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To evaluate the potential application of computed tomography (CT) radiomics in the

prediction of BRCA1-associated protein 1 (BAP1) mutation status in patients with

clear-cell renal cell carcinoma (ccRCC). In this retrospective study, clinical and CT

imaging data of 54 patients were retrieved from The Cancer Genome Atlas–Kidney

Renal Clear Cell Carcinoma database. Among these, 45 patients had wild-type BAP1

and nine patients had BAP1 mutation. The texture features of tumor images were

extracted using the Matlab-based IBEX package. To produce class-balanced data and

improve the stability of prediction, we performed data augmentation for the BAP1

mutation group during cross validation. A model to predict BAP1 mutation status was

constructed using Random Forest Classification algorithms, and was evaluated using

leave-one-out-cross-validation. Random Forest model of predict BAP1 mutation status

had an accuracy of 0.83, sensitivity of 0.72, specificity of 0.87, precision of 0.65, AUC

of 0.77, F-score of 0.68. CT radiomics is a potential and feasible method for predicting

BAP1 mutation status in patients with ccRCC.
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INTRODUCTION

Clear-cell renal cell carcinoma (ccRCC) is the most common kidney cancer in adults, and its
pathogenesis is complicated. Fortunately, there are less significantly mutated genes in ccRCCs
compared with other cancers (1); the top four most commonly mutated genes are von Hippel-
Lindau (VHL) tumor suppressor gene, polybromo-1 (PBRM1), BRCA1-associated protein 1
(BAP1), and SET domain containing 2 (SETD2) (2, 3).

Even though VHL mutation occurs in as high as 52% of ccRCC cases, meta-analysis indicates
that it has no prognostic or predictive value in patients with ccRCC (4). BAP1mutated in 10–15% of
ccRCC (5), but it has recently garnered attention for several reasons. Brugarolasl et al. reported an
association between BAP1 mutation and pathology grading of ccRCC (6). Moreover, greater than
50% of patients with ccRCCwith BAP1mutations exhibit coagulative tumor necrosis and have poor
clinical outcomes (7). Other studies have demonstrated an association between BAP1mutation and
mammalian target of rapamycin (mTOR) pathway activation (8, 9). Patients with BAP1 mutation
do not respond well to targeted therapy, and those with wild-type tumors appear to have longer
progression-free survival than those with BAP1mutation tumors (10).
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Tumor imaging phenotypes are closely associated with their
gene expression patterns, protein, or other molecular changes
(11). Radiogenomics analyze the relationship between imaging
phenotype and gene expression patterns and provide insights
into the genetic background and developmental status of the
disease (5). Liu et al. utilized computed tomography (CT)
imaging features to predict epidermal growth factor receptor
(EGFR) mutations in patients with non-small cell lung cancer.
Their results suggest that wild-type EGFR is associated with
conditions such as emphysema and airway malformation,
while EGFR mutations are associated with ground-glass opacity
changes (12). In addition, the isocitrate dehydrogenase 1 (IDH1)
gene mutation is considered a specific marker for glioma, and
the radiomics method has been developed to reveal IDH1 status
for patients with glioma (13). Due to the fact that ccRCC
with different genotypes may respond differently to targeted
therapy, the extraction of imaging biomarkers that are capable
of predicting BAP1 mutation would be of great significance for
ccRCC precision therapy (14, 15). In this study, we evaluated the
potential application of the radiomicsmethod in predicting BAP1
mutation status in patients with ccRCC.

MATERIALS AND METHODS

Study Subjects
The patients’ genetic data were from The Cancer Genome
Atlas–Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)
database (https://cancergenome.nih.gov/), while corresponding
radiological data were from The Cancer Imaging Archive (TCIA)
(16). There were 537 patients in the TCGA-KIRC database,
among which only 267 had corresponding radiological data.
The inclusion criteria were, respectively, enrolled in our study
for assessment: (1) BAP1 mutation status from TCGA were
available (BAP1 mutated or unmutated), (2) available CT
images in TCIA (contrast enhancement). The CT images with
obvious noises, post-operative CT images, and unusable CT
images were excluded from the study. A total of nine patients
with BAP1 mutation and 45 patients with BAP1 unmutation
met these criteria and thus were included in this study. The
demographic and clinical characteristics of the patients are
presented in Table 1.

The data related to this study were all from the public database
and were used solely for scientific research. Therefore, ethical
approval was not required.

Tumor Segmentation
Tumor segmentation was based on the IBEX software package
developed using Matlab (17). The region of interest (ROI) was
drawn along the inner border of tumor as much as possible. The
ROI was first drawn on the maximum tumor dimension in the
axial plane, and additional segmentations were then performed
on the adjacent upper and lower slices with 3–4 slices skipping.
At the beginning of the study, 10 cases were picked randomly
and used for ROI analysis by two independent radiologists with
more than 10 years of experience. Both radiologists were blinded
to the BAP1 mutation status. The inter-observer variability was
evaluated using intra-class correlation coefficient (ICC). ROI

TABLE 1 | Demographic and clinical characteristics of patients.

Characteristic Value

Mean age (year) 62

Sex

Female 25 (46.3%)

Male 29 (53.7%)

BAP1 mutation

Absent 45 (83.4%)

Present 9 (16.6%)

Nuclear grade

Fuhrman I/II 18 (33.3%)

Fuhrman III/IV 36 (66.7%)

TNM

I 20 (37.0%)

II 7 (13.0%)

III 17 (31.5%)

IV 10 (18.5%)

extraction for the remaining images was analyzed by one of
the radiologists. In this study, we only used images in the
CT enhancement nephrographic phase because of better tumor
visualization in this phase. It was relatively difficult to delineate
the tumor ROI on the CT images that were unenhanced or in the
corticomedullary phase.

Texture Feature Extraction and Selection
Texture feature extraction and calculation were performed
using IBEX from both the original and filtered images. The
Laplacian of Gaussian (LoG) filter was used for image filtration,
with sigma value of 2 and 8mm denoting fine and coarse
patterns, respectively. The extracted texture features included
intensity histogram, intensity direct, gray-level co-occurrence
matrix, neighbor intensity difference matrix, and gray-level run
length matrix.

Each research center used different CT protocols, which affect
the radiomic features (18, 19). Orlhac et al. (20) developed
the ComBat compensation method, which realigns radiomic
features distributions and facilitates multicenter radiomics
studies. It is a data-driven method that pools data from different
centers and protocols in a common space for compensation.
It does not require resample of CT images and will not
change the definition of radiomic features (20). Therefore,
we used the ComBat function (https://github.com/Jfortin1/
ComBatHarmonization) to harmonize multisite imaging data
achieved in TCIA (21).

Texture features with low reproducibility were abandoned.
Inter-observer variability was evaluated using the intraclass
correlation coefficient (ICC). Features with ICC value > 0.85
were further analyzed.

Mann-Whitney U test was primarily used to reduce the
number of irrelevant and redundant texture features, features
with p < 0.05 were retained. The level of collinearity among the
features was assessed using Spearman’s correlation coefficient (r).
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(22). The features with the lowest collinearity (r < 0.8) with the
other features remained in the study.

Model Construction
In this study, the number of patients with BAP1 mutation that
met the inclusion criteria was very limited, which resulted in an
imbalance between the mutation group and wild-type group. To
address this problem, we performed data augmentation for the
small-sized BAP1mutation group and performed downsampling
for the large-sized BAP1 wild-type group. This is an effective

method to solve the common problem of imbalanced classes
in machine-learning classification and has been well accepted
in both academia and industry (23, 24). According to previous
imbalanced data of radiomics study, each BAP1 mutation case
was segmented with more samples. After excluding the slices

on the edge of the images, which could be affected by volume

effects, each case generated 3–4 slices. By contrast, there were

more cases with wild-type BAP1, so we randomly select some
cases and generated two slices from each case. We initially had
54 ccRCC cases, which included 45 cases (90 segmentations)

FIGURE 1 | Radiomics analysis pipeline. LOOCV, Leave-one-out-cross-validation; SMOTE, Synthetic Minority Over-sampling Technique.
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without BAP1mutations and nine cases (31 segmentations) with
BAP1mutations.

Then, we used Synthetic Minority Over-sampling Technique
(SMOTE) to analyze and simulate these data (24) and added
these artificial samples to the new dataset. To avoid overfitting,
the SMOTE is combined with cross validation (CV). Leave-one-
out-cross-validation (LOOCV) is chosen for CV, this method is
that we make use of all data points and hence it is low bias.
When the sample size is small, LOCCV should be adopted to
obtain a reliable accuracy estimate for a classification algorithm
(25, 26). Specifically, in each iteration of LOOCV, after dividing
a set of the original data as the validation set, SMOTE is used for
the remaining training set. Therefore, for each LOOCV iteration,
there were 180 labeled segmentations in training, which included
90 segmentations with wild-type BAP1 and 90 segmentations
with BAP1mutations.

Random Forest (RF) is one of the most usedmachine-learning
algorithms, because of its high performance and excellent
generalization. In this study, the tree number of all RF classifiers
was set to 500, Gini index was used to evaluate the importance
of each feature. In LOOCV, RF first includes all the features after
dimensionality reduction and then ranks the feature importance,
then the first eight features in terms of importance are selected
to reconstruct a new RF classifier. Finally, we performed
a comprehensive evaluation of the constructed prediction
model using commonly used cross-validated area under the
curve (AUC) of receiver operating characteristic (27), accuracy,
precision, recall, F-score (weighted harmonic mean of precision
and recall), and Matthews correlation coefficient (MCC). The
radiomics analysis pipeline is summarized in Figure 1.

RESULTS

After preliminary feature reduction, 58 features remain.
Afterwards, the last feature that is involved in modeling for
each LOCCV iteration is extracted and counted. The last
features involved in RF modeling are summarized in Table 2 and
Figure 2. Among the features used for model construction, most
were extracted from LoG-filtered images, with a few extracted
from the original images. Gray level run length matrix was
the most selected radiomics feature classes. The most selected
features for each model and their corresponding respective ICC
values are provided in Table 2.

The results showed that the RF-based predictive model had
an accuracy of 0.83 [95% confidence intervals (CI): 0.76–0.88],
sensitivity of 0.72 (95% CI: 0.65–0.79), specificity of 0.87 (95%
CI: 0.82–0.93), precision of 0.65 (95% CI: 0.58–0.74), AUC of
0.77 (95%CI: 0.70–0.83), F-score of 0.68 (95%CI: 0.61–0.76), and
MCC of 0.58 (95% CI: 0.50–0.66).

DISCUSSION

Our predictive model showed excellent performance in the
dataset from TCGA. The results suggest that RF algorithm-based
high-dimensional quantitative CT radiomics analysis might be

TABLE 2 | Selected texture features for random forest classifiers.

Feature Meaning ICC

Image type Feature class Feature name

LoG filter (2mm) Intensity histogram Median absolute

deviation

0.93

No filter Intensity histogram Kurtosis 0.93

No filter Gray level

co-occurrence matrix

Informational measure

of correlation 2

0.94

LoG filter (2mm) Gray level

co-occurrence matrix

Informational measure

of correlation 1

0.93

LoG filter (2mm) Gray level run length

matrix

Gray level

non-uniformity

0.97

LoG filter (2mm) Neighbor intensity

difference

Contrast 0.97

No filter Gray level run length

matrix

Local entropy standard

deviation

0.91

LoG filter (8mm) Gray level run length

matrix

Short run low gray level

emphasis

0.94

LoG, Laplacian of Gaussian; ICC, intra-class correlation coefficient.

a feasible and potential method for predicting BAP1 mutation
status in patients with ccRCC.

Radiomics has shown promise for the differentiation of
pathological type, prediction of prognosis, and therapeutic
response in ccRCC (28–30). However, radiogenomics in ccRCC
has been limited. Karlo et al. investigated the association between
CT features of ccRCC and mutations in VHL, PBRM1, SETD2,
KDM5C, and BAP1 genes (31). Their results showed that
mutation of BAP1 was significantly associated with evidence of
renal vein invasion. Shinagare et al. (22) reported that BAP1
mutation was associated with ill-defined margins and presence of
calcification. However, these studies were based on qualitative CT
image features. Shinagare et al. also noted that the definitions of
some imaging features are hard to specify, consequently resulting
in inconsistent conclusions among observers (22). Kocak et
al. (32) conducted high-dimensional quantitative CT texture
analysis in 45 patients with clear cell RCC (29 without PBRM1
mutation and 16 with PBRM1 mutation). The RF algorithm
correctly classified 95.0% of the ccRCCs (32). These studies
demonstrated that the characteristic gene signature of ccRCC
accurately correlated with CT image phenotype.

Our research might be of more practical and clinical
significance compared with previous studies. Among the
top four most commonly mutated genes, BAP1 is most
critical for personalized precision therapy. ccRCC is typically
considered insensitive to radiation therapy. However, BAP1
loss might sensitize RCCs to radiation (9). In addition,
ubiquitin ligase, which is closely associated with BAP1
protein, is a good candidate therapeutic target. Currently,
Histone deacetylase (HDAC) is that target ubiquitin ligase
are being studied in a clinical trial for ccRCC treatment (14).
Moreover, BAP1 mutation sensitizes cells to poly (ADP-ribose)
polymerase inhibitors and a clinical trial of an HDAC for
the treatment of patients with refractory metastatic RCC
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FIGURE 2 | Radiogenomics map of selected features per mutation in the radiogenomics cohort. Each row represented a feature and each column represented a

segmentation. The difference of each feature between BAP1 mutated and unmutated can be observed.

is ongoing (33). High-throughput genome sequencing is
gradually being used in the clinic; however, this technique
is relatively expensive and requires special techniques. CT
has become indispensable in clinical routine. Therefore, we
postulated that developing a CT feature-based model to
predict genotypes of ccRCC would be of great significance for
precision medicine.

Regarding the previous works on imaging research of BAP1
mutation based on TCGA and TCIA data, Ghost et al. found out
that the prediction model based on nephrographic phase images
performed the best with an area under curve (AUC) of 0.71
(34). However, they failed to make corresponding adjustments
when the number of BAP1 mutations is too few. Realizing
that the processing for this batch of unbalanced data was the
key to research, Kocak et al. (35) also adopted the strategy of
oversampling to the BAP1 mutation data. Regrettably, however,
they merely conducted the unenhanced CT texture analysis
(35). To design a machine learning model that can identify this
rare genetic mutation in large amounts of ccRCC patients and
make up for inadequacies in previous studies, nephrographic
phase data is directly used in this research. In the oversampling
section, the oversampling of BAP1 mutation data is innovatively
integrated into CV, which reduces the relevance between the
data in the training set and the validation set to the fullest
extent. And RF with an overbagging characteristic is chosen
as the classifier, which also embeds partial feature selection in
CV iteration. These methods are highly effective techniques
for tackling an imbalanced dataset and may reduce the risk
of overfitting.

This study had some limitations. First, it had some intrinsic

downsides of a retrospective study design. Second, the sample

size was limited, which may have caused overfitting during
machine learning.We utilized some commonly used and effective
techniques to address this problem. However, further validation
of this prediction model using external datasets will be necessary.
Third, we only analyzed two-dimensional texture features in this
study. Three-dimensional texture features and morphological
features were not analyzed. However, some studies have reported
satisfactory results based on a single or few slices (30, 36, 37).
Finally, it is not an uncommon problem in radiogenomic studies
that the data are class-imbalanced and the number of variables is
very large and greatly exceeds the number of samples (5).

In summary, our study demonstrated that CT radiomics has
great potential in predicting BAP1 mutation status in patients
with ccRCC. However, further research using larger datasets
will be needed before this technique can be used clinically. The
preliminary results from this study provide a basis for further
radiogenomic studies for RCC.
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