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Abstract

Motivation: Chromatin Immunopreciptation (ChIP)-seq is used extensively to identify sites of tran-

scription factor binding or regions of epigenetic modifications to the genome. A key step in ChIP-

seq analysis is peak calling, where genomic regions enriched for ChIP versus control reads are

identified. Many programs have been designed to solve this task, but nearly all fall into the statistic-

al trap of using the data twice—once to determine candidate enriched regions, and again to assess

enrichment by classical statistical hypothesis testing. This double use of the data invalidates the

statistical significance assigned to enriched regions, thus the true significance or reliability of peak

calls remains unknown.

Results: Using simulated and real ChIP-seq data, we show that three well-known peak callers,

MACS, SICER and diffReps, output biased P-values and false discovery rate estimates that can be

many orders of magnitude too optimistic. We propose a wrapper algorithm, RECAP, that uses

resampling of ChIP-seq and control data to estimate a monotone transform correcting for biases

built into peak calling algorithms. When applied to null hypothesis data, where there is no enrich-

ment between ChIP-seq and control, P-values recalibrated by RECAP are approximately uniformly

distributed. On data where there is genuine enrichment, RECAP P-values give a better estimate of

the true statistical significance of candidate peaks and better false discovery rate estimates, which

correlate better with empirical reproducibility. RECAP is a powerful new tool for assessing the true

statistical significance of ChIP-seq peak calls.

Availability and implementation: The RECAP software is available through www.perkinslab.ca or

on github at https://github.com/theodorejperkins/RECAP.

Contact: tperkins@ohri.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin Immunopreciptation (ChIP) followed by high-

throughput sequencing, or ChIP-seq, has become a central approach

to mapping transcription factor-DNA binding sites and studying the

epigenome (Furey, 2012). ChIP-seq is the primary technique

employed by a number of highly successful large-scale genomics

projects, including ENCODE (Consortium et al., 2012),

modENCODE (Roy et al., 2010), National Institutes of Health

Roadmap Epigenomics Project (Kundaje et al., 2015) and the

International Human Epigenome Consortium (Stunnenberg et al.,

2016). Collectively, these projects have generated over 10 000 ChIP-

seq datasets at a cost of 10 or 100 s of millions of dollars, while

other smaller-scale projects have generated many more. Many bio-

logical inferences are based on these datasets, including DNA
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binding motifs of transcription factors (Mathelier et al., 2014), regu-

latory elements and networks (Cheng et al., 2014; Gerstein et al.,

2012; Griffon et al., 2015), and possible connections to disease

(Siggens and Ekwall, 2014). Thus, understanding exactly how much

information we can or should extract from such data is a question

of paramount importance.

Bioinformatics analysis of ChIP-seq data is a multi-stage process

(Landt et al., 2012), with the end goal of identifying genomic regions

of possible transcription factor-DNA binding, histone positions, chro-

matin marks etc. There are numerous algorithms for identifying ChIP-

seq enriched regions, or peak calling (e.g. Bardet et al., 2013; Fejes

et al., 2008; Feng et al., 2011b; Rashid et al., 2011; Shen et al., 2013;

Spyrou et al., 2009; Tuteja et al., 2009; Valouev et al., 2008; Xing

et al., 2012; Zang et al., 2009; Zhang et al., 2008). Because ChIP-seq

data are noisy, virtually all peak calling algorithms output peaks with

associated P-values. These P-values are useful for ranking peaks in

decreasing order of confidence, and estimating false discovery rates

(FDRs) at different significance thresholds. But how well can we trust

the P-values produced by peak callers?

For our study, we chose to focus on three peak callers: MACS

(version 2.1.1.20160309) (Feng et al., 2011a, 2012; Zhang et al.,

2008), SICER (version 1.1) (Xu et al., 2014; Zang et al., 2009) and

diffReps (version 1.55.6) (Shen et al., 2013). We chose MACS be-

cause it is, at present, the most highly cited peak caller, and it is used

by the ENCODE and modENCODE consortia for analysis of their

data. SICER is another widely used and highly cited algorithm, but

one designed more for the detection of the broad, regional enrich-

ment characteristic of certain chromatin marks. This suits some of

our experiments below, although MACS is also able to detect such

regions, particularly when used in ‘broad peak’ mode. diffReps is

designed to solve the differential enrichment problem—the compari-

son of two ChIP-seqs instead of a ChIP-seq and a control—which

again comes up in some of our experiments.

Although these approaches to peak calling differ in a number

of ways, all three (and many others from the list cited above)

follow a common two-stage pattern: First, candidate peaks are

identified by analyzing the ChIP-seq data, and second, those candi-

date peaks are evaluated for significance by comparing ChIP-seq

data with some kind of control data. In the case of differential

enriched region detection, two ChIP-seqs may be compared with

each other by a similar process (Shen et al., 2013). The problem

with this design, as already pointed out by Lun and Smyth (2014),

is that it commits the statistical sin of using the data twice. The

ChIP-seq data are used to construct hypotheses to test, the candi-

date peaks, and then the same ChIP-seq data, along with control

or other ChIP-seq data, is used to test those hypotheses by means

of classical statistical hypothesis testing. In general, when the

hypothesis and the test both depend on the same data, classical

P-values cannot be trusted.

When peaks’ P-values are wrong, it creates a host of other prob-

lems. For one thing, we no longer have a good basis for choosing a

P-value cut off for reporting results. Relatedly, we do not know how

much we can trust any given peak, or even the set of peaks as a

whole. If a peak has a P-value of 10�10, we might feel that is very

likely to indicate true transcription factor binding or epigenetic

modification. But if the peak caller is biased, so that the real statis-

tical significance of such a peak is only 10–10, then perhaps we

should not put much stock in it after all. FDR estimates, which are

also reported by most peak callers, are virtually meaningless when

based on P-values that are themselves incorrect. Another problem

arises if we try to compare results from different peak callers. To

make comparisons ‘fair’, we might restrict both peak callers to the

same raw P-value (or FDR) cutoff. But if one algorithm has highly

biased P-values and the other does not, then this comparison will

hardly be fair. Finally, downstream analyses such as motif identifica-

tion or regulatory network construction (Cheng et al., 2014;

Gerstein et al., 2012; Griffon et al., 2015; Mathelier et al., 2014;

Siggens and Ekwall, 2014) may be error-prone if we do not know

which peaks are truly significant. This can be true even for rank-

based downstream analyses such as the Irreproducible Discovery

Rate (Li et al., 2011) or motif discovery methods (Grau et al., 2013;

Kulakovskiy et al., 2010). Although ranking peaks by P-value

decreases the importance of the exact P-values themselves, the issue

of where to cut off the list of candidate peaks remains and can influ-

ence results.

One approach to unbiased peak calling would be to develop

a new peak calling approach from scratch, in a way that avoids

double use of the data. However, as there are already many pro-

grams available that are satisfying in terms of identifying and rank-

ing candidate peaks, with only their significance in question, we

chose a different approach. We asked whether the P-values of peaks

generated by these programs could be recalibrated to correct their

bias. Happily, we found this to be largely possible through the new

RECAP method that we introduce. RECAP stands both for the goal

or our approach, recalibrating P-values, and the method by which it

is done, resampling the read data and calling peaks again. RECAP is

a wrapper algorithm that is compatible with almost any peak caller,

and in particular MACS, SICER and diffReps, for which we provide

wrapping scripts. RECAP pools and then resamples from the ChIP-

seq and control data, approximating a null hypothesis scenario of

no genuine difference between ChIP-seq and control. It then applies

the peak caller to the resampled data, to estimate the distribution of

P-values under that null hypothesis. It uses an estimated cumulative

distribution function (CDF) of the null P-values to adjust the P-val-

ues produced by the peak caller on the original data. We show that

on a variety of different types of simulated null hypothesis ChIP-seq

data, where there is no actual enrichment, RECAP-recalibrated P-

values are approximately uniformly distributed between zero and

one—as should be the case for well-calibrated statistical hypothesis

testing. This gives a more intuitive way of choosing a significance

cutoff for peak calling, and allows us to look at whether default

cutoffs (such as the 10�5 raw P-value cutoff in MACS) are overly

conservative or still too loose. FDR estimates based on recalibrated

P-values are also more reliable, and in particular, we show that FDR

q-values for peaks in ENCODE data track well the reproducibility

of those peaks between biological replicates. In summary, RECAP

allows for much more rigorous and rational analysis of the signifi-

cance of enrichment in ChIP-seq data, while allowing researchers to

continue using the peak calling algorithms they already prefer and

have come to depend on.

2 Algorithm

Our RECAP approach to recalibrating peak calling P-values is based

on empirically estimating an expected CDF for those P-values, under

the null hypothesis that the ChIP-seq and control read datasets are

drawn from the same distribution across the genome. That is, if we

were to view each read as an i.i.d. sample where different positions

on the genome would have different probabilities of being sampled,

then we assume the sampling distribution of ChIP-seq and control

are identical. Some work (Boyle et al., 2008; Ramachandran and

Perkins, 2013) has explicitly attempted to estimate such distribu-

tions, but we will use a simpler mechanism for our P-value recalibra-

tion. The RECAP algorithm is summarized below.
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2.1 The RECAP algorithm
• Input: Two mapped read datasets T (treatment or ChIP-seq) and

C (control), peak calling algorithm A, and repeats number R
• Call peaks: Use algorithm A on datasets T and C, to generate

peaks P with P-values p ¼ ðp1; p2; . . . ; pnÞ
• Model CDF of P-values under null hypothesis:

• Compute the union of all reads U ¼ T [ C
• For i ¼ 1 to R do:

• Randomly divide U into mock treatment Ti and control Ci,

with the same numbers of reads as T and C, respectively

• Call peaks using A on datasets Ti and Ci generating peaks

with P-values pi ¼ ðpi
1;p

i
2; . . . ;pi

ni
Þ

• Combine all resampled P-values, along with an extra value

P ¼ 0, into a single sorted list of unique values

ðpð1Þ; pð2Þ; . . . ; pðmÞÞ along with the number of times each value

occurred ðN1;N2; . . . ;NmÞ.
• Estimate the null P-value CDF

FðxÞ ¼

�Pi
j¼1 Nj

�
=
�Pm

j¼1 Nj

�
if x ¼ pðiÞ�Pi

j¼1 Nj

�
þNiþ1

x� pðiÞ
pðiþ1Þ � pðiÞ

� �
Pm

j¼1 Nj
if pðiÞ < x < pðiþ1Þ

1 if x > pðmÞ

8>>>>>>><
>>>>>>>:

• Output: Original peak set P with recalibrated P-values

p0 ¼ ðFðp1Þ;Fðp2Þ; . . . ;FðpnÞÞ

The intuition behind the algorithm is that if the null hypothesis

holds, we can simulate new-but-similar treatment and control data-

sets by resampling from the combined reads of the original treat-

ment and control. If we do that one or more times, and call peaks

each time, we can estimate an average-case distribution of P-values

for similarly distributed data. We use a linearly interpolated empir-

ical CDF estimate to capture that distributional information, and

to correct the original P-values. The advantage of the linearly

interpolated CDF compared with the standard piecewise-constant

empirical CDF estimate (FðxÞ ¼ ð
Pi

j¼1 NjÞ=ð
Pm

j¼1 NjÞ, where

pðiÞ � x < pðiþ1Þ) is that the former is a strictly monotone mapping

for x 2 ½0; pðmÞ�. Thus, recalibrated P-values will have the same

ranking as the original, raw P-values, with the possible exception of

any raw P-values larger than pðmÞ.

Implicitly, our approach makes the assumption that there is

some null distribution of P-values to estimate. In principle,

every resampling of the data might generate peaks with radically

different P-values or produce no peaks at all. If resampled data

generated no peaks at all, then of course it would be impossible to

estimate a null P-value distribution. In preliminary testing of all

three algorithms, we found that while the numbers of peaks called

could vary considerably between different resamples (particularly

for MACS), the distributions of P-values were largely the same.

Moreover, the number of resamplings R had little effect on recali-

brated P-values. If that were not true, then one might want

to think more carefully about how to combine P-values from

different resamplings.

Our approach also assumes that every peak in every resampling

of the data is an i.i.d. sample from the null P-values distribution.

Because peak calling relies in part on local read densities, nearby

peaks have non-statistically independent P-values. However, be-

cause these dependencies typically do not span a large portion of the

genome, we expect the independence assumption is reasonable.

3 Results and discussion

3.1 MACS, SICER and diffReps produce biased P-values
Before reporting on RECAP, we felt it was important to establish de-

finitively whether different peak callers do, as suspected, produce

peaks with biased P-values. As an initial test, we generated 10 simu-

lated null hypothesis datasets. In each dataset, both ChIP-seq and

control data comprise foreground regions and background regions.

Foreground regions are 500 bp long and spread �20–25 kb apart

along a set of chromosomes of the same number and sizes specified

by the hg38 genome assembly (including both X and Y chromo-

somes). Foreground regions are the same for both ChIP-seq and con-

trol. Each ChIP-seq and control dataset had 30 882 698 reads—one

per 100 bp of the genome on average. A 10% of the reads were

placed uniformly randomly within the foreground regions, while the

remainder was placed uniformly randomly within the background

regions. Figure 1A shows a zoom-in on part of one of the randomly

generated ChIP-seq datasets and its matching control. We chose

these parameters for numbers of peaks, peak size and total reads to

be broadly consistent with current ENCODE datasets.

We ran MACS, SICER and diffReps on these datasets, using de-

fault parameters with one exception. We set P-value or FDR cutoff

thresholds at or as close as possible to 1.0, so that all candidate

peaks, regardless of significance, would be reported. Figure 1B

shows histograms of the P-values of the peaks produced by each

program, for one of the 10 simulated ChIP-seq-control dataset pairs.

Results for the other nine datasets were similar.

By near universal definition, a P-value is the chance of observing

data as or more ‘extreme’ than some given data (Wasserman, 2013),

under some null statistical model. As such, when applied to null-

generated data, a well-calibrated method for calculating P-values

should output P-values that are approximately uniformly distributed

on [0, 1]. That all three peak callers’ P-value distributions are non-

uniform is visually clear from Figure 1B, where the horizontal

dashed lines indicate the uniform distribution, and from Figure 1C,

where we plot the empirical CDFs of the P-values of the three pro-

grams. Well-calibrated P-values should have empirical CDF close to

the thin black diagonal line. Although we will momentarily intro-

duce a different statistic for quantifying deviation from uniformity,

a simple KS-test shows that the three P-value distributions of the

programs are statistically significantly different from the uniform

distribution (P � 0 incalculably small for all three).

Figure 1D shows the same empirical CDFs, but plotted on log–

log axes. This plot is informative because most P-values are close to

zero, and it is difficult to see their distribution on linear axes. Again,

this plot shows that all three algorithms produce P-values that are

non-uniformly distributed, and in particular, optimistically biased

compared with the expectation under a uniform distribution of P-

values. But it is now much more clear that diffReps’s P-values are

the closest to being uniformly distributed, whereas MACS’s and

SICER’s P-value distributions are farther afield. The curve for

SICER, in fact, grows worse as P-value get smaller; SICER seems

particularly prone to outputting highly significant P-values.

Motivated by this log–log plot of empirical CDFs, we propose a

measure of deviation from uniformity. For a given set of N P-values,

we let N1=N be the fraction of those P-values in the range

½0:1; 1�; N2=N be the fraction in the range ½0:01;0:1Þ, and more gen-

erally Ni=N be the fraction in the range ½10�i;10�iþ1Þ. Then we

quantify deviation from uniformity by the statistic:

D ¼ meani:Ni>0j log 10ðNi=NÞ � log 10ð9� 10�iÞj. In words, this is

the absolute difference between the logarithm of the fraction of
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peaks that should be in a P-value bin and the logarithm of the frac-

tion of peaks that actually are in the bin, averaged over the non-

empty bins. If a set of P-values is uniformly distributed on ½0; 1�, so

that 90% of them fall in ½0:1; 1�, 9% fall in ½0:01;0:1Þ etc., then D

evaluates to zero. Non-uniform distributions produce higher values

of D. An advantage of this measure compared, for example, to the

statistic used by the KS-test is that it pays equal attention to P-values

at many different significance levels. In contrast, the KS-test looks at

the maximum difference between the empirical CDF and the theor-

etical uniform CDF. For the SICER data, e.g. this maximum occurs

at P ¼ 1, where �40% of the peaks are. But the peaks with such

high P-values are not of any biological interest, so it is undesirable

for a performance metric to emphasize them to the exclusion of all

else. For the present data, the deviations of the three algorithms’ P-

value distributions evaluate to D � 2:8 for MACS, D � 6:1 for

SICER and D � 0:9 for diffReps.

Although we will quantify bias and its removal more thoroughly in

the next section, several important points remain regarding biases in

the P-values produced by these programs. First, our results are not an

artifact of the precise way the simulated null hypothesis ChIP-seq and

control datasets were generated. For example, we also generated data

with similar foreground regions but with 20% of reads in the fore-

ground and 80% in the background. We also generated data with

broad foreground regions of 4 kb containing 30% of the reads, leaving

70% for the background. For these datasets, we ran MACS in broad

peak mode. In all cases, we continue to see deviation from uniformity

in the P-value distributions (Supplementary Fig. S1A–C). Second, the

amount of bias in these P-value distributions differs for the different

types of data and for the different algorithms. This means that there is

no universal correction that can be applied to the P-values, to bring

them into line. Bias removal must operate in a way specific to the data

being analyzed and to the program being used to call peaks.

Finally, it is important to note that evidence of bias can be seen

in real data, not just simulated data. To show this, we turned to

ChIP-seq data from the ENCODE consortium (Consortium et al.,

2012). We chose to analyze data from the five cell types with the

most available datasets, namely K562, A549, GM12878, HepG2

and myocytes. For each cell type, we identified all experiments con-

ducted by the same lab that included two replicate ChIP-seq experi-

ments and two matching controls, and chose (arbitrarily) 10

replicate pairs for analysis (see Supplementary Table S1). In an at-

tempt to approximate null hypothesis-like conditions, but using real

data, we called peaks on each ChIP-seq dataset using its ChIP-seq

replicate as control. The resulting P-value CDFs for all three algo-

rithms are shown in Supplementary Figure S1D–R. As with our

simulated data, we see all the CDFs are optimistically biased, in

some cases returning dramatic P-values exceeding 10�300. Thus, P-

value bias is not just an artificial theoretical concern, but a genuine

concern that is observable and should be expected in the analysis of

real data.

3.2 RECAP removes bias from peak caller P-values
We tested RECAP’s ability to correct bias in peak P-values on a var-

iety of simulated and real null hypothesis datasets. Figure 2A shows

the results for the same 10%-reads, 500 bp foreground region data-

set used for Figure 1B–D. Comparing particularly Figure 2A with

Figure 1D, we see that RECAP has very substantially removed the

bias. The log–log plot of the P-value CDFs for all three algorithms is

very close to the expectation line.

When applying RECAP to replicate pairs of ENCODE ChIP-seq

data, we obtained a reduction but not elimination of bias. Figure 2B

shows the log–log CDF plot for one of the real ChIP-seq pairs. We

see that all three peak callers’ P-values remain above the expectation

line, and thus are optimistically biased. However, we do not see

recalibrated P-values on the order of 10�100 or even smaller. Indeed,

because of the extra P ¼ 0 P-value we inject into our resampled

peak P-values (see Section 2), the smallest recalibrated P-value can

A

B C D

Fig. 1. MACS, SICER and diffReps peak callers produce biased P-values. (A) Visualization of part of a simulated ChIP-seq read dataset, with 500 bp foreground

regions every 20–25 kb, where read density is greater. Control data was generated similarly, with matching foreground regions, so a null hypothesis of no enrich-

ment in ChIP-seq versus control is true for every possible genomic region. (B) Peaks called by the three algorithms have P-values that are not uniformly distrib-

uted between zero and one, as should be the case for this null hypothesis data if P-values were well calibrated. Empirical CDFs on linear (C) and log (D) axes also

show the discrepancy from the uniform distribution
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be no smaller than 1=ðzþ 1Þ, where z is the total number of peaks in

all resampled peak calls. This feature is responsible for the way the

empirical CDFs of recalibrated P-values drop down near the expect-

ation line on the left side. Without the extra P ¼ 0 resampled P-

value, even the linearly interpolated CDF can output extremely

small recalibrated P-values, if they fall below any resampled P-val-

ues. The fact that bias is not completely eliminated could be the re-

sult of genuine differences between the two replicates, causing peaks

to appear in one and not the other, or causing overall signal fidelity

to be different. Indeed, visual inspection of read pileups suggests a

better peak signal-to-noise ratio in one of the datasets.

Supplementary Figure S2A–O shows the log-log empirical CDFs

of recalibrated P-values for all 10 ChIP-seq replicate pairs, for all

five cell types. The general trend is that many datasets still show

some optimistic P-value bias, while some show good calibration.

Just a few appear over-corrected, with CDFs falling below the expect-

ation line. Comparing to the raw P-value CDFs in Supplementary

Figure S1D–R, we see that bias has been very substantially reduced,

although MACS and diffReps P-values remain somewhat optimis-

tically biased. A quantitative summary of bias before and after recali-

bration by RECAP is in Figure 2C and Supplementary Figure S3.

As was apparent visually, in all cases, we see that P-value distribution

bias, as quantified by our deviation statistic D, is very substantially

reduced.

3.3 Peak statistical significance and FDRs estimated by

RECAP
When P-values are not well-calibrated, the true statistical signifi-

cance of individual peaks is unknown, and FDR estimates based on

those P-values cannot be trusted. Conversely, if P-values are well-

calibrated, then FDR estimates based on those P-values should also

be well-calibrated. To examine these assertions, we ran further tests

on both simulated and real (ENCODE) data. For the simulated

data, we used as treatment the same datasets described earlier, but

we used as control an equal number of reads distributed uniformly

randomly across the genome. As such, there are many genuinely

enriched regions in each simulated ChIP-seq dataset. For the real

data, we focused on the same 100 ENCODE ChIP-seq datasets men-

tioned in the previous section (5 cell types � 10 experiments � 2

ChIP-seq replicates per experiment). We ran all three peak callers on

each of the 100 ChIP-seqs independently, using matched controls as

specified by the ENCODE project website (www.encodeproject.org;

see Supplementary Table S2). We ran RECAP with either 1 or 10

resamplings to recalibrate the P-values. Based on the recalibrated P-

values, we then computed q-values based on the method of

Benjamini and Hochberg (1995).

Figure 3A shows empirical CDFs of re-calibrated P-values for

one typical simulated dataset with 10% of reads in 500 bp peaks.

We observe that even after correction, the CDFs are significantly

above the null expectation. This indicates genuine difference be-

tween treatment and control, which we know is correct for this

data. Figure 3B shows similar behavior for MACS on the K562

ChIP-seq datasets (see Supplementary Fig. S4A–P for the analogous

plots for the other peak callers and cell types). The P-value distribu-

tions shown in Figure 3B, where we call peaks on ChIP-seq versus

control, are similar to the distributions shown in Supplementary

Figure S2A, where we call peaks on ChIP-seq versus replicate ChIP-

seq. However, the ChIP-seq versus control curves shows more devi-

ation from the null hypothesis, as we summarize quantitatively in

Figure 3C. Indeed, across all cell types and peak callers, recalibra-

tion lowers the deviation statistics. However, it does not lower them

as much as when we call simulated or real ChIP-seqs against each

other (compare with Fig. 2C). This indicates, as one would expect,

that although replicate ChIP-seqs may have some differences, there

are more differences between ChIP-seqs and controls, and more

strongly genuinely enriched regions.

Beyond the deviation statistics, a point of central interest is how

P-values are transformed by calibration when there are genuinely

enriched regions. Figure 3D and Supplementary Figure S4S-AD plot

recalibrated against raw P-values for MACS, SICER and diffReps.

For MACS and SICER, peaks with phenomenal P-values like 10�200

have significance upon recalibration on the order of 10�3 to 10�6.

Although many of these may still be significant, their level of signifi-

cance is not nearly what one might have expected. For diffReps, we

find that the P-values, while optimistic, are not nearly so biased on

the ENCODE data, and are typically recalibrated by an order of

magnitude or less. For MACS, the default raw P-value cutoff is

10�5. Across the 100 ENCODE ChIP-seqs, we found that the least

significant peak (i.e. the one with largest P-value � 10�5) had a

recalibrated P-value consistently near 0.5 (mean 0.5669, SD

0.2335). If we apply the same raw P-value cutoff to SICER peaks,

the least significant peaks have a recalibrated significance of 0.6072

6 0.2595. For diffReps, however, these least significant peaks have

better calibrated raw P-values of 0.0504 6 0.1816.

A B C

Fig. 2. RECAP recalibrates peak callers’ P-values to a near-uniform distribution. (A) Log-log plot of the empirical CDF of recalibrated P-values for MACS, SICER

and diffReps, on the simulated, 10% foreground, null-hypothesis data. (B) Similar plot for a representative ChIP-seq replicate pair from ENCODE. (C) Reductions

in deviation statistic, which measures difference from the uniform distribution, for the RECAP-recalibrated P-values for several types of simulated data (10 data-

sets each) and 50 matched pairs of ENCODE replicate ChIP-seq data (10 pairs for each of five cell types)

3596 J.G.Chitpin et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
Deleted Text:  
Deleted Text: above
Deleted Text:  
Deleted Text:  
http://www.encodeproject.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
Deleted Text: one 
Deleted Text:  
Deleted Text:  
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz150#supplementary-data
Deleted Text: While 
Deleted Text: less than or equal to <IMG_FOUND/>
Deleted Text: standard deviation


Figure 3E and Supplementary Figure S4AE–AR show FDR esti-

mates (q-values) based on recalibrated versus uncorrected P-values.

Again, we see a great discord between the two, particular for MACS

and SICER. For MACS e.g. uncorrected FDR estimates between

10�30 and 10�60—which would suggest no false positives at all

in a typical set of peak calls—map to recalibrated FDR estimates

between 10–1 and 10�4—suggesting a much higher level of false

positives. If we look at the peaks up to an uncalibrated q-value thresh-

old of 10�5, FDRs estimated based on our recalibrated P-values

are 0.1000 6 0.0904 for MACS, 0:533760:2501 for SICER, and

0.0649 6 0.1933 for diffReps. Given that datasets such as these

ENCODE ones typically have thousands or tens of thousands of peaks,

the difference in uncalibrated and calibrated FDR estimates means the

difference between essentially zero estimated false positive peaks and

hundreds or even thousands of estimated false positive peaks.

Finally, we turn to the question of whether theoretical FDR esti-

mates correlate to empirical FDRs. To do this for the ENCODE

ChIP-seq replicate pairs, we designated a peak called in a ChIP-seq

dataset as a true positive if it overlaps (by as little as one basepair)

with a peak called in the replicate dataset. Otherwise, a peak is des-

ignated a false positive. In Figure 3F and Supplementary Figure

S4AW, AZ, BC and BF, we plot empirical FDRs against FDR esti-

mates based on either uncalibrated or recalibrated P-values. For

MACS, theoretical FDRs based on uncorrected P-values are optimis-

tic. For example, a theoretical FDR of 10�5, at which level there

should be essentially no false positives, corresponds to an empirical

FDR (i.e. reproducibility failure rate) of �10�2, suggesting hundreds

of peaks would be false positives. However, we see that theoretical

FDRs based on recalibrated P-values track fairly well the empirical

FDR, as seen by the clustering of the curves around the ‘expectation’

line. Thus, for MACS, we suggest that FDR calculations based on

recalibrated P-values can be trusted as a rough approximation of re-

producibility, whereas FDRs based on uncalibrated P-values should

not be taken at face value. For SICER the story is slightly more

complicated. In Supplementary Figure S4AS, AU, AX, BA and BD

we see (and the deviation statistic in Supplementary Fig. S5 confirms

it) that FDR estimates based on recalibrated P-values more accurate-

ly reflect empiricial reproducibility. However, there is high variabil-

ity across datasets, so that it is difficult to trust the results on any

given dataset. For diffReps (Supplementary Fig. S4AT, AV, AY, BB

and BE), the bias in P-values was already low. Nevertheless, we see

a modest improvement in the accuracy of FDR estimates based on

recalibrated P-values versus estimates based on the raw P-values.

4 Conclusions

In this article, we considered the statistical significance of ChIP-seq

peak calls, on the grounds that ‘double use’ of the data by programs

such as MACS, SICER and diffReps would likely lead to optimistic

bias in P-values. Tests using simulated null hypothesis data, where

there is no enrichment between treatment and control, confirmed this

suspicion. We found similar results on replicate ChIP-seq pairs from

the ENCODE project. We then described RECAP, a wrapper algo-

rithm that can substantially reduce or eliminate P-value bias. It does

so by using resampled data to estimate a null distribution of P-values,

in a manner that is specific to a dataset and peak caller. Recalibrated

A B C

D E F

P P

PP

P

P

P

P

P

P

Fig. 3. FDR and reproducibility analyses based on recalibrated P-values. (A) Empirical CDF of recalibrated P-values for each algorithm on simulated non-null data.

(B) Empirical CDFs of MACS’s P-values on ENCODE datasets. (C) Deviation statistics before and after recalibration. (D) Raw versus recalibrated P-values for

MACS on ENCODE data. (E) FDR estimates based on recalibrated versus raw P-values for MACS on ENCODE data. (F) Peak reproducibility rates versus FDR esti-

mates based on raw or recalibrated P-values
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P-values obtained for ENCODE data suggest that raw P-values can

be overly significant by many orders of magnitude, and FDRs may be

�100 times higher than previously estimated—although it remains

clear that there are many genuinely enriched regions in these datasets.

Although RECAP is a complete system as it stands, there are a

number of possible directions for further work. First, while we

showed our recalibrated P-values are useful for more accurate FDR

estimation, they should also be useful for local FDR estimation

(Efron, 2007). Although global FDR analysis tells us how many false

positives may be in a given set of returned results, local FDR analysis

can tell us how likely any individual peak is to be a false positive.

Local FDR analysis requires a scheme for estimating null and non-

null P-value distributions, and the prior probability of true versus

false peaks. Second, we note that our P-value recalibration scheme

monotonically transforms raw P-values based on an empirical CDF.

This means that if one peak is more significant than another by raw

P-value, its recalibrated P-value will also be more significant. But

plausibly, some kinds of peaks or some genomic regions are more

likely to be false positives than others. Indeed, other ongoing work

in ChIP-seq analysis aims at uncovering and removing local biases in

ChIP-seq signals that can unduly influence peak calling (Hiranuma

et al., 2016, 2018; Ramachandran et al., 2015). This suggests that

peak-specific P-value corrections might be desirable, although it is un-

clear how this can best be done. Finally, although we have focused

here on ChIP-seq peak calling, it is entirely reasonable to think that

similar problems with P-value calibration may occur in other areas of

high-throughput data analysis. For example, this may occur in DNA

variant-calling, where complex conditions of uni- or bi-directional

read coverage or other types of pre-filtering are sometimes applied be-

fore candidate variants are tested statistically. This double-usage of

the data, to both select hypotheses for testing and to compute signifi-

cance for those hypotheses, is a recipe for biased P-values. Perhaps in

such cases, a similar read-resampling scheme could be used to cali-

brate P-values output by different variant callers.
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