, contributing 
to the blood-testis barrier, and maintaining devel-
oping germ cells [11]. 

Pathophysiology of radiation-induced 
gonadotoxicity 

Testosterone deficiency
Leydig cells are responsible for androgen pro-

duction and are relatively radio-resistant, with-
standing doses of up to 30 Gy [12], yet testosterone 
levels are routinely found to be lower, and LH levels 
elevated up to 350%, in patients, following pelvic 
irradiation. These findings suggest impaired Leydig 
cell function, despite these cells being relatively tol-
erant to ionizing radiation [13]. Furthermore, pel-
vic radiation therapy has been associated with low 
sexual function in 14% of young men aged 16–24 
years and up to 28% in men aged 55–64 years. 
Among these affected men, reduced libido occurs 
in 14.9%, rapid ejaculation in 14.9%, and erectile 
dysfunction in 12.9% [14]. These adverse changes 
in sexual function may be a manifestation of Ley-
dig cell impairment.  

While some degree of the endocrine dysfunction 
and oligospermia seen in cancer patients may be 
stress-induced, there are data to suggest that radia-
tion produces effects above and beyond this physi-
ological response. Several studies have demonstrat-
ed that scattered radiation to the testes may result 
in transient and long-term endocrine dysfunction, 
which may interfere with fertility [15, 16]. In one 
such study, 33 men who received prostatic irradi-
ation alone were compared to 55 men after radical 
prostatectomy (RP). No patients received adju-
vant androgen deprivation therapy. Low testoster-
one levels were seen in the irradiated group up to 
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eight years after treatment.  Furthermore, a mean 
decrease in testosterone production was seen in 
these men when compared to those that underwent 
RP alone. There was a 27% (p < 0.001) decrease 
in total testosterone levels and a 32% (p < 0.001) 
decrease in free testosterone levels. Both lutein-
izing hormone and follicle-stimulating hormone 
levels increased by 53% (p < 0.005) and 100% 
(p < 0.001), respectively [16].

Impaired spermatogenesis 
Conversely, germinal cells are exquisitely radio-

sensitive, particularly to multi-fractionated regi-
mens [17–19]. Generally, doses of 0.1 to 0.15 Gy 
may lead to temporary sterility and doses over 
4 Gy result in irreversible damage [12]. The earliest 
changes in spermatogenesis occur with the reduc-
tion in the number of leptotene spermatocytes, oc-
curring approximately 14–25 days after radiation, 
followed by a reduction in pachytene spermato-
cytes at 25 days post-irradiation [20]. If the man 
ejaculates, significant decreases in ejaculated sperm 
concentration may be observed approximately 
10 weeks post-radiotherapy [21], and azoosper-
mia has been seen as early as after approximately 
18 weeks [18]. The time to recovery of spermato-
genesis is dose-dependent. Maximal testis doses 
of 1 Gy may require 9–18 months to recover sper-
matogenesis; doses of 2–3 Gy may take 30 months; 
doses of 4 Gy may take 5 years, and doses of up to 
6–8 Gy in 2 Gy fractions may result in complete 
obliteration of germ cells with resulting permanent 
sterility [22–24]. 

Boehmer et al. conducted an elegant dosimet-
ric determination of the unshielded testicular dose 
during standardly fractionated prostate radiother-
apy using calibrated thermoluminescence dosime-
ters [15]. The calculated projected cumulative dose 
to the unshielded testes was 2 ± 1.5 Gy. Testicular 
doses during unshielded prostatic irradiation can 
therefore be sufficient to cause protracted, if not 
permanent, impairment of spermatogenesis [15]. 

Furthermore, there is evidence to suggest that 
prostatic irradiation results in testicular atrophy. 
Daniell et al. conducted a histopathological as-
sessment of 78 therapeutic orchiectomy specimens 
from men without prior androgen deprivation 
therapy [16]. Measuring the histological testicular 
volume, they demonstrated a significant incidence 
of testicular atrophy in men with a history of pros-

tatic irradiation compared to men without prior 
irradiation (71% vs. 28%; p-value < 0.001) [16, 
25]. The frequency of post-irradiation testicular 
atrophy was independent of age [16]. Interesting-
ly, testicular atrophy was more frequent in speci-
mens obtained within three years of irradiation 
compared to greater than three years (89% vs. 53%) 
(p < 0.001), suggesting the possibility of testicular 
recovery over time [16, 25]. 

Fertility preservation strategies 

Sperm and embryo cryopreservation are con-
sidered standard practices for fertility preservation 
and are widely available. Both ASCO and the Amer-
ican Society for Reproductive Medicine (ASRM) 
recognize and recommend sperm cryopreservation 
as an established method of fertility preservation 
in men [26, 27]. Ideally, patients are encouraged 
to produce semen specimens that can be cryopre-
served prior to the initiation of cancer therapy. If 
possible, at least three samples should be collect-
ed without the use of sperm toxic lubricants [28] 
and with an abstinence period of 48–96 hours prior 
to the semen analysis/banking and up to 48 hours 
between collections in order to maximize the con-
centration of healthy sperm available for cryo-
preservation [29–32]. It is generally accepted that 
with normozoospermic sperm, there is no time 
limit for the duration of cryopreservation [33]. To 
prevent delays in cancer treatment, it is important 
to address the issue of fertility preservation early 
enough so that it is possible for the patient to col-
lect a specimen. Semen specimens are typically ob-
tained via masturbation, Penile Vibro-Stimulation 
(PVS), Electro-Ejaculation (EEJ), and Epididymal 
and Testicular Sperm Extraction.

Masturbation
Masturbation is the preferred technique for se-

men sampling in nonazoospermic persons without 
significant complications [34]. It is preferred that 
the sample is collected after a minimum of 2 days 
and a maximum of 7 days of sexual abstinence. 
Where possible, the specimen is collected via mas-
turbation into a wide-mouthed, sterile container 
of material (e.g., glass or plastic), confirmed to be 
non-toxic for spermatozoa. Collection may occur 
at home if there is less than a one-hour delay be-
tween the collection of the specimen and presen-
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tation at the designated cryopreservation facili-
ty. Otherwise, the specimen may be collected at 
the cryopreservation facility. Any loss of semen 
during collection must be reported. The specimen 
container should be kept at ambient temperature, 
between 20°C and 37°C, to avoid substantial chang-
es in temperature that may affect the spermatozoa 
post-ejaculation [34]. 

Penile vibro-stimulation (PVS)
Some men may be unable to provide an ejacu-

lated sample via masturbation due to cultural, psy-
chological, physical, or religious reasons [35]. For 
these men, PVS or EEJ may be explored as poten-
tial methods of obtaining sperm for cryopreser-
vation. Another group that may benefit from PVS 
is males with spinal cord injuries. Men with an in-
tact ejaculatory reflex arc, which is dependent on 
the level of spinal cord injury, can experience reflex 
ejaculation, especially for patients with spinal cord 
injury (SCI) above the level of T12 or patients with 
psychogenic anejaculation [36]. 

PVS involves the placement of a vibrator against 
the penile frenulum resulting in stimulation of 
the dorsal penile nerves, resulting in ejaculation. 
Vibratory stimulation must be individualized for 
each patient but is best applied to the frenular sur-
face of the penis with a narrow head device. These 
devices are widely available at commercial outlets 
and can be used at home. Based on our institu-
tional experience, those who fail PVS, up to 20% 
will be salvaged with the simultaneous use of two 
vibrators. In those SCI patients who fail vibrato-
ry stimulation alone, the addition of midodrine is 
thought by some to significantly increase the rate 
of antegrade ejaculation as well as orgasm [36]. 

It should be noted that men with SCI above T6, 
may exhibit autonomic dysreflexia, which may in-
crease the risk of urinary tract infections. Addi-
tionally, some men with SCI have poor sperm qual-
ity; despite being able to collect ejaculated sperm, 
they may not be candidates for IUI. In this case, 
in vitro fertilization, and intracytoplasmic sperm 
injection (IVF/ICSI) are recommended. However, 
these semen samples may have higher DNA frag-
mentation rates than normal controls [36]. 

Electro-ejaculation (EEJ)
Although not preferred in most patients, EEJ is 

an appropriate method of obtaining semen from 

patients who have problems with the natural mech-
anism of ejaculation (e.g., after spinal injury), espe-
cially for those who do not respond to PVS or who 
find masturbation unpalatable. Semen retrieved 
using EEJ tends to have poor sperm motility and is, 
therefore, more suited to use with IVF or ICSI rath-
er than IUI [37]. 

The procedure is performed under gener-
al anesthesia for men who are sensate below 
the waist. The patient is placed in the lateral de-
cubitus position. Anoscopy is performed to con-
firm that the rectum is empty and that no rec-
tal mucosal abnormalities are present. The rectal 
probe is inserted completely into the rectum with 
the electrodes oriented anteriorly over the pros-
tate and seminal vesicles. Stimulation is carried 
out with a standard electrical stimulation system 
starting at a maximum energy of 5 V. The stimu-
lation pattern is a “peaked sine wave”, 5–7 s apart; 
with the voltage increasing gradually, followed 
by a rapid decrease after the peak is reached. 
The voltage maximum is then increased in a step-
wise manner up to 30 V. Throughout the proce-
dure, the patient is monitored for penile tumes-
cence, rectal temperature, and antegrade semen 
flow. The procedure will continue until seminal 
emission ceases, the rectal temperature reaches 
38°C, or a maximum of 30 V is attained [36, 37]. 

A post-procedural anoscopy is performed to 
evaluate for mucosal injury, which is a poten-
tial complication of this procedure. The patient is 
turned supine and two retrograde specimens are 
obtained via urethral catheterization. The initial 
retrograde specimen is diluted in human tubal flu-
id (HTF) buffered with HEPES and plasmanate, pH 
7.4, and sent for immediate processing along with 
the antegrade ejaculate. The bladder is then irrigat-
ed with HTF, and this second retrograde specimen 
is sent for immediate processing as well [36, 38]. 
ICSI coupled to EEJ, may lead to fertilization rates 
of 75% per injected oocyte and a clinical pregnan-
cy rate of 55% per fresh semen retrieval attempt. 
There seems to be little difference in sperm qual-
ity for specimens obtained by EEJ versus PVS, al-
though both have higher DNA fragmentation rates 
than normal masturbation controls [37]. 

Potential complications can arise in men with 
spinal cord injuries above T6, who are at a greater 
risk of autonomic dysreflexia, resulting in urinary 
tract infections. Anoscopy is performed to ensure 
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that there is no rectal mucosal injury. Temporary 
abdominal discomfort and severe muscle spasms 
can also occur after electrical stimulation. Other 
potential risks, especially in patients with under-
lying cardiovascular problems, include chest infec-
tion, pulmonary embolus, stroke, deep vein throm-
bosis, heart attack, and death [36]. 

Epididymal and testicular sperm 
extraction (PESA and MESA)

Unfortunately, up to 15% of men diagnosed 
with cancer are azoospermic prior to the initiation 
of oncologic therapy [39]. In these men, referral 
to a fertility specialist is crucial, as more advanced 
techniques may be needed to retrieve sperm for 
cryopreservation. For men found to be azoosper-
mic or with profound oligospermia (i.e., < 5 mil-
lion sperm/mL of ejaculate) [40], surgical retriev-
al may be indicated. Sperm may be obtained either 
from the epididymis or the testis depending on 
the etiology of azoospermia. For men without 
non-obstructive azoospermia, epididymal sperm 
can be obtained either via percutaneous epidid-
ymal sperm aspiration (PESA) or by open surgi-
cal techniques such as microsurgical epididymal 
sperm aspiration (MESA). 

PESA can be performed in an ambulatory set-
ting under local anesthesia. In short, a 21–26-gauge 
needle is inserted through the scrotal skin into 
the caput epididymis to aspirate epididymal fluid 

(Fig. 1A). PESA sperm retrieval is successful in 
61–96% of patients and typically yields thousands 
to millions of sperm [41–43]. Despite the need for 
general anesthesia, MESA is the preferred epidid-
ymal sperm retrieval technique, with a sperm re-
trieval rate of 96–100% [29], yielding 15–95 million 
sperm that are adequate for cryopreservation [41]. 

With MESA, dilated epididymal tubules are iden-
tified and aspirated individually with the assistance 
of an operating microscope, enabling both minimal 
trauma to the epididymis and adequate hemosta-
sis (Fig. 1B). Both PESA and MESA yield a higher 
sperm count with sperm of better quality than EEJ, 
thus decreasing the chance of needing subsequent 
sperm retrieval procedures [44]. However, these 
procedures may be associated with a risk of devel-
oping a scrotal hematoma, skin infection, and/or 
epididymal obstruction.

Testicular sperm aspiration (TESA)
Men with non-obstructive azoospermia, most 

commonly encountered following radiation ther-
apy, require sperm retrieval directly from the tes-
tis either via testicular sperm aspiration (TESA) 
or surgical extraction (TESE) [41, 42]. Similar to 
PESA, TESA can be performed in an ambulato-
ry setting under local anesthesia without access 
to an operating microscope. Using a 19-23-gauge 
butterfly needle attached to a syringe, the testicle is 
punctured percutaneously through approximately 

Figure 1. Sperm retrieval techniques. A. Percutaneous epididymal sperm aspiration (PESA). The needle is placed into 
the head of the epididymis as close to the efferent ducts as possible. B. Microsurgical epididymal sperm aspiration (MESA). 
This is the most precise and successful way to retrieve epididymal sperm. Under a general anesthetic, the testicle is delivered 
from the scrotum and the head of the epididymis is reflected back from the testicle with a finger exposing the efferent ducts 
draining from the testicle to the epididymis. Here, a single dilated efferent duct is punctured and sperm is aspirated

A B
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30 passes. The testis is stabilized between the sur-
geon’s thumb and forefinger, and a needle is insert-
ed along the long axis of the testis [42]. The nee-
dle is withdrawn slightly and redirected to disrupt 
the testicular architecture [42]. The procedure is 
repeated until adequate testicular material has 
been aspirated [42]. A Franzen needle holder can 
be used to provide negative pressure for needle 
aspiration [42]. Sperm is aspirated from the tes-
ticular tissue in 52–100% of cases [41].Associated 
risks and complications include the development 
of scrotal and testicular hematoma, skin infection, 
testicular damage, and atrophy [41].

TESE (microTESE)
In contrast to TESA, TESE is an open testicular 

biopsy performed with the assistance of an operat-
ing microscope. Testicular tissue is retrieved from 
several regions of the testis and the microscope is 
used to identify dilated seminiferous tubules that 

are more likely to harbor viable sperm, thereby 
guiding sperm retrieval within the specimen. This 
approach, more accurately termed microdissection 
testicular sperm extraction (microTESE), enhanc-
es hemostasis, reduces the quantity of testicular 
tissue harvested, and increases sperm yield (Fig. 2) 
[45]. MicroTESE results in successful sperm re-
trieval for 45–63% of non-obstructive azoosper-
mic men with 70-fold less tissue excised compared 
to conventional TESE [46]. Sperm retrieval is also 
possible for men that are azoospermic after having 
undergone radiation therapy, with sperm retrieval 
rates dependent upon the dose and temporal rela-
tionship with radiotherapy [47]. 

Since the testicular blood supply is distributed 
over the surface of the testis before it penetrates 
the testicular parenchyma, multiple blind biopsies 
can interrupt the testicular blood supply and devas-
cularize the testis if all branches of the testicular ar-
tery are divided. Therefore, it is important to avoid 

Figure 2. Microdissection testicular sperm extraction (microTESE). A. Under a general anesthetic, the testicle is delivered 
through a scrotal incision. An equatorial incision is made in the tunica albuginea; B. The testicle is bi-valved exposing 
the seminiferous tubules; C. The seminiferous tubules are carefully searched under an operating microscope until a dilated 
tubule is identified. These dilated tubules are more likely to contain sperm and should be harvested. The tissue is then placed 
in sperm transport media, minced then examined under a microscope by the embryology team for the presence of sperm; 
D. Once the microTESE is complete, hemostasis is achieved with bipolar cautery and the tunica albuginea is closed

A B

C D
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subtunical testicular vessels during testicular biop-
sy procedures, especially if large or multiple biop-
sies are performed [48]. An increased number of 
biopsies is always counter-balanced by greater risk 
of damage to the vascularity of the testis, so the sur-
geon must be constantly aware of this. In addition, 
the identification of regions of the testis that have 
sperm production cannot be reliably evaluated pri-
or to the biopsy. Multiple random biopsies may lead 
to the removal of large volumes of testicular tissue 
with uncertain results of sperm retrieval [49]. 

Strategies for reducing out-of-field 
dose

Three sources of X-ray scatter contribute to pa-
tient dose outside the treatment field: scatter origi-
nating from within the patient, scatter off the field 
collimators, and leakage radiation through the head 
of the linear accelerator that fills the room with 
low-energy X-rays [50]. At an increasing distance 
from the field edge, the total dose decreases some-
what exponentially; near the field edge, the com-
ponent of patient scattered radiation increases 
with the volume of tissue irradiated and prescrip-
tion dose [50]. This component dominates out to 
roughly 20 cm, where gantry head leakage becomes 
the dominant source [51]. The collimator scat-
ter and gantry head leakage components increase 
with the number of monitor units (MU) delivered 
in the plan. Compared to a conformal 3D plan, 
modulated treatments (such as IMRT and VMAT) 
require the utilization of more MUs and are there-
fore less efficient in delivering the prescription 
dose, which consequently results in proportional 
increases in collimator scatter and head leakage 
[50]. However, if flattening-filter-free (FFF) beams 
are used, MUs will increase but gantry head leak-
age will decrease owing to the absence of the flat-
tening filter, a major contributor to head leakage 
[52]. With the exception of neutron contribution, 
out-of-field doses vary little with beam energy or 
depth in the patient, except at the patient’s surface 
near the field edge [50]. Dibs et al. demonstrat-
ed meaningful gonadal sparing with the use of heli-
cal tomotherapy for patients undergoing total body 
irradiation for nonmalignant indications [52].

Neutrons are another source of out-of-field dose 
to the patient and become a concern for treat-
ment beam energies above 10 MV [53]. Neutrons 

are generated in the head of the linear accelera-
tor when high-energy photons interact with head 
shielding and beamline components [54]. For one 
vendor of linear accelerators, the number of neu-
trons produced increases roughly 10-fold from 10 
MV to 15 MV and by 20-fold from 15 MV to 18 
MV beam energies [51]. The neutron dose out of 
the field is proportional to the total plan MUs for 
a given beam energy, yet the photon scatter still 
contributes the majority of out-of-field dose [55]. 

Shielding techniques with high-Z material mini-
mize photon scatter and leakage [56]. The classical-
ly used shielding device for the testes, is colloquially 
called a clamshell (Lead Testicle Shield, Radiation 
Products Design, Inc, Albertville, MN). It is a divided, 
hollow sphere, made of lead that surrounds the testi-
cles during radiotherapy (Fig. 3). Studies that looked 
at testicular dose measurements with and without 
shielding material have demonstrated that gonadal 
shielding can reduce the testicular dose 3 to 10-fold 
[57, 58]. Specifically, mean testicular dose per frac-
tion from para-aortic and ipsilateral iliac fields of 
25–36 Gy with and without testicular shielding have 
been measured as 1.48 ± 0.5 cGy and 3.89 ± 1.44 cGy 
(p < 0.001), respectively [7]. The mean testicular dose 
from para-aortic irradiation alone was measured as 
0.65 ± 0.35 cGy with shielding and 1.86 ± 0.86 cGy 
without shielding [7]. Unfortunately, lead is not 
an effective shield against secondary neutrons; how-
ever, neutrons can be avoided through use of beam 
energies 10 MV and lower [59]. 

During treatment simulation, patient positioning 
should be reproducible and include the clamshell 
in the setup. Due to the image artifacts caused by 
the highly attenuating lead shield, a rubber dummy 
clamshell is also available. If the setup is not repro-
ducible, deformation of the target during treatment 
setup caused by the placement of the clamshell can 
result in a geometric miss [60]. Treatment through 
the clamshell should be avoided with certainty.

Post-radiation management

The ideal time for sperm cryopreservation is pri-
or to the initiation of gonadotoxic therapy and every 
effort should be made to complete sperm banking 
prior to treatment. For patients who have already be-
gun therapy, the decision on whether to cryopreserve 
sperm is controversial, as radiation may be terato-
genic. Men who have recently started gonadotoxic 
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therapies are unlikely to be azoospermic and some 
advocate proceeding with sperm banking [61]. How-
ever, animal models have shown that the offspring 
produced by males actively undergoing gonadotoxic 
therapy tend to have many genetic mutations [62]. 
Because of radiation therapy’s known adverse effects 
on sperm quality and offspring conceived, patients 
undergoing treatment should be counseled to use 
contraception to minimize unintended pregnancies. 
In the azoospermic man who has already started go-
nadotoxic therapy prior to sperm cryopreservation, 
a discussion of the potential risks of using the re-
trieved sperm is important.

If a patient has already completed radiotherapy, 
he should be counseled to wait at least 18 months 
before attempting to father a child, as studies have 
shown increased chromosomal and other genetic 
abnormalities in sperm up to 18 months after go-
nadotoxic therapy [63]. The fertility management 
of the patient after 18 months can then be directed 
by his reproductive potential as determined by se-
men analysis and serum testosterone and FSH levels. 

Conclusion 

All men undergoing potentially gonadotoxic 
radiation therapy should be counseled on the pos-

sibility of future infertility, offered the opportuni-
ty for semen cryopreservation, and offered refer-
ral to a fertility specialist. Available male fertility 
experts can be listed through the Society for male 
reproduction and urology of ASRM (SMRU.org). 
In addition to this, every effort should be made 
to shield the testes during therapy with the use 
of a clamshell. Clamshell phantoms should be 
utilized during the simulation process to pre-
serve a replicable PTV and achieve adequate dose 
coverage.  Scattered radiation to the testes is as-
sociated with chromosomal disorders in sperm 
that may increase the risks of genetic abnormality 
in the offspring of the irradiated patient. There-
fore, it is advised to wait 18 months after irradia-
tion to procreate to avoid this risk of genetic ab-
normalities. 
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