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Objective: There is evidence of substantial subnational variation in the HIV epidemic.
However, robust spatial HIV data are often only available at high levels of geographic
aggregation and not at the finer resolution needed for decision making. Therefore,
spatial analysis methods that leverage available data to provide local estimates of HIV
prevalence may be useful. Such methods exist but have not been formally compared
when applied to HIV.

Design/methods: Six candidate methods – including those used by the Joint United
Nations Programme on HIV/AIDS to generate maps and a Bayesian geostatistical
approach applied to other diseases – were used to generate maps and subnational
estimates of HIV prevalence across three countries using cluster level data from
household surveys. Two approaches were used to assess the accuracy of predictions:
internal validation, whereby a proportion of input data is held back (test dataset) to
challenge predictions; and comparison with location-specific data from household
surveys in earlier years.

Results: Each of the methods can generate usefully accurate predictions of prevalence
at unsampled locations, with the magnitude of the error in predictions similar across
approaches. However, the Bayesian geostatistical approach consistently gave margin-
ally the strongest statistical performance across countries and validation procedures.

Conclusions: Available methods may be able to furnish estimates of HIV prevalence at
finer spatial scales than the data currently allow. The subnational variation revealed can
be integrated into planning to ensure responsiveness to the spatial features of the
epidemic. The Bayesian geostatistical approach is a promising strategy for integrating
HIV data to generate robust local estimates.
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Introduction
Historically, country epidemics have been considered as
fairly homogenous and been broadly classified as
‘generalized’ or ‘concentrated’ [1]. However, such an
approach fails to capture the often substantial local level
variation in the patterns of risk and transmission, key
drivers of the epidemic, and availability of services
observed [2]. Indeed, 13 of 33 countries in sub-Saharan
Africa report at least five-fold differences in adult
prevalence between provinces [3].

This spatial heterogeneity has profound implications for
all aspects of monitoring the epidemic and planning the
response. There have been a large number of examples of
ways in which spatial data can be used to improve HIV
planning, including identification of places or popu-
lations at highest risk [4], allocation of resources across
locations [5], in understanding local level changes and
monitoring the epidemic [6], in interpreting gaps in
service provision [7], in understanding reasons for
different biases in available surveillance data [8], and in
tailoring services and local level targeting of intervention
[9].

Although it is critical that planners have an understanding
of local level variations in the intensity of the HIV
epidemic, practical and financial constraints that restrict
the size of surveys and surveillance systems commonly
used to monitor generalized epidemics may inhibit this.
Robust estimates of subnational HIV prevalence are
typically available at the first administrative level (often
termed ‘provinces’), but not at more local levels which
may be needed for programme planning (such as the
district or county levels).

There are several candidate methods that could be used to
generate local subnational estimates of HIV prevalence
(Table 1). These include the method that the Joint United
Nations Programme on HIV/AIDS (UNAIDS) has used
to generate maps of high-burden countries [23] and a
method which has been used to estimate malaria
prevalence patterns [14,15]. However, the performance
of these methods has not been evaluated or compared in the
context of HIVepidemiology. Here, we conduct a formal
evaluation and comparison of subnational HIV prevalence
estimates generated by these candidate methods.
Methods

Six candidate methods were included in this study
(labelled models 1–6 in Table 1). Key characteristics are
described in Table 1.

Some mapping strategies use sampled HIV prevalence
data from household surveys only and do not use ancillary
spatial information (e.g. road network or vegetation
coverage). PrevR (model 1) is such a method [10], and it
has been recommended by UNAIDS on the basis of it
being straightforward to implement and available for
immediate use.

This approach is compared with methods that do leverage
information on other features (‘covariates’) which can
enhance predictions of HIV prevalence (data sources are
described in Table S1, http://links.lww.com/QAD/
A890). Such data are particularly useful if they are sampled
at a greater geographical resolution than the HIV preva-
lence data. Models 2–6 fall into this category. Among
these, there are important differences in the theoretical
framework behind them, which influence their ability to
dealwith uncertainty and the computational load (Table 1).

Finally, some of these methods estimate a continuous
‘surface’ of HIV prevalence (models 1–3), whereas
others instead aim to provide predictions for the aggregate
level, namely the subnational units under consideration
directly, for example, a district level prevalence estimate
(models 4–6).

Two different validation procedures were used to assess
the performance of the methods, depending on whether
the method produces a ‘surface’ of prevalence or can give
estimates at aggregate subnational level. Data from three
countries (Tanzania, Kenya, Malawi) with generalized
epidemics were used. These countries were chosen as
they encompass variation in epidemic patterns and data
availability.

Internal validation
The performance of those models that produce continuous
HIV prevalence surfaces (models 1–3) was assessed using
internal validation. A proportion of observed data is held
back as a ‘test’dataset, before the method is used. Then, the
test data are used to challenge the model prediction at
sample locations. This test dataset was either a single point,
namely a demographic and health survey (DHS) cluster
[leave out one cross validation (LOOCV), (models 1
and 3)] or a larger proportion of the data [partitioned
data hold back (PDHD), (models 1 and 2)]. Which strategy
was applied (i.e. LOOCV or PDHD) for a given spatial
method was dependent on the computational intensity of
the mapping approach.

The resulting root mean squared error (RMSE) (Eq. 1)
between prediction and data was calculated. The RMSE
estimates are in the same units as the surface (i.e.
prevalence) and the lower the RMSE, the closer the
model prediction is to the observed data.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðEi � OiÞ2

N

s
(1)

where E is the predicted values, O the observed values, N
the total number of locations, and i each omitted location.

http://links.lww.com/QAD/A890
http://links.lww.com/QAD/A890
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External validation (cross-year comparison of
estimates)
External validation was also conducted through compar-
ing mapped predictions with data from an earlier survey
year. This approach takes advantage of the location of
clusters often being different in different survey years in a
country, and assumes that the true spatial pattern of HIV
prevalence is conserved over time. All three countries
considered have surveys for more than one DHS round
(Malawi: 2004 and 2010, Tanzania: 2007/2008 and 2012,
Kenya: 2003 and 2008/2009) allowing for such an
analysis. For methods that produce a continuous surface
(models 1–3), prevalence surfaces were produced using
only the data from the later survey. Then, a comparison
was made between the observed values for each cluster in
the earlier survey year and the predicted prevalence in the
corresponding location in the year of the later survey.

The approach was repeated for all methods at the level of
the first administrative unit for Malawi (district level),
as not all methods produce continuous prevalence
surfaces. For those methods which produced predicted
surfaces (models 1–3), the average of the values of the
surface within each district boundary was calculated, to
allow for comparison with those methods which produce
district level estimates directly (models 4–6). The
accuracy of district level predictions in comparison to
the data from the earlier survey year was summarized by
the RMSE.
Results

Figure 1a presents the continuous prevalence surfaces for
each country using models 1–3. Very substantial within-
country variations in HIV prevalence are revealed by all
methods. In particular, methods indicate a prevalence
gradient from east to west in Kenya, south to north in
Malawi, and a focus of high prevalence in south-
west Tanzania.

There is substantial variation in the degree of local level
variation suggested by the models. Methods that bring in
additional data tend to produce estimates with a more
complex spatial structure, which is related to road
networks, among other factors, although uncertainty in
the estimates about this is great (not shown). In contrast,
the PrevR approach gives a smooth surface.

The internal validation procedure suggests that all
methods can produce estimates of HIV prevalence at
unsampled locations with a similar, and reasonable, level
of accuracy (RMSE values: Fig. 1a). Among the methods,
the Bayesian geostatistical approach (model 2), gives
marginally the best RMSE values consistently across all
the countries (Fig. 1: RMSE values displayed in the key
for each panel).
The external validation for the continuous surfaces shows
that the methods typically are successful in predicting
prevalence in unsampled locations (Fig. 1b). The greatest
difference in prediction error is between countries rather
than between methods, and all methods have similar spatial
pattern in the errors. Among models 1–3 (those that could
do this test), model 2 gives the lowest RMSE across all
countries. All methods give higher RMSE values than in
the internal validation exercise described above as they are
being used to predict the spatial distribution from a
different year and the epidemic will have changed.

The external validation for the district level in Malawi
(Fig. 1c), shows that whereas all the methods give the
same broad spatial trends, differences in some districts are
quite pronounced and overall errors are much greater. As
prevalence may vary widely within an administrative
region, particularly between urban and rural areas, an
averaged value for each administrative region gives wider
differences than the point by point comparison. Again,
model 2 gives the lowest RMSE, and gives the most
accurate prediction.
Discussion

Generating subnational estimates of HIV prevalence will
be crucial to informing a locally tailored response to the
HIVepidemic. This analysis has provided a number of key
insights as to how countries can best utilise available
spatial data.

First, the magnitude of the error and accuracy of
predictions appears to depend most on the prevalence
level in the country of interest and the characteristics of
the survey sample, rather than the estimation method
used. Because of this, we see a greater difference in the
accuracy of predictions between countries rather than
between methods. For this reason, some confidence in
predictions from these spatial methodologies comes from
their relative consistency in performance across all
validation procedures described. The method used
already by UNAIDS (model 1: PrevR) performs similarly
to most other methods and so greater confidence can be
afforded in the results. As a result of these analyses, we
recommend that Bayesian geostatistical approach (model
2) be developed further, as the performance of this
method was consistently the strongest. This method has
been applied extensively to other infections [13], and has
many desirable characteristics, in particular a formal
accounting of uncertainty and the explicit leveraging of
other geographic data.

Second, the methods appear to work reasonably well, and
can capture the broad spatial trends in prevalence observed
across countries. Arguably, in these high prevalence
settings, these methods would usefully distinguish areas
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of very high prevalence from those with very low
prevalence.

The mapping methods described can be further
developed, particularly through integration of different
data sources alongside the DHS, in particular, antire-
troviral therapy and prevention of mother-to-child
transmission programme data, antenatal clinic surveil-
lance, and, in the future, case-reporting data. Doing so
would require building upon earlier work [8] to assess
how different data sources may feed into prevalence
mapping in a manner that reflects the different biases,
underlying populations and spatial coverage of these data.
Furthermore, although the tools outlined can fill critical
gaps at this time, they do not mitigate the need for future
additional local data collection and reporting to
strengthen more localized responses to the HIVepidemic.

National epidemics cannot continue to be assessed as a
whole when there is clear evidence of substantial
subnational heterogeneity. Subnational indicators should
be integrated into all national planning, monitoring, and
evaluating processes performed routinely. Existing tools,
such as Spectrum/Estimation and Projection Package
modelling software, are already being adapted to
explicitly examine the epidemic in subnational areas
[24]. The increasing availability of georeferenced data and
mapping tools provides us with the opportunity to be
responsive to the subnational features of HIVepidemics to
improve intervention planning.
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