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A recurring problem regarding the use of conventional comb filter approaches for elimination of periodic waveforms is the degree
of selectivity achieved by the filtering process. Some applications, such as the gradient artefact correction in EEG recordings during
coregistered EEG-fMRI, require a highly selective comb filtering that provides effective attenuation in the stopbands and gain close
to unity in the pass-bands. In this paper, we present a novel comb filtering implementation whereby the iterative filtering
application of FIR moving average-based approaches is exploited in order to enhance the comb filtering selectivity. Our results
indicate that the proposed approach can be used to effectively approximate the FIR moving average filter characteristics to those
of an ideal filter. A cascaded implementation using the proposed approach shows to further increase the attenuation in the filter
stopbands. Moreover, broadening of the bandwidth of the comb filtering stopbands around −3 dB according to the fundamental
frequency of the stopband can be achieved by the novel method, which constitutes an important characteristic to account for
broadening of the harmonic gradient artefact spectral lines. In parallel, the proposed filtering implementation can also be used
to design a novel notch filtering approach with enhanced selectivity as well.

1. Introduction

In biomedical signal processing and signal processing in gen-
eral, comb filtering approaches represent an important class
of filters that play a relevant role in different fields, such as
extraction or elimination of periodic signal and harmonic
components, speech and audio signal processing, decimation
processes, prediction and estimation of geophysical signals,
and power line rejection [1–5]. In its simplest form, a comb
filter can be viewed as a combination of notch filters in which
the null frequencies occur periodically across the filter band-
width. Another very popular comb filtering approach is the
conventional FIR moving average filter indicated in

yn =
1
M

〠
M−1

k=0
xn−k, 1

whose representation in z-domain and discrete time realisa-
tion is shown, respectively, in (2) and Figure 1.

Y z
X z

=
1
M

1 − z−M

1 − z−1
=HMAF z , 2

withM = f s/f M , where f s is the sampling frequency and f M is
the fundamental of the periodic null frequencies.

The comb filter realisation indicated in (2) is widely
employed because of its computational efficiency. As limita-
tions, however, (2) provides a magnitude response with low
attenuation in the filter stopbands as well as nonuniform gain
and high attenuation in the pass-bands, as depicted in
Figure 2(a). In addition, despite the piecewise linearity of the
phase characteristic (Figure 2(b)), it can provoke increased
phase delay for higher values ofM [1, 4].

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 7901502, 14 pages
https://doi.org/10.1155/2018/7901502

http://orcid.org/0000-0003-4965-012X
https://doi.org/10.1155/2018/7901502


Such characteristics are undesirable in some applica-
tions and are far from those of an ideal comb filter: zero
gain at notch frequencies, uniform and unity gain in the
pass-bands, and no effects on the signal phase. To make
the comb filter realisation of (2) more selective or closer
to the ideal behaviour, some strategies have been suggested
in the literature. For instance, it can be achieved by the
introduction of poles in the transfer function of (2), as indi-
cated in [4, 6, 7]

HMOD z =
1 − z−M

1 − z−1
1 − r ⋅ z−1

1 − r ⋅ z−1 M
, 3

where the value of the parameter r is contained in the interval
0≤ r< 1. As mentioned by Proakis and Manolakis [4], the
insertion of poles in (2) has the effect of introducing a reso-
nance in the vicinity of the null, thus provoking reduction
of the bandwidth of the stopbands. Thereby, the zeros
z = ej2πk/M placed at the unit circle in the z-plane will have
in their vicinity the poles z = r ⋅ ej2πk/M . The comb filter
described in (3) has been successfully used in several appli-
cations, such as in harmonic compensators and rectifiers
in power systems [6, 7]. However, one of the limitations of
this approach is the decreased attenuation in the stopbands,
as the value of r increases towards 1. Furthermore, there is a

xn yn+ ∑ ∑+
1
M

−+

z−1 z−M

Figure 1: Discrete time realisation of the moving average filter described in (2).
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Figure 2: Frequency response of HMAF ω for some values of M: (a) magnitude response; (b) phase response.

2 Journal of Healthcare Engineering



trade-off between the values of M and r, which is contingent
to the performance requirement of the filter: on one hand,
the use of higher values of M makes this method computa-
tionally expensive regarding memory usage. On the other
hand, the exponential decrease of the power rM makes the
filter to be implemented by using lower resolution computer
unit. Thus, there exists a compromise between the value of
M and the computer unit resolution [6].

Another proposed strategy to improve the selectivity of
the comb filtering provided by (2) is the time-domain averag-
ing approach. Time-domain averaging consists of a kind of
comb filtering approach based on a coherent detection pro-
cess whereby estimation and elimination of the periodic
activity are carried out by averaging repetitive sequences of
a periodic signal, p t , observed in the input signal, x t .

x t = p t + e t 4

In (4), e t represents the nonperiodic component of x t ,
which could be a noise signal or some stochastic process.
Under the assumption that p t and e t are uncorrelated,
summing up N subsequent segments x ti corresponding to
the periodic signal results in coherent summation of p t [8].
Thus, the estimate of p t obtained by time-domain averaging
can be calculated by the following discrete representation:

p̂n =
1
N

〠
N−1

i=0
xn−iM 5

Or in z-domain,

Hp z =
1
N

1 − z−NM

1 − z−M
6

The frequency response associated with the nonperiodic
component is derived from the subtraction between the
discrete representation of x t and (5).

e t = x t − p t ⇒ ên = xn −
1
N

〠
N−1

i=0
xn−iM = yn 7

⇒Y z
X z

= 1 −Hp z ⇒HTDA z = 1 − Hp z , 8

where HTDA z is the magnitude response of the comb filter-
ing for elimination of the periodic component.

Time-domain averaging is a well-established comb filter-
ing approach which has been widely used to estimate and
extract periodic signals encountered in phenomena involving
some rotating machinery [2, 8, 9]. Time-domain averaging-
based approaches have been also proposed to estimate and
eliminate the gradient artefact from the EEG signal, such as
the average artefact subtraction method [10, 11]. The gradi-
ent artefact consists of a periodic waveform voltage interfer-
ence which is induced in the electrical potential recorded in
the human scalp (scalp potential) by the rapidly varying mag-
netic field gradients and radiofrequency pulses used in MRI
sequences during simultaneous acquisition of EEG and fMRI
data [12, 13]. One limitation of time-domain averaging, how-
ever, is its high dependency on accurate sampling of the

periodic waveform p t . The occurrence of jitter errors may
result in imprecise sampling of the averaging waveforms,
which can impair the effectiveness of the method. Thus, the
period of the repetitive waveform must be an exact multiple
of the sampling interval. In parallel, the period of p t must
be precisely known, which requires an external trigger or ref-
erence signal provided by an additional hardware [8, 14]. In
case of the suppression of the gradient artefact from the
EEG signal, subject movements or small drifts may also com-
promise the performance of the algorithm, since they change
the morphology and shape of the artefact, in such a way that
it is not possible to obtain an accurate estimate of p̂ t . Sub-
ject movements or small drifts also provoke broadening of
the harmonic artefact spectral lines [15], whose attenuation
may not be effectively accounted for by the time-domain
averaging comb filter. As a consequence, residual artefacts
are left behind in the corrected EEG after subtraction of
the estimated periodic waveform p̂n.

In this paper, we present a novel comb filtering imple-
mentation to improve the selectivity of the comb filtering
provided by the FIR moving average filter of (2). As described
in Section 2, implementation of such a comb filter has been
based upon an iterative filtering decomposition process
[16], whereby an estimation of the filtered signal can be
obtained by the iterative application of a FIR moving average
filter-based approach named double average filter. Compari-
son between the novel comb filtering implementation and
those existing methodologies to enhance the selectivity of
(2) described above shows that the novel method could be
used in scenarios in which those approaches are not effective,
such as during broadening of the harmonic gradient artefact
spectral lines. In addition, the iterative application of time-
domain averaging is revealed to enable the use of a smaller
number of averages during application of such a method, as
shown in Sections 3 and 4.

2. Methods

In recent research [16, 17], iterative filtering decomposition
has been proposed as an alternative implementation for
empirical mode decomposition [18]. According to this meth-
odology, a series Li of low-pass filters (or moving average fil-
ters) is used to decompose a signal in intrawave frequency
modes or intrinsic mode functions (IMFs). Here, we have
further exploited the estimation of the first IMF, F1, by appli-
cation of the filter (1 − L1) in the input signal x:

F1 = lim
j→∞

1 − L1 j−1x, 9

where L1 corresponds to a FIR moving average-based filter.
The convergence of the iterative filtering decomposition is
ensured by the coefficients (masks) of the filter L1 having a
value between 0 and 1, which has been demonstrated by
Lin et al. [16].

2.1. Design of a Novel Comb Filtering Approach for
Elimination of Periodic Waveforms. As L1, initially, we inves-
tigated the forward-backward application of the moving
average filter indicated in (1) in the input signal, xn [19,
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20]. This procedure allows obtaining a filtered signal with
zero-phase distortion, which is a characteristic of an ideal
comb filter. The forward-backward application of (1) in xn
can be expressed as

yn =
1
M

〠
0

k=M−1

1
M

〠
M−1

k=0
xn−k

n+k

=
1
M

〠
M−1

k=−M+1

M − k
M

xn+k

10

Equation (10) is also referred to as double average fil-
ter [16, 17], where the coefficients of xn+k correspond to a
triangular window of length 2 ×M. By applying the z-
transformation in (10), it results in the following transfer
function:

HD z =
1
M 2

1 − z−M 1 − zM

1 − z−1 1 − z
, 11

whose discrete time realisation is depicted in Figure 3.
The frequency response of HD z is derived from (11) by

setting z = ejω. Hence,

HD ω =
1
M 2

sin2 ωM/2
sin2 ω/2

12

Figure 4 depicts the magnitude response of HD ω ,
calculated according to (12), for some values of M. It also
shows the presence of spaced zeros at the frequency 2π/M.
For a hypothetical value M = 1, HD ω becomes an all-pass
band filter.

The phase response of HD ω possesses a zero-phase
characteristic, as a result of the forward-backward applica-
tion of the moving average filter of (1).

θD ω = tan−1
Im HD ω

Re HD ω
= 0 13

Therefore, (11) describes a kind of FIR moving average-
based filter that provides no distortion effects in the phase
of the signal in the whole filter pass-band. Replacing (11)
by L1 in (9) and taking into account a number J of iterations,
it can be rewritten as [19]

F1 z = 1 −HD z JX z ⇒ F1 z
X z

= 1 −HD z J =H1 z

14

Equation (14) corresponds to the transfer function that
relates the extracted periodic waveform, p t , and the input
signal, x t , as likewise indicated in (4). Therefore, after elim-
ination of p t , the output y t of the proposed comb filter
has been related to x t as [20]

Y z = 1 −H1 z X z ⇒ Y z
X z

= 1 −H1 z =HC z

15

In order to improve the attenuation in the stopbands, we
investigated the application of HC z within the cascade
implementation indicated in

HL z = HC z L, 16

where L is the number of cascades. Since (15) and (16) have
been derived from (11), which has zero-phase distortion
characteristic, they do not cause any distortion effects on
the filtered signal phase either.

2.2. Iterative Application of Time-Domain Averaging. As an
alternative for the filter L1 in (9), we have also investigated
the use of the time-domain averaging filter described in (8).
To this end, we have taken into account a number J of itera-
tions of (9), which has been rewritten as

F2 z = 1 −HTDA z JX z ⇒ F2 z
X z

= 1 −HTDA z J = Hp z J =H2 z

17

Thereby, by eliminating the estimated periodic signal, the
output has been related to the input as

Y z
X z

= 1 −H2 z =HRTDA z 18

2.3. Using the Proposed Method to Design a Novel Notch
Filtering Approach. As remarked by Braun [2], the frequency
response provided by (7) and (8) corresponds to the convo-
lution between the frequency response depicted in Figure 2
and a train of unit pulses separated by the period M. Mak-
ing use of this idea, we also investigated the convolution of
a single pulse, δ, and the magnitude response indicated in
Figure 2(a) to design a novel notch filtering approach
approximated to the ideal case.

H3 ω = δ ω ∗ HMAF ω 19

Figure 5 shows this convolution, where the unit pulse has
been located at the frequency ω0, and HMAF ω was calcu-
lated for M = 2.

As can be noticed in Figure 5(b), (19) corresponds to a
pass-band filter with unit amplitude and central frequency
at ω0. Replacing L1 in (9) by 1 −H3 z and taking into
account a certain number J of iterations, it results in the
notch filter HNTC z of

F3 z = 1 − 1 −H3 z JX z ⇒ F3 z
X z

= H3 z J ⇒HNTC z = 1 − H3 z J

20

Like in (16), we investigated the application of (20) in a
cascade implementation to enlarge the attenuation at the
notch frequency, as indicated in

HNL z = HNTC z L, 21

where L represents the number of cascades as well.

3. Results

3.1. Frequency Characteristics of the Novel Comb Filtering
Approach. All frequency responses depicted below have
been calculated using a number of samples Ns = 300000
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samples, so that ω was set as ω = −π, π , with a frequency
interval at 2π× (1/Ns). In these figures, only the frequencies
ranging from 0 to π are shown. The simulations were
performed in MATLAB environment (The MathWorks
Inc., Natick, USA).

In Figure 6, the magnitude response of HC z (15) is
depicted, taking into account M = 10 and M = 100 and some

values of J . It can be observed that increasing of J is followed
by substantial increasing of the filter gain, which attained
0 dB as well as became more uniform in the different pass-
bands. On the other hand, increasing of J is also followed
by a reduction in the attenuation in the filter stopbands.
On the extreme case, when J→∞, (15) tends to become
an all-pass band filter, as shown in Figure 7(a). By fixing

xn yn∑ ∑ ∑ ∑+
+

+ +
1
M2

−

−
+

+
z−1 z−M

z1 zM

Figure 3: Discrete time realisation of (11).
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Figure 5: Convolution between the unit pulse δ (located at the frequency ω0) and HMAF ω (M = 2). It results in a pass-band filter with a
central frequency at ω0.

5Journal of Healthcare Engineering



the value of J and varying M, (15) shows to provide more
uniform gain in the pass-bands for smaller values of M, as
observed in Figure 7(b).

To demonstrate the enhancement of attenuation in the
stopbands using (16), its magnitude response has been calcu-
lated taking into consideration different values of L. Figure 8
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Figure 6: Magnitude response of HC ω , taking into account (a) M = 10 and (b) M = 100 and some values of J .
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Figure 7: (a) Magnitude response of HC ω forM = 10 and some values of J (J→∞); (b) magnitude response of HC for J = 10000 and some
values of M: M = 10 (blue trace), M = 100 (red trace), and M = 1000 (green trace).
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depicts the magnitude response of HL z , for L = 2 and
L = 10, and taking into account M = 10, and some values of
J . As can be noticed, (16) provides higher attenuation in
the stopbands by increasing the value of L.

3.2. Iterative Application of Time-Domain Averaging. By
setting z = ejω in (6), the magnitude and phase response
of the periodic component p̂ t obtained by time-domain
averaging can be, respectively, derived as

Hp ω =
1
N

sin ωNM/2
sin ωM/2

22

and

θp ω = tan−1
Im Hp ω

Re Hp ω
23

Figure 9 depicts the magnitude and phase response of
(22) and (23), taking into account M = 10, for N = 4 (dark
trace), N = 8 (green trace), and N = 16 (gray trace).

The main lobes of the magnitude response Hp ω lie
spaced at the frequency 2π/M and have unit amplitude. By
increasing N , the amplitude of the side lobes is reduced as
well as the main lobes are narrowed. Regarding the phase
response, it is not linear, but has approximated piecewise
linearity in between the null frequencies of the lobes
[4, 8, 9]. In turn, Figure 10 shows the frequency response
associated with the nonperiodic component e t , as indi-
cated in (8).

Figure 11 depicts the frequency response provided by
(17), taking into account M = 10 and N = 4, for J = 1 (dark
trace), J = 3 (green trace), and J = 8 (gray trace).

It can be noticed that increasing J in (17) has a similar
effect to increasing N in (22), by reducing the amplitude of
the side lobes and narrowing the main lobes. Regarding the
phase response, it remains piecewise linear after increasing
J . In Figure 12, the frequency response corresponding to
(18) is depicted, for M = 10, N = 8, and some values of J .
It can be observed that as J increases, the filter gain is
approximated to unity along the pass-bands as well as the
stopbands become narrower. Therefore, an increase of J
in (18) attests a similar effect to that provided by increasing
N in (8) alike.

3.3. NotchFilterCharacteristicsObtainedby Iterative Filtering.
The magnitude response corresponding to HNTC z is
depicted in Figure 13, taking into account M = 2, some
values of J , and Ns = 300000 samples for HMAF ω as
well. The notch filter stopband was located at ω0 = π/2. It
can be observed that the bandwidth of the notch filter
stopband is narrowed by increasing the value of J , as well
as (20) tends to become an all-pass band filter when
J→∞. This notch filter does not cause any effects on the
phase of the signal.

In Figure 14, we show the use of (20) within the cascade
implementation indicated in (21). The variation of the band-
width of the notch filter stopband around −3 dB provided
by (21) is indicated, taking into account M = 2, some values
of J and L, f = ω/2π × f s, and f s = 5 kHz. As can be seen,
combination of proper values of J and L allows obtaining
stopband bandwidths ranging from 0 (when J→∞) up to
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Figure 8: Magnitude response of HL ω (16) for (a) L = 2 and (b) L = 10, taking into account M = 10 and some values of J .

7Journal of Healthcare Engineering



4500Hz (for L = 20). Therefore, (21) can produce a notch
filter with a large range of values for the stopband band-
width around −3 dB.

4. Further Comparative
Analyses and Discussion

Figure 15 shows the frequency response of (3), for some
values of r and M = 10.

It can be noticed that as the value of r increases towards
1, the gain of the filter approximates to unity and becomes
more uniform along the different pass-bands, as well as the
phase response approaches to a zero-phase distortion. On
the extreme scenario of r→ 1, the filter becomes an all-
pass band filter. On the other extreme, when r = 0, (3)
equals (2) [6].

As indicated in Figures 6 and 10, by increasing the
parameters J ((15) and N ((8), the gain in the filter pass-
bands provided, respectively, by HC and HTDA increases
and attains unity (0 dB). Simultaneously, a reduction of
attenuation in the stopbands is also observed. Nevertheless,
rather than the response of HMOD shown in Figure 15,
there is no effect on the phase response corresponding to
HC and HTDA, which remains zero radians for any values
of frequency. On the other hand, HTDA ((8) cannot be
applied in a cascade implementation because of the ripple
that occurs below and around 0 dB in the pass-bands (see
stopband detail in Figure 10), which can compromise the
gain uniformity along the pass-bands. As HC shows no
ripple along the pass-bands and no phase distortion, these
characteristics allow the application of HC in a cascade
implementation ((15) to improve the attenuation in the
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stopbands. HMOD, in turn, cannot be applied within a cas-
cade implementation without causing some distortion in
the signal phase alike.

Figures 9–12 reveal that the iterative application of time-
domain averaging, according to (18), represents an alterna-
tive to using higher values of N , since it permits to obtain
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Figure 11: Frequency response of (17), taking into accountM = 10 andN = 4, for J = 1 (dark trace), J = 3 (green trace), and J = 8 (gray trace):
(a) magnitude response; (b) phase response.
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narrower comb filter stopbands as well as phase distortion
approximately zero along the filter pass-bands. Thus, in addi-
tion to enhancing the comb filter selectivity, time-domain
averaging applied with a J number of iterations enables to
use a smaller number of averaging periods. In Figure 16, we
illustrate the variation of the number of averaging epochs
according to the number of iterations, which was calculated
by taking into consideration a certain bandwidth (18.01Hz)
in the stopbands around −3 dB and M = 20.

For instance, by using J = 1 and N = 21 averaging
epochs, it was possible to produce the same bandwidth in
the stopbands around −3 dB by setting N = 3 and J = 71 77
in (18). Therefore, when J≠ 1 in (18), the attenuation of
the noise component is carried out by a factor higher
than N [8].

Figure 17 shows the difference amongst HMOD, HTDA,
HC , and HL regarding the bandwidth in the stopbands
around −3 dB.

The analysis depicted in this figure has taken into account
M = 20. In case of HMOD, above around r = 0 95, the band-
width around −3 dB is equal for all stopbands. In turn, for
HTDA (and HRTDA), such a bandwidth is approximately sim-
ilar for all stopbands, irrespective of the value of N (and J).
On the other hand, for HC , the width of the stopbands
around −3 dB depends on the frequency of the stopband as
well as the value of J . The attenuation in the stopbands (as
well as the gain in the pass-bands) may lie below −3 dB for
smaller values of J (see Figure 6). As the gain in the pass-
bands approximates to 0 dB when J increases, the bandwidth
of the stopbands around −3 dB becomes narrower. However,
it is not the same for all stopbands, but it enlarges according
to the fundamental frequency (fd) of the stopband
(Figure 17(c)). Such a difference is even higher for smaller
values of J . Therefore, as shown in Figure 17(c), the higher
the fundamental frequency of the stopband, the broader is
its respective bandwidth. This characteristic has been

demonstrated to be useful for obtaining a more effective
attenuation in the frequency bins associated with the har-
monic gradient artefact spectral lines, with similar preserva-
tion of the EEG signal than that provided by the AAS
method which is based upon time-domain averaging [20].
Thereby, broadening of the gradient artefact spectral lines
provoked by micromovements of the subject head with the
fMRI scanner, which are mostly observed in higher frequen-
cies, can be more effectively accounted for by HC because of
the increasing stopband bandwidths around −3 dB according
to fd.

In Figure 18, an exemplary setting of parameters r, N, J,
and L are used to illustrate the bandwidth of the stopbands
according to the fundamental frequency (fd). As predicted
by (16), the stopband bandwidth is further enlarged when
HC is applied within the cascade implementation (HL), espe-
cially in stopbands with higher fundamental frequency
(Figures 17(d) and 18). As can also be observed in Figure 18,
HC , HL, and HMOD do not provide a stopband around 0Hz,
whereas it is produced by HTDA and HRTDA.

Figure 19 depicts the impulse response associated with
HMOD, HTDA, HC , and HL, for some values of the parameters
r, N, J, and L. After the impulse is applied, an overshoot
occurs in each of these responses, followed by decaying peaks
spaced at the window length M. The peak overshoot as well
as the duration of the decaying peaks depend on the value
of the parameter: smaller r, N, and J produce an increase in
the overshoot and decreased settling time. Rather, a higher
value of L provides an increase in the overshoot and increased
settling time.

Regarding the computational effort, we verified that HC
and HL are less computationally demanding than HMOD,
HTDA, and HRTDA. This can be ascribed to the computa-
tional efficiency of (11), which precisely requires the double
of the computations of (2), as indicated in Figures 1 and 3.
The worst case of computational effort was for HMOD,
whose application was seriously compromised because of
expensive computational memory demand by higher values
of M [6, 7].

Since a comb filter can be also implemented as a combi-
nation of notch filters, the selectivity provided by (21) could
be used to design a highly selective comb filtering approach
with a variable bandwidth for the different filter stopbands.
Regarding the use of values ofM> 2 in (20), we observed that
some ripple around and below 0dB may appear in the fre-
quency response of HNTC for smaller values of J , which can
cause nonuniform gain along the pass-bands within the cas-
cade implementation indicated in (21). Case higher values of
J are used in this scenario, the filter gain becomes uniform,
but the notch filter stopband would have narrower band-
width than M = 2 in (21).

In future work, (20) should have its performance com-
pared with other notch filter approaches [21], as well as
(21) should be used and evaluated in applications where
notch or comb filtering is required, such as power line rejec-
tion in biomedical signals [1]. Additionally, other filters L1 in
(9) should be investigated and evaluated for the iterative
comb filtering implementation proposed here. Equations
(15) and (16) should also be used and have their performance

104

103

102

101

Ba
nd

w
id

th
 (H

z)

100

100 102 104 106

Number of iterations, J
108

L = 20
L = 10
L = 5

L = 2
L = 1

1010
10−1
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evaluated in signal processing applications other than the
suppression of the gradient artefact from the EEG recordings
[19, 20], where broadening of harmonic spectral lines is
observed. As a further suggestion for future work, the itera-
tive application of time-domain averaging should be
assessed by using other kinds of moving-averaging filters,
such as the exponential averaging and running averaging
[2]. Last, the novel comb and notch filtering implementation
described in this work shall be used and evaluated in other
biomedical signal processing applications, such as speech

signal processing and during estimation of evoked potentials
(EPs) and event-related potential (ERPs) responses [1, 22].

5. Conclusions

A number of biomedical and other signal processing appli-
cations require the use of comb filtering approaches that
perform elimination or extraction of periodic waveforms
with a high degree of selectivity. As regards the elimina-
tion of periodic waveforms, the comb filter should be able
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to suppress the harmonics associated with the periodic sig-
nal and, simultaneously, to preserve the stochastic compo-
nent or noisy signal according to the level of quality
required by the application. Thus, it is important to make
sure that the performance of the comb filtering approach
meets the selectivity requirements of the application. Since
such requirements are not always met by the existing
methods, investigation and proposal of novel approaches
to improve the comb filtering selectivity have been often
described in the literature.

In this work, we have demonstrated how iterative filter-
ing can be used to improve the selectivity of comb filtering
approaches as well as to design a novel notch filter, which
are based on the conventional FIR moving average filter.
The novel comb filtering approach implementation is
revealed to provide unity gain in the pass-bands, no effects
on the signal phase, and broadening of the stopband band-
width around −3 dB according to the fundamental frequency
of the stopband. This characteristic has been proven to be
useful within a scenario of broadening of spectral lines, such
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as that observed during the occurrence of the gradient arte-
fact in the EEG signal recorded simultaneously with fMRI
data. Moreover, a cascade implementation of the proposed
approach permits to further increase the attenuation pro-
vided in the stopbands. In parallel, the iterative application
of time-domain averaging allows using a smaller number of
averaging epochs in order to estimate the periodic signal
component. Hence, when a number of iterations are taken
into consideration, the noise component can be attenuated
with a factor higher than the square roots of the number of
averaging epochs. Last, the novel notch filter implementation
by iterative decomposition shows to provide a selective filter-
ing with a large range of values for the stopband bandwidth
around −3 dB.
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