

Identification of the Important Genes of *Bradyrhizobium diazoefficiens* 113-2 Involved in Soybean Nodule Development and Senescence

Songli Yuan^{1†}, Shunxin Zhou^{1†}, Yong Feng², Chanjuan Zhang¹, Yi Huang¹, Zhihui Shan¹, Shuilian Chen¹, Wei Guo¹, Hongli Yang¹, Zhonglu Yang¹, Dezhen Qiu¹, Haifeng Chen^{1*} and Xinan Zhou^{1*}

OPEN ACCESS

Edited by:

Alok Kumar Srivastava, National Bureau of Agriculturally Important Microorganisms (ICAR), India

Reviewed by:

Yuan-Ming Zhang, Huazhong Agricultural University, China Esther Menendez, University of Evora, Portugal

*Correspondence:

Haifeng Chen chenhaifeng@caas.cn Xinan Zhou zhouxinan@caas.cn †These authors have contributed equally to this work

Specialty section:

This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

Received: 07 August 2021 Accepted: 04 October 2021 Published: 11 November 2021

Citation:

Yuan S, Zhou S, Feng Y, Zhang C, Huang Y, Shan Z, Chen S, Guo W, Yang H, Yang Z, Qiu D, Chen H and Zhou X (2021) Identification of the Important Genes of Bradyrhizobium diazoefficiens 113-2 Involved in Soybean Nodule Development and Senescence. Front. Microbiol. 12:754837. doi: 10.3389/fmicb.2021.754837 ¹ Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China, ² Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

Legume nodule development and senescence directly affect nitrogen fixation efficiency and involve a programmed series of molecular events. These molecular events are carried out synchronously by legumes and rhizobia. The characteristics and molecular mechanisms of nitrogen fixation at soybean important developmental stages play critical roles in soybean cultivation and fertilizer application. Although the gene expression of soybean were analyzed in nodules at five important soybean developmental stages, information on the expression of rhizobial genes in these nodule samples is limited. In the present study, we investigated the expression of Bradyrhizobium diazoefficiens 113-2 genes in the nodule samples from five developmental stages of soybean (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage). Similar gene expression patterns of B. diazoefficiens 113-2 were existed during optimal symbiotic functioning, while different expression patterns were found among early nodule development, nitrogen fixation progress and nodule senescence. Besides, we identified 164 important different expression genes (DEGs) associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Gene Ontology, KEGG pathway and homology analysis of the identified DEGs revealed that most of these DEGs are uncharacterized genes associated with nodule development and senescence, and they are not core genes among the rhizobia genomes. Our results provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and supply theoretical basis for the creation of high efficiency soybean cultivation technology.

Keywords: soybean symbiotic nitrogen fixation, soybean developmental stages, rhizobial gene expression, rhizobial DEGs, nodule development and senescence

INTRODUCTION

The symbiotic relationship between legume and soil rhizobia leads to the formation of root nodule and fixation of atmospheric nitrogen (Ferguson et al., 2010). Depending on the persistence of the nodule meristem and morphology characteristics of nodules, nodules in legumes can be divided into determinate nodules and indeterminate nodules (Hirsch, 1992). Nodules formed in Glycine max and Lotus japonicus are determinate nodules, they have non-persistent meristems and predominately contain one specific form of the bacterial development, which is determined by the nodule's age (Karr and Emerich, 1988; Karr et al., 1990). Indeterminate nodules, such as those in Medicago truncatula and Astragalus sinicus, contain persistent meristems and a mixture of bacteroid forms in all stages of development (Vasse et al., 1990). In both determinate and indeterminate nodules, nodule development directly affects nitrogen fixation activity, and the premature senescence of nodules negatively regulates the efficiency of symbiotic nitrogen fixation (Serova et al., 2018). Delaying nodule senescence is a practical measure to increase nitrogen fixation amount and solve the problem of late defertilization in legume crops. Therefore, studies on the root nodule development and senescence are of great significance in the efficient use of nitrogen sources and legume crop yield.

Legume nodule development is initiated by an exchange of chemical signals between legumes and soil rhizobia, and included lots of protein-protein interactions between legumes and soil rhizobia proteins (Zhang et al., 2018). The leguminous molecular events involved in nodulation and nodule development are quite well understood (Li Q. G. et al., 2013; Mergaert et al., 2020; Roy et al., 2020). The characteristics and the corresponding detection methods, the key leguminous genes currently known to be involved in the regulation of nodule senescence and various abiotic factors affecting nodule senescence were summarized in our previous review (Zhou et al., 2021). Except for legumes, the soil rhizobia also play critical roles in symbiotic nitrogen fixation progress (Lindström and Mousavi, 2020). Because Nod factors (NFs), surface polysaccharides and secreted proteins are three main determinants of host specificity in most rhizobia, the rhizobial genes that affect the biological synthesis of these signaling molecules were explored in nodulation, including nod, nif, fix genes, surface polysaccharides biosynthesis genes and secretion system-related genes (Wang et al., 2014; Li et al., 2020). Besides, it has been demonstrated that several rhizobial genes play key roles in nodule senescence. SmgshB is a critical gene for the synthesis of glutathione, which is a carbon source that can ensure the normal development of nodules and can suppress the early senescence of nodules (Cheng et al., 2017; Yang et al., 2020). *lrpL-acdS* genes, which encode an ACC deaminase enzyme, are associated with nitrogen fixation and delayed nodule senescence (Tittabutr et al., 2015). The sigma factors RpoH1 and RpoH2 are involved in different stress responses and negatively regulate nodule senescence (Martínez-Salazar et al., 2009). Anabaena variabilis flavodoxin, a protein involved in the response to oxidative stress, can significantly delay nodule senescence in alfalfa (Redondo et al., 2009). Therefore, both leguminous genes and rhizobial genes are critical to nodule development and senescence.

Soybean (Glycine max) is an important leguminous crop and has been grown worldwide for edible oil, food and feed material (Palander et al., 2005). Large amounts of N from the atmosphere fixed by soybean symbiotic nitrogen fixation can be widely available for growth of soybean and other intercropping and rotation crops (Biswas and Gresshoff, 2014). Branching stage, flowering stage, fruiting stage, pod stage and harvest stage are five important developmental stages for soybean cultivation and fertilizer application studies, and the nitrogen fixation characteristics of these stages have been well studied (Fehr et al., 1971). In our previous study, the expression of nodule genes at above-mentioned five stages was assessed quantitatively using RNA-Seq, we only analyzed the important different expression genes (DEGs) of soybean in nodule development and senescence, but not of Bradyrhizobium diazoefficiens 113-2 (Yuan et al., 2017).

B. diazoefficiens 113-2 was collected from paddy fields in Hengyang area of Hunan Province, China in 1972 by Xuejiang Zhang, and its genome shared a large synteny blocks and a high ANI value with that of B. diazoefficiens USDA110 (Li et al., 2020). In this report, we investigated the expression of B. diazoefficiens 113-2 genes in the nodule samples from abovementioned five developmental stages of soybean and identified 164 important DEGs associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Our results firstly connected the action mode of rhizobial genes during nodule development with the developmental stages of soybean, which should provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and shed new light on the molecular mechanisms of nitrogen fixation at above-mentioned five developmental stages of soybean.

RESULTS

Expression Analysis of the Genes of *B. diazoefficiens* 113-2

We previously performed RNA-Seq analysis for five different nodule samples from five important development stages of soybean (Yuan et al., 2017) and sequenced the genome of *B. diazoefficiens* 113-2 (Li et al., 2020). In this report, we want to investigate the expression of the genes of *B. diazoefficiens* 113-2 in nodule development and senescence by using the above-mentioned RNA-Seq data. The genome and gene mapping details of *B. diazoefficiens* 113-2 were shown in **Supplementary Table 1**, and the results of sequencing saturation, reads coverage and reads random analyses were displayed in **Supplementary Figures 1–3**. As shown in **Table 1**, 2234 (about 25.38%) genes of *B. diazoefficiens* 113-2 were not identified in these five nodule samples, and more than 30% of the genes (except for Pod stage_N) contained meaningless fpkm values (0~1). For the rest genes, most of the fpkm values were between 1 and 1,000, and

	fpkm value						
	>10,000	1,000~10,000	1~1,000	0~1	NA		
Branching stage_N	16 (0.18%)	223 (2.53%)	2087 (23.71%)	4241 (48.19%)	2234 (25.38%)		
Flowering stage_N	18 (0.20%)	181 (2.06%)	2362 (26.84%)	4006 (45.52%)	2234 (25.38%)		
Fruiting stage_N	18 (0.20%)	208 (2.36%)	3293 (37.42%)	3048 (34.63%)	2234 (25.38%)		
Pod stage_N	18 (0.20%)	210 (2.39%)	5260 (59.77%)	1079 (12.26%)	2234 (25.38%)		
Harvest stage_N	25 (0.28%)	190 (2.16%)	3632 (41.27%)	2720 (30.91%)	2234 (25.38%)		

TABLE 1 The numbers of B. diazoefficiens 113-2 genes in different fpkm value groups in five nodule samples.

a very small number of the fpkm values were above 10,000 (**Table 1**). Besides, the numbers of genes with meaningful fpkm values (>1) at one or more nodule samples were shown in **Figure 1A**. There are 966 genes consistently expressed at five nodule samples, 1085 genes were consistently found at four nodule samples, and 1252, 1552, and 1771 genes expressed at three, two and only one nodule sample, respectively. The detail fpkm information was shown in **Supplementary Table 2**.

To study the correlation of the expressions of *B. diazoefficiens* 113-2 genes among the five nodule samples, we calculated the Pearson correlation coefficients of each two nodule samples based on the total gene expression levels (**Figure 1B**). The Pearson correlation coefficients between Branching stage_N and the other four nodule samples were 0.54~0.63, indicating that the expression of the genes of *B. diazoefficiens* 113-2 in Branching stage_N was very different from other four nodule samples. The Pearson correlation coefficients between harvest stage_N and flowering stage_N, fruiting stage_N or pod stage_N were less than 0.9, suggesting that relative lower correlation between these nodule samples. While the Pearson correlation coefficients among flowering stage_N, fruiting stage_N and pod stage_N were more than 0.9, indicating that relative higher correlation were existed in these three nodule samples.

Different Expression Gene Identification Between Different Nodule Samples

To screen the important genes of *B. diazoefficiens* 113-2 involved in nodule development and senescence, a false discovery rate (FDR) ≤ 0.001 and $|\log 2$ ratio ≥ 1 were used to identify the DEGs in the ten Groups. The numbers of up-regulated and down-regulated DEGs in these ten Groups were shown in Figure 2A, and the ID information on these DEGs was provided in **Supplementary Table 3**. The Group (Harvest vs. Branching) possessed the highest number of DEGs (36 up-regulated, 47 down-regulated), followed by Pod vs. Branching Group (33 up-regulated, 47 down-regulated) and Fruiting vs. Branching Group (34 up-regulated, 31 down-regulated). Besides, Harvest vs. Flowering Group (27 up-regulated, 25 down-regulated), Harvest vs. Pod Group (28 up-regulated, 13 down-regulated) and Harvest vs. Fruiting Group (19 up-regulated, 18 down-regulated) also had relative high number of DEGs. There were relatively low DEG numbers among the three Groups (Fruiting vs. Flowering, Pod vs. Flowering and Pod vs. Fruiting).

According to different reference developmental stages N, above-mentioned ten Groups were divided into four

Classes (Figure 2A). The number of DEGs consistently found in all four Classes was 15 and the total number of DEGs identified during the soybean nodule development was 164 (Figure 2B).

DEG Annotation and Expression Pattern Analysis

The above-mentioned 164 DEGs encoded peptides with 41~3105 amino acid residues, and their detail sequence information was shown in **Supplementary Table 4**. These DEGs were annotated to evaluate their potential functions. Among them, five DEGsencoding nodulation proteins (NodG, NolG, NoeK, and NoeJ), nine DEGs-encoding Nif proteins (NifB, NifD, NifE, NifH, NifK, NifN, NifQ, NifW, and NifX), three DEGs-encoding Fix proteins (FixA, FixC, and FixK), three DEGs-encoding transcriptional regulator proteins and nine DEGs-encoding ABC transporter-related proteins were identified. Besides, 27 DEGs were involved in type-III secretion system (T3SS), eight DEGs located in membrane and many DEGs encoded various proteases (**Supplementary Table 5**). To investigate the expression profile of the 164 DEGs during nodule development and senescence, we analyzed the RNA-Seq results of these DEGs at above-mentioned five nodule samples, and the result showed that these DEGs had various expression patterns (**Figure 3**). 64 DEGs reached their peaks at branching stage_N or flowering stage_N, and most of them were down-regulated during nodule development and senescence (**Figure 3A**), indicating that these DEGs mainly play roles in the early stages of nodule development. 45 DEGs reached their peaks at flowering stage_N or fruiting stage_N, and had relative low expression at branching stage_N or harvest stage_N (**Figure 3B**), suggesting that these DEGs mainly participate in nitrogen fixation progress. About 55 DEGs reached their peaks at harvest stage_N or pod stage_N, and most of them were up-regulated during nodule development and senescence

(Figure 3C), indicating that these DEGs mainly play roles in nodule senescence.

DEG Functional Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis

To evaluate the potential functions of the 164 DEGs, we used Gene Ontology (an internationally standardized gene function classification system) to classify these DEGs. Among these DEGs, 62 genes had no functional GO term, and a total of 150 GO terms were assigned for the rest genes, while about 2/3 (101 out of 150) functional GO terms were specific (only for one gene) (**Supplementary Table 6**). The rest49 Go terms were listed in **Figure 4** and were divided into three categories: cellular components, biological process and molecular function. The cellular components mainly included integral component of membrane and membrane. The main biological processes of the DEGs were oxidation-reduction process, nitrogen fixation, metabolic process, transport and regulation of transcription. The molecular functions associated with the DEGs mainly focused on oxidoreductase activity, catalytic activity, ATP binding, nucleic acid binding and DNA binding.

KEGG is the major public database for pathway enrichment analysis (Kanehisa et al., 2016). In this report, we used KEGG database to classify these DEGs. Among these DEGs, 74 genes had no classified KEGG pathways, and a total of 149 KEGG pathway subgroups were assigned for the rest genes, while about 76% (113 out of 149) pathway subgroups were specific (only for one gene) (**Supplementary Table 7**). The other 36 pathway subgroups associated with the DEGs were shown in **Figure 5**. Most of these pathways were metabolic-related pathways. The pathways with the greatest numbers were metabolic pathway, followed by

microbial metabolism in diverse environments, biosynthesis of secondary metabolites and biosynthesis of antibiotics.

DEGs Associated With Nitrogen Metabolism, ABC Transporters and Two-Component System Pathways

To investigate the regulation of the DEGs of 113-2 during nodule development and senescence, we analyzed nitrogen metabolism (K00910), ABC transporters (K02010) and Two-Component system (K02020) pathways (obtained by KEGG)¹ in more detail (**Figure 6**). Two KEGG gene sets in K00910, seven in K02010 and six in K02020 were differentially expressed during nodule development and senescence. One gene that matched K00910 pathway gene *NirK* (*113-2GL002109*) was up-regulated in Harvest vs. Branching, Harvest vs. Flowering, Harvest vs. Fruiting and Harvest vs. Pod, suggesting that this gene has relative higher expression in harvest stage nodules and plays key roles in nodule senescence. Among the three DEGs that matched k02010 pathway gene nifDKH, 113-2GL007881 has different expression patterns with 113-2GL007904 or 113-2GL007905 in Flowering vs. Branching, Fruiting vs. Branching, Pod vs. Branching and Harvest vs. Branching groups, indicating that nifDKH gene may play diverse roles in nodulation and nodule development. For K02010 pathway gene sets, three genes that matched modC, modA, gltI, and aatJ were down-regulated in all of the detected groups, the other gene that matched *pstS* was up-regulated in Pod vs. Branching and Pod vs. Flowering groups, and the rest two genes lptG and urtA were down-regulated then up-regulated during nodule development and senescence, suggesting that they may have roles in both nodulation and nodule senescence. Three K02020 pathway gene sets (pstS, gltI and *aatJ*) were the same as that of K02010 pathway, and among the rest three gene sets, one DEG that matched fixK (113-2GL006786) was up-regulated in all of the detected groups, one gene that matched ccoN (113-2GL006780) was up-regulated in most of the detected groups and only down-regulated in Fruiting vs. Flowering group, while the rest one DEG that matched *atoB* (113-2GL005802) was down-regulated in most of the detected groups and only up-regulated in Flowering vs. Branching group.

DEGs Encoding Nod and T3SS Secretion System-Related Proteins

In most rhizobia, NFs, surface polysaccharides and secreted proteins are the main determinants of host specificity (Putnoky et al., 1988; Lorkiewicz, 1997; Li et al., 2014). To examine whether these three signaling molecules also play roles during nodule development and senescence, we explored DEGs that required for the biological synthesis of these signaling molecules between different nodules from different developmental periods of soybean, including five Nod genes, eight nif genes, three fix genes and 27 T3SS-related genes (Figure 7). 16 DEGs (two Nod genes, seven nif genes, one fix gene and six T3SSrelated genes) were down-regulated in all of the detected groups, suggesting that these genes mainly play roles in nodule development rather than nodule senescence. Ten DEGs (one Nod gene, one fix gene and eight T3SS-related genes) were up-regulated in all of the detected groups, and most of these genes (except for 113-2GL007701) have relative higher expression in pod stage nodules or harvest stage nodules, meaning that these genes may participate in regulating nodule senescence. Seven DEGs (113-2GL007881, 113-2GL007641, 113-2GL007564, 113-2GL007604, 113-2GL007623, 113-2GL007879, and 113-2GL007892) have highest expression in flowering stage nodules or fruiting stage nodules, reflecting that these genes may be critical to nitrogen fixation progress. Four DEGs (113-2GL001050, 113-2GL008064, 113-2GL002555, and 113-2GL004188) were down-regulated then up-regulated during nodule development and senescence, suggesting that these genes may play roles in both in the early stages of nodule development and nodule senescence. Five genes (113-2GL000406, 113-2GL005174,

¹http://www.kegg.jp/kegg/kegg1.html

113-2GL006780, 113-2GL007717, and 113-2GL008548) have relative high expression in flowering, fruiting or pod stage nodules, indicating that they mainly play roles in nitrogen fixation progress. The rest one gene (113-2GL007717) was only down-regulated in Harvest/Flowering group.

Orthologs of the DEGs

To further study the roles of these rhizobial DEGs during nodule development and senescence, we identified their orthologs in 113-2 itself, USDA110, Mesorhizobium loti MAFF303099, Mesorhizobium huakuii 7653R and Sinorhizobium meliloti 2011. Four homologous pairs (113-2GL000406/113-2GL001850, 113-2GL004736/113-2GL006371, 113-2GL004195/113-2GL002328, and 113-2GL003941/113-2GL001604) were existed in these 164 DEGs. 16 genes have no orthologs, and most of them have no COG functions (Supplementary Table 8), indicating that these DEGs were mainly strain-specific. 84 DEGs have only orthologs in USDA110, suggesting that these DEGs were mainly species-specific or host specific, and among these DEGs, about 13.1% (11 out of 84) have orthologs in 113-2 itself and more than one orthologs in USDA110 (Table 2). Among the rest 62 DEGs, 35 DEGs have one or more orthologs in all of the five rhizobia, 11 DEGs have orthologs in four rhizobia and 16 DEGs have orthologs in three rhizobial, reflecting that not all of these nodule development and senescence-related DEGs are core genes among

these four rhizobial (**Table 3**). Among the core 35 DEGs, about 60% (21 out 35) were mainly expressed in the early stages of nodule development, six DEGs showed highest expression in the progress of nitrogen fixation, and eight DEGs may play critical roles in nodule senescence, indicating that these core genes have diverse roles during nodule development and senescence (**Table 3**). Among these four rhizobia, 113-2 or USDA110 and *M. loti* MAFF303099 can form determinate nodules with soybean and *Lotus*, respectively, and nine DEGs of 113-2 have orthologs only in USDA110 and *M. loti* MAFF303099 (**Table 3**). Besides, we selected four gene groups with more orthologs to perform phylogeny analyses, and the results revealed closer phylogenetic relationships between the two strains in the same genus (**Supplementary Figures 4–7**).

Our previous study has indicated that 113-2 has an extremely close phylogenetic relationship to USDA110 (Li et al., 2020). An interspecies protein interactome was constructed and 290 USDA110 proteins associated with soybean symbiosis were provided (Zhang et al., 2018). In this report, about 203 USDA110 proteins were searched from the orthologs of the DEGs (**Tables 2**, **3**). We compared these two USDA110 protein groups and discovered six same proteins (bll7322, blr1971, blr1091, blr1516, blr0462, and bll7600), which were detected to be expressed in rhizoidal of root nodules during symbiosis in previous studies (Pessi et al., 2007; Delmotte et al., 2010;

harvest stage; 8, fruiting stage vs. pod stage; 9, fruiting stage vs. harvest stage; 10, pod stage vs. harvest stage.

Čuklina et al., 2016; Zhang et al., 2018). Then we predict the interaction proteins of the six DEGs (orthologs of the six USDA110 proteins) according to the resources from the constructed protein interactome (Zhang et al., 2018), and the results were showed in **Table 4**. These rhizoidal proteins have more than two predicted interacting proteins in soybean, especially for bll7322 or 113-2GL000406 or 113-2GL001850, and blr1971 or 113-2GL007693; they have 21 and 25 predicted interacting proteins in soybean, respectively.

DISCUSSION

Symbiotic nitrogen fixation system is of great significance in agriculture and ecology, and nodule development and senescence directly affects nitrogen fixation efficiency. Nodule development and senescence involves a programmed series of molecular events that are carried out synchronously by both legumes and rhizobia (Vasse et al., 1990; Cermola et al., 2000; Oldroyd et al., 2011; Roux et al., 2014; Alemneh et al., 2020). The nitrogen fixation characteristics of five soybean developmental stages (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage) have been well studied (Fehr et al., 1971), the expression of nodule genes at these developmental stages was assessed quantitatively using RNA-Seq, and the important DEGs of soybean that associated with nodule development and senescence were identified in our previous study (Yuan et al., 2017). In the present study, we firstly investigated the expression of rhizobial genes in the nodule samples from above-mentioned five developmental stages of soybean by using our previous RNA-Seq data (Yuan et al., 2017) and identified 164 important rhizobial DEGs associated with nodule development and senescence.

The Gene Expression of *B. diazoefficiens* 113-2 at Different Nodule Samples From Different Soybean Developmental Stages

Previous comparative transcriptomic analyses have explored the gene expression patterns of rhizobia during chemoautotrophic growth (Franck et al., 2008) or symbiotic non-growth (Vercruysse et al., 2011), under different stresses (Ampe et al., 2003; Chang et al., 2007; Cytryn et al., 2007), in determinate

TABLE 2 | Analysis of species-specific or host specific DEGs.

DEGs	113-2	USDA110	COG annotion
113-2GL000027		bl10805	CubicO group peptidase, beta-lactamase class C family
113-2GL000144		blr0694	Serine protease, subtilase family
113-2GL000369		blr0497	-
113-2GL000546		bll0333	Glucose dehydrogenase
113-2GL000547		bll0332	Cytochrome c, mono- and diheme variants
113-2GL000923	113-2GL007956	blr1693,bll8244	_
113-2GL000935		bll8232	L-lysine 2,3-aminomutase (EF-P beta-lysylation pathway)
113-2GL000936		bll8231	Gamma-glutamyltranspeptidase
113-2GL000937		bll8230	-
113-2GL000966		bll8195	Retron-type reverse transcriptase
113-2GL001135		bll7952	DNA-binding beta-propeller fold protein YncE
113-2GL001326		bl17787	-
113-2GL001540	113-2GL005055,113-2GL005658	bll4384,bll7600,blr3849	ABC-type amino acid transport/signal transduction system, periplasmic component/domain
113-2GL001603		bl17540	Fe-S oxidoreductase
113-2GL001604	113-2GL003941	bll7539,blr5311	_
113-2GL001653		bl17492	Predicted DNA-binding protein, contains Ribbon-helix-helix (RHH) domain
113-2GL001765		bl17395	Uncharacterized protein
113-2GL001774		bll7385	Cellulose biosynthesis protein BcsQ
113-2GL001885		blr7289	Flavin-dependent oxidoreductase, luciferase family
113-2GL002261		blr6953	ABC-type molybdate transport system, ATPase component
113-2GL002263		blr6951	ABC-type molybdate transport system, periplasmic component
113-2GL002327		blr6889	DNA-binding transcriptional regulator, MarR family
113-2GL002328	113-2GL004195, 113-2GL004285	bll5076,bll4983,bll6888	-
113-2GL002767		bll6479	ABC-type branched-chain amino acid transport system, periplasmic component
113-2GL002823		bll6433	-
113-2GL003062		bll6129	Uncharacterized protein
113-2GL004088		bll5176	-
113-2GL004268		bs/5002	-
113-2GL004412	113-2GL004612, 113-2GL002719,	blr4994,blr5174,bll6524,	Opacity protein and related surface antigens
	113-2GL004272, 113-2GL004615,	blr4699,bll4867,blr4701,	
	113-2GL001425, 113-2GL004090	blr7695	
113-2GL004429	113-2GL005811	bll4853,blr3712	Outer membrane protein assembly factor BamA
113-2GL004621		bsr4694	-
113-2GL004679		blr4646	CBS domain
113-2GL004737		bll4594	Fatty-acid desaturase
113-2GL005073		bll4367	Glyoxylase or a related metal-dependent hydrolase, beta-lactamase superfamily II
113-2GL005144		bll4305	Ribonuclease G or E
113-2GL005174		bll4278	-
113-2GL005281		blr4186	Glyoxylase or a related metal-dependent hydrolase, beta-lactamase superfamily II
113-2GL005303		bsl4167	-
113-2GL005372		<i>bll4106</i>	Lipopolysaccharide export LptBFGC system, permease protein LptF
113-2GL005840		blr3683	Chaperonin GroEL (HSP60 family)
113-2GL005842		blr3681	Predicted metal-dependent hydrolase, TIM-barrel fold
113-2GL005843		blr3680	-
113-2GL005844		blr3679	-
113-2GL005845		blr3678	Ferredoxin-NADP reductase
113-2GL005846		blr3677	-

(Continued)

TABLE 2 | (Continued)

DEGs	113-2	USDA110	COG annotion
113-2GL005848		blr3675	D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family
113-2GL006036		blr3477	Aspartate/methionine/tyrosine aminotransferase
113-2GL006040		blr3474	Arginine/lysine/ornithine decarboxylase
113-2GL006052		blr3464	Uncharacterized protein
113-2GL006113		blr3404	Heme-degrading monooxygenase HmoA and related ABM domain proteins
113-2GL006583		<i>bll</i> 2956	Sugar lactone lactonase YvrE
113-2GL007613	113-2GL000934, 113-2GL007832,	blr2165,blr7550,blr1829,	Transposase
	113-2GL007909, 113-2GL000934,	blr1911,blr4868,blr1716,	
	113-2GL007752, 113-2GL007853,	blr1702,bll4642,blr1740,	
	113-2GL007932, 113-2GL004410	blr8233,bll8293,blr2076,	
		blr1807	
113-2GL006652		blr2887	Uncharacterized protein
113-2GL006786	113-2GL007581, 113-2GL006786,	bll3466,bll2109,bll2757	cAMP-binding domain of CRP or a regulatory subunit of cAMP-dependent protein kinases
	113-2GL006050		
113-2GL006982		bll2590	Nucleotide-binding universal stress protein, UspA family
113-2GL007163		bll2460	Outer membrane receptor for ferrienterochelin and colicins
113-2GL007170		blr2455	Isocitrate lyase
113-2GL007564		blr2132	-
113-2GL007565		blr2131	Lysine/ornithine N-monooxygenase
113-2GL007582		blr2108	Non-ribosomal peptide synthetase component F
113-2GL007583		blr2106	Mannose-6-phosphate isomerase, cupin superfamily
113-2GL007612		blr2077	O-acetylhomoserine/O-acetylserine sulfhydrylase, pyridoxal phosphate-dependent
113-2GL007619		bll2067	-
113-2GL007623		bll2063	Acyl-CoA dehydrogenase related to the alkylation response protein AidB
113-2GL007660		bll2012	Opacity protein and related surface antigens
113-2GL007665		bll2003	Carbohydrate-selective porin OprB
113-2GL007693		blr1971	Dipeptidyl aminopeptidase/acylaminoacyl peptidase
113-2GL007717		bll1944	Opacity protein and related surface antigens
113-2GL007787	113-2GL000704	bll0184,blr1879	DnaJ-class molecular chaperone with C-terminal Zn finger domain
113-2GL007806	113-2GL001935, 113-2GL001936	blr7243,blr1853,blr7242	Cytochrome P450
113-2GL007808		blr1851	Uncharacterized protein Yjbl, contains pentapeptide repeats
113-2GL007874		bll1777	Alkyl hydroperoxide reductase subunit AhpC (peroxiredoxin)
113-2GL007880		blr1770	-
113-2GL007884	113-2GL008289	blr1311,bll1766	Outer membrane protein W
113-2GL007893		bll1754	-
113-2GL007894		blr1753	Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase
113-2GL007900		blr1748	-
113-2GL007901		blr1747	Predicted Fe-Mo cluster-binding protein, NifX family
113-2GL007903		blr1745	Nitrogenase molybdenum-iron protein, alpha and beta chains
113-2GL008083		blr1496	Uncharacterized conserved protein YjbJ, UPF0337 family
113-2GL008134		bll1447	Superfamily II DNA and RNA helicase
113-2GL008317		bll1285	-
113-2GL008548		blr1081	1,2-phenylacetyl-CoA epoxidase, catalytic subunit
113-2GL008607	113-2GL006492	bll1028, blr3042	DNA-directed RNA polymerase specialized sigma subunit, sigma24 family

nodules and indeterminate nodules (Li Y. et al., 2013), and in different zones of the indeterminate nodule (Roux et al., 2014). For the bacteroids in soybean symbiosis, several transcriptomic

analyses of bacteroids focused on symbiotic gene region (Hauser et al., 2006) and single time point during optimal symbiotic functioning (Chang et al., 2007; Pessi et al., 2007;

TABLE 3 | Orthologs of the selected DEGs in 113-2, USDA110, M. Ioti MAFF303099, M. huakuii 7653R, and S. meliloti 2011.

DEGs	Orthologs of the DEGs					Expression in soybean symbiosis	
	113-2	USDA110	MAFF303099	7653R	SM2011	(according to Figure 3)	
113-2GL000054		bll0779	MAFF_RS22785	MCHK_RS30795	SM2011_RS15560	Early stages of nodule development	
113-2GL000055		blr0778	MAFF_RS28315	MCHK_RS02430	SM2011_RS06535	Early stages of nodule development	
113-2GL000126		<i>Ы</i> 10710	MAFF_RS20750	MCHK_RS28780	SM2011_RS15760	Early stages of nodule development	
113-2GL000160		blr0678	MAFF_RS19575	MCHK_RS27375	SM2011_RS15250	Nodule senescence	
113-2GL000269		blr0573	MAFF_RS17030	MCHK_RS25150	SM2011_RS31340	Nodule senescence	
113-2GL000406	113-2GL001850	bll7322,blr0462	MAFF_RS17955	MCHK_RS26065	SM2011_RS30815	Nodule senescence	
113-2GL000429		bll0442	MAFF_RS16950	MCHK_RS25060	SM2011_RS29850	Early stages of nodule development	
113-2GL000514	113-2GL002082	bsr7117, blr0365	MAFF_RS13260	MCHK_RS21570	SM2011_RS24865	Early stages of nodule development	
113-2GL000663	113-2GL005801	bll0225,blr3725	MAFF_RS16145		SM2011_RS31010	Nodule senescence	
113-2GL001050		blr8272,bll8126			SM2011_RS09965	Early stages of nodule development	
113-2GL001126	113-2GL004687	blr4637,blr7961		MCHK_RS12390, MCHK_RS18535	SM2011_RS03045	Nitrogen fixation	
113-2GL001654		blr7491		MCHK_RS11600		Nodule senescence	
113-2GL001841		blr7327	MAFF_RS27500			Nodule senescence	
113-2GL001851		blr7321	MAFF_RS27480		SM2011_RS04580	Nodule senescence	
113-2GL001863		<i>bll7310</i>	MAFF_RS27520	MCHK_RS18460	SM2011_RS04570,	Nodule senescence	
					SM2011_RS01895		
113-2GL002091		bs/7109			SM2011_RS33980	Nitrogen fixation	
113-2GL002109		blr7089		MCHK_RS17580	SM2011_RS03405	Nodule senescence	
113-2GL002468		bll6756	MAFF_RS00585		SM2011_RS21450	Nodule senescence	
113-2GL003340	113-2GL001478	bl17648,bl15866	MAFF_RS18965	MCHK_RS27010		Nitrogen fixation	
113-2GL003434		blr5774		MCHK_RS17320		Nitrogen fixation	
113-2GL003840		bll5412	MAFF_RS02150	MCHK_RS09810	SM2011_RS21190	Early stages of nodule development	
113-2GL003842		<i>bll5410</i>	MAFF_RS02160	MCHK_RS09820	SM2011_RS21200	Early stages of nodule development	
113-2GL003843		bll5409	MAFF_RS02165	MCHK_RS09825	SM2011_RS21205	Early stages of nodule development	
113-2GL003850		bll5402	MAFF_RS02200,		SM2011_RS21230,	Early stages of nodule development	
			MAFF_RS02105		SM2011_RS21150		
113-2GL003858		bll5394	MAFF_RS02240	MCHK_RS09900	SM2011_RS21270	Early stages of nodule development	
113-2GL003859		bll5393	MAFF_RS02245	MCHK_RS09905	SM2011_RS21275	Early stages of nodule development	
113-2GL003867		bll5385	MAFF_RS02285	MCHK_RS09945	SM2011_RS21315	Early stages of nodule development	
113-2GL004505		bll4784	MAFF_RS27120	MCHK_RS01750	SM2011_RS26345	Nodule senescence	
113-2GL004572	113-2GL005733	blr4723,blr3787		MCHK_RS07395		Nodule senescence	
113-2GL004736	113-2GL001679,	bsl4595,bsr7468,	MAFF_RS33280,	MCHK_RS19875,	SM2011_RS02010,	Early stages of nodule development	
	113-2GL006371,	bsl4595,bsl1445,	MAFF_RS00310,	MCHK_RS07180,	SM2011_RS24070,		
	113-2GL008136	bsr3154	MAFF_RS11065,	MCHK_RS19840,	SM2011_RS00515,		
			MAFF_RS11510	MCHK_RS32390	SM2011_RS26245		
			MAFF_RS25580,	MCHK_RS19440,	SM2011_RS25125,		
			MAFF_RS11485	MCHK_RS31800	SM2011_RS24855		
113-2GL005802		bll0226,blr3724	MAFF_RS16140	MCHK_RS24370, MCHK_RS02525	SM2011_RS31015	Nitrogen fixation	
113-2GL005957		blr3566	MAFF_RS21725	MCHK_RS29825		Nitrogen fixation	
113-2GL006512		bll3022	MAFF RS15360	MCHK RS23560		Nodule senescence	
113-2GL006780		blr2763	_ MAFF RS27090,	_ MCHK_RS01720	SM2011 RS02090.	Nitrogen fixation	
			MAFF_RS26180		SM2011_RS01660, SM2011_RS03325	C C	
113-2GL007543		blr2149	MAFF_RS26000		_	Early stages of nodule development	
113-2GL007545		blr2147	MAFF_RS25985			Early stages of nodule development	
113-2GL007548		blr2145	MAFF_RS25975			Nitrogen fixation	
113-2GL007604	113-2GL007555, 113-2GL003457,	bll3527,bll1900, bll5000,blr1706	MAFF_RS25425	MCHK_RS31900	SM2011_RS30325	Nitrogen fixation	

(Continued)

TABLE 3 | (Continued)

DEGs	Orthologs of the DEGs					Expression in soybean symbiosis	
-	113-2	USDA110	MAFF303099	7653R	SM2011	(according to Figure 3)	
	113-2GL008356,	bll1997					
	113-2GL007792,						
	113-2GL004069,						
	113-2GL000973,						
	113-2GL007670,						
	113-2GL007896,						
	113-2GL007767,						
	113-2GL007630,						
	113-2GL007942,						
	113-2GL004713,						
	113-2GL007823						
113-2GL007618		blr2068	MAFF_RS25050			Nodule senescence	
113-2GL007625	113-2GL002237,	blr5226,blr6978,	MAFF_RS33345,	MCHK_RS17610,	SM2011_RS18355,	Early stages of nodule development	
	113-2GL007625,	blr5625,blr5226,	MAFF_RS09905,	MCHK_RS07245	SM2011_RS00340,		
	113-2GL001613,	bll2060,bsr7532	MAFF_RS10535,		SM2011_RS02030,		
	113-2GL004032,		MAFF_RS36295,		SM2011_RS11615		
	113-2GL003601		MAFF_RS23815				
113-2GL007626	113-2GL001611,	blr5626,bll2059,	MAFF_RS23810,	MCHK_RS07240	SM2011_RS11610,	Early stages of nodule development	
	113-2GL004031,	blr6979,blr5227,	MAFF_RS36300,		SM2011_RS20400,		
	113-2GL003600,	blr4635,blr7533	MAFF_RS33340,		SM2011_RS18350,		
	113-2GL002236,		MAFF_RS10540		SM2011_RS02025		
	113-2GL004689						
113-2GL007641		blr2038	MAFF_RS24010	MCHK_RS32450	SM2011_RS02275	Nitrogen fixation	
113-2GL007643	113-2GL006940	bll2623,blr2036	MAFF_RS13735	MCHK_RS22150	SM2011_RS04845	Nitrogen fixation	
113-2GL007877		blr1774	MAFF_RS24000	MCHK_RS32460	SM2011_RS02265	Early stages of nodule development	
113-2GL007879		blr1771	MAFF_RS24015			Nitrogen fixation	
113-2GL007881		blr1769	MAFF_RS24195	MCHK_RS32325	SM2011_RS02280	Nitrogen fixation	
113-2GL007888		blr1759	MAFF_RS23985	MCHK_RS32485	SM2011_RS02250	Early stages of nodule development	
113-2GL007892		blr1755	MAFF_RS24355			Nitrogen fixation	
113-2GL007898		bsr1750	MAFF_RS24040,			Early stages of nodule development	
		1 1710	MAFF_RS24300				
113-2GL007899		bsr1749	MAFF_RS24035,			Early stages of nodule development	
			MAFF_RS24295				
113-2GL007902		blr1746	MAFF_RS24215	MCHK_RS32305	SM2011_RS02420	Early stages of nodule development	
113-2GL007904		blr1744	MAFF_RS24205	MCHK_RS32315	SM2011_RS02290	Early stages of nodule development	
113-2GL007905		blr1743	MAFF_RS24200	MCHK_RS32320	SM2011_RS02285	Early stages of nodule development	
113-2GL007964	113-2GL005342	blr1686,blr4134			SM2011_RS08430	Nitrogen fixation	
113-2GL008056		bl/1523	MAFF_RS15765	MCHK_RS33030, MCHK_RS23965	SM2011_RS28455	Nodule senescence	
113-2GL008064		blr1516			SM2011_RS15300	Early stages of nodule development	
113-2GL008106		bsl1473	MAFF_RS37185		SM2011_RS11135	Nitrogen fixation	
113-2GL008132	113-2GL003149	blr1448,blr6053	MAFF_RS04190	MCHK_RS11590	SM2011_RS14035	Nodule senescence	
113-2GL008135		bsl1446	MAFF_RS26365	MCHK_RS00670	SM2011_RS17430	Early stages of nodule development	
113-2GL008535		blr1091	MAFF_RS15660	MCHK_RS23865		Nodule senescence	

Franck et al., 2014). It is worth noting that a multiple time-point microarray study in *B. diazoefficiens* bacteroids isolated from soybean nodules from nodulation to nodule senescence, which revealed a shift gene expression patterns of *B. diazoefficiens* during symbiotic process, especially in nodule senescence (Franck et al., 2018). In this report, we also performed a multiple time-point transcriptomic analysis, the difference is that the

RNA samples were collected from different nodule samples from five important developmental stages of soybean (Yuan et al., 2017). We firstly investigated the expression of rhizobial genes in symbiosis at above-mentioned five developmental stages of soybean, which should shed new light on the molecular mechanisms of nitrogen fixation during the growth and development of soybean. **TABLE 4** | The prediction of the interaction proteins of the selected DEGs.

DEGs	Orthologs in USDA110	References for orthologs	Potenc	Potencial interaction proteins		
			Soybean	USDA110	113-2	
113-2GL000406	bll7322	Zhang et al., 2018	Glyma.01G003800	bll7785	113-2GL002891	
113-2GL001850			Glyma.02G017800		113-2GL001328	
			Glyma.02G147200			
			Glyma.02G222300			
			Glyma.03G164400			
			Glyma.03G251900			
			Glyma.04G080800			
			Glyma.04G082000			
			Glyma.04G194700			
			Glyma.04G226700			
			Glyma.06G081900			
			Glyma.06G082500			
			Glyma.06G171200			
			Glyma.09G273200			
			Glyma.10G018200			
			Glyma.12G045400			
			Glyma.12G167500			
			Glyma.16G043900			
			Glyma.18G284300			
			Glyma.19G222600			
			Glyma.20G249300			
	blr0462	Pessi et al., 2007	Glyma.08G152600			
		Delmotte et al., 2010	Glyma.15G272000			
		Čuklina et al., 2016				
		Zhang et al., 2018				
113-2GL007693	blr1971	Pessi et al., 2007	Glvma.01G118900	blr1971	113-2GL007693	
		Delmotte et al., 2010	Glyma.02G155300	bll5750	113-2GL003467	
		Čuklina et al. 2016	Glyma 02G208700			
		Zhang et al. 2018	Glyma 03G004900			
			Glyma 03G195400			
			Glyma 04G007400			
			Glyma 04G081100			
			Glyma 05G204000			
			Glyma 07G079700			
			Glyma 07G173100			
			Glyma 08G067400			
			Glyma 09G278600			
			Glyma 10G280000			
			Clyma 11C102100			
			Glyma 11022700			
			Glyma 14C176000			
			Glyma 140006200			
			Glyma. 14G206300			
			Glyma. 15G058400			
			Glyma. 16G 117600			
			Giyma.18G056100			
			Giyma.18G060600			
			Glyma.18G210100			
			Glyma.19G173400			
			Glyma.19G205200			
			Glyma.20G005900			
113-2GL008535	bir1091	Pessi et al., 2007	Glyma.02G294900	bir1148	113-2GL008473	
					(Continued)	

DEGs	Orthologs in USDA110	References for orthologs	Potencial interaction proteins			
			Soybean	USDA110	113-2	
		Delmotte et al., 2010	Glyma.14G018700	blr3906	113-2GL005583	
		Čuklina et al., 2016	Glyma.14G161800	blr4307	113-2GL005142	
		Zhang et al., 2018	Glyma.14G162000	bll4945	113-2GL004326	
113-2GL008064	blr1516	Pessi et al., 2007	Glyma.05G033800	blr1516	113-2GL008064	
		Delmotte et al., 2010	Glyma.14G145000	bll3640	113-2GL005884	
		Čuklina et al., 2016		blr4473	113-2GL004883	
		Zhang et al., 2018		bll4736	113-2GL004557	
				bll5710	113-2GL003508	
113-2GL001540	bl17600	Delmotte et al., 2010	Glyma.17G228800	bl17600	113-2GL001540	
		Čuklina et al., 2016	Glyma.18G277300			
		Zhang et al., 2018				

In the five soybean nodule samples, about 25.38% (2234 out of 8801) of B. diazoefficiens 113-2 genes were not detected, indicating that these genes may not participate in symbiotic progress. The pod stage nodules possessed the highest number of genes with meaningful fpkm values (>1), suggesting the initiation of a series of new processes, which might be associated with nodule senescence. The correlation analysis of the gene expressions in the five nodule samples showed that the expression of B. diazoefficiens 113-2 genes at Branching stage or harvest stage has relative lower correlation with the other soybean development stages, but high correlations were existed among flowering stage, fruiting stage and pod stage (Figure 1B), indicating that similar gene expression patterns of B. diazoefficiens 113-2 were found during optimal symbiotic functioning, but different expression patterns were existed among early nodule development, nitrogen fixation progress and nodule senescence. These results also revealed a shift gene expression pattern of B. diazoefficiens 113-2 in symbiosis during the growth and development of soybean.

DEGs of *B. diazoefficiens* 113-2 Associated With Nodule Development and Senescence

Previous study showed that > 800 USDA110 genes were up- or down-regulated at each time point of soybean nodule development (Franck et al., 2018), while in this report, the highest number of DEGs at the ten groups was 83 (**Figure 2A**). The major reason may be that we used our previous soybean nodule RNA-Seq data, in which the RNA samples were mixed with both soybean RNA and *B. diazoefficiens* 113-2 RNA (Yuan et al., 2017). Our main purpose is to screen the important DEGs that can interact with host and are mainly involved in nodule development and senescence. The gene expression of soil rhizobia inside of the host was different from free live state (Vercruysse et al., 2011), so we did not isolate *B. diazoefficiens* 113-2 from the nodule samples.

Lots of important rhizobial genes have been showed to participate in nodule development and senescence (Voroshilova et al., 2001; Tittabutr et al., 2015; Franck et al., 2018). Recently, we sequenced the genome of B. diazoefficiens 113-2 (Li et al., 2020) and identified 164 DEGs of B. diazoefficiens 113-2 during the soybean nodule development in this study. Among these DEGs, 49 DEGs had both no functional GO term and no classified KEGG pathway (Supplementary Tables 6, 7), and about 13 DEGs were not clearly annotated (Supplementary Table 5), meaning that we identified many novel and uncharacterized genes associated with nodule development and senescence. About 62.2% (102 out of 164) of the DEGs have no orthologs in M. loti MAFF303099, M. huakuii 7653R and S. meliloti2011, and only 35 DEGs have orthologs in all of the three rhizobia (Table 3), indicating that most of the identified genes associated with nodule development and senescence are not core genes among the rhizobia genomes. Besides, B. diazoefficiens 113-2 and M. loti MAFF303099 can form determinate nodules with soybean and Lotus, respectively, but only nine DEGs of 113-2 have orthologs only in M. loti MAFF303099 (Table 3), suggesting that the nodule development and senescence in determinate nodules or indeterminate nodules was also mainly determined by host legume plants, which is similar to our previous study (Li et al., 2020).

The Potential Roles of Host Specificity-Related DEGs in Nodule Development and Senescence

In most rhizobia, the genes that affect the biosynthesis of nodulation factors, secretion system and surface polysaccharides are often play critical roles in host specificity (Horvath et al., 1986; Philip-Hollingsworth et al., 1989; Wang et al., 2014). In this report, five *Nod* genes, eight *nif* genes, three *fix* genes and 27 T3SS-related genes (no genes associated with surface polysaccharides biosynthesis) were identified (**Figure 7**). The *Nod* genes primarily played roles in nodulation (Moulin et al., 2004), and among the identified five *Nod* genes, only *Noek* (*113-2GL001050*) and *NolG* (*113-2GL008064*) may play roles in the early state of nodule development. *NoeJ* (*113-2GL007583*) and *NolG* (*113-2000663*) may have roles in nodule senescence. The *nif* and *fix* genes are crucial for nitrogen

Rhizobial DEGs During Nodule Development

fixation progress (Fischer and Hennecke, 1984; Hennecke, 1990). NifH, NifD, NifK, NifE, and NifN proteins are the core components of nitrogenase (Raymond et al., 2004), and the FixABCX genes were found to encode a membrane complex participating in electron transfer to nitrogenase (Earl et al., 1987; Edgren and Nordlund, 2004). The two main regulatory cascades that can be found in rhizobia are the RpoN-NifA and the oxygen-responsive two-component FixL-FixJ system, together with FixK (Lindström and Mousavi, 2019), which was found to regulate positively and negatively nitrogen fixation genes in Rhizobium meliloti (Batut et al., 1989). Among the identified eight Nif genes, only NifH (113-2GL007881) and NifW (113-2GL007879) reached the expression peaks at flowering stage_N or fruiting stage_N, the rest six nif genes NifB (113-2GL007888), NifD/K (113-2GL007904, 113-2GL007095), NifE (113-2-GL007903), NifN (113-2GL007902), NifQ (113-2007880), and NifX (113-2GL007901) may mainly involved in regulating the early nodule development. For the three fix genes, FixA (113-2GL007641) and FixC (113-2GL007877) had relative higher expression at branching stage_N and flower stage_N, implying that they may mainly play roles in nitrogen fixation progress, while FixK (113-2GL006786) may mainly have roles in nodule senescence. The rhizobia T3SS and its secreted effectors has been reported to modulate nodulation and host range (Okazaki et al., 2013). For the 27 T3SS-related genes, only seven DEGs had relative higher expression at branching stage_N, and the rest 20 genes may participate in nitrogen fixation progress or nodule senescence, meaning that the T3SS-related genes have roles in the whole nodule development and senescence rather than only in nodulation, which is similar to our previous study (Yuan et al., 2017). Together, these results revealed that the identified host specificity-related DEGs have diversified roles in symbiosis, meaning that host specific regulation maybe existed in the whole progress of nodule development and senescence, not only in nodulation.

In summary, we firstly combined the expression characteristics of rhizobial genes in symbiosis with the growth and development of soybean, and identified 164 important rhizobial DEGs associated with nodule development and senescence. Among these DEGs, many are firstly identified and showed to associate with nodule development and senescence. Besides, we focused on the DEGs encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Our results supply valuable basises for studying the genetic determinants of soil rhizobia in symbiosis and the creation of high efficiency soybean cultivation technology.

MATERIALS AND METHODS

Genome and Gene Mapping

The clean reads for the five nodule samples at five developmental stages of soybean (branching stage, flowering stage, fruiting stage, pod stage and harvest stage) were obtained from our previous study (Yuan et al., 2017). The raw sequence

reads have been submitted to NCBI under the assigned accession number PRJNA765164, and the BioSample accessions included SAMN21545854, SAMN21545855, SAMN21545856, SAMN21545857, and SAMN21545858. The information of the reference genome (*B. diazoefficiens* 113-2) was previously described (Li et al., 2020). We map clean reads to the reference genome using HISAT (Cock et al., 2010), and map clean reads to reference transcripts using Bowtie2 (Kim et al., 2015). The mapping details are shown in **Supplementary Table 1**.

Gene Expression Analysis and Correlation Analysis Between Samples

We calculate the gene expression level for each nodule sample with RSEM (Li and Dewey, 2011). Besides, in order to reflect the gene expression correlation between the nodule samples, we calculated the Pearson correlation coefficients for all gene expression levels between each two samples using *cor* function in R software, and reflected these coefficients in the form of heat maps. Heatmap was performed using TBtools software (Chen et al., 2020).

Screening of DEGs Between Different Nodule Samples

To screen the DEGs between nodule samples, in combination with the false discovery rata (FDR) ≤ 0.001 and | log2 ratio| ≥ 1 , the fold changes in gene expression were used to evaluate the significance of gene expression differences in the ten Groups which are classified according to our previous study (Yuan et al., 2017). Data of the DEGs in the ten Groups between five nodule samples are provided in **Supplementary Table 3**.

Gene Ontology Functional and Kyoto Encyclopedia of Genes and Genomes Pathway Analyses of DEGs

Gene Ontology (GO) is a database created by the Gene Ontology Consortium and is a classification system for genes' biological functions. The method of GO functional enrichment analysis first maps all DEGs to terms in the GO database² and the computing method as previously described (Yuan et al., 2017). Kyoto Encyclopedia of Genes and Genomes (KEGG) is a public pathway-related database,³ and the computing method also were described in our previous study (Yuan et al., 2017).

Orthologs Analysis of the DEGs

Firstly, we performed Core/Pan gene analysis for *B. diazoefficiens* 113-2, *M. loti* MAFF303099, *M. huakuii* 7653R, and *S. meliloti* 2011. We used the CD-HIT 4.66⁴ rapid clustering of similar proteins software (Edgar, 2004)with a threshold of 50% pairwise identity and 0.7 length difference cut off in amino acid to cluster the Core/Pan genes of these four strains, and obtained the pan gene pool. Then we used the identified DEGs as queries to search the orthologs in the pan gene pool.

²http://www.geneontology.org/

³https://www.kegg.jp/kegg/kegg1.html

⁴http://weizhong-lab.ucsd.edu/cd-hit/

Phylogenetic Analysis

Phylogenetic trees were conducted in MEGA X (Kumar et al., 2018). The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SY, HC, and XZ designed this work. SY wrote the manuscript. SY, SZ, and YF performed most of the analysis, figures, and tables.

REFERENCES

- Alemneh, A. A., Zhou, Y., Ryder, M. H., and Denton, M. D. (2020). Mechanisms in plant growth-promoting rhizobacteria that enhance legumerhizobial symbioses. J. Appl. Microbiol. 129, 1133–1156. doi: 10.1111/jam.1 4754
- Ampe, F., Kiss, E., Sabourdy, F., and Batut, J. (2003). Transcriptome analysis of Sinorhizobium meliloti during symbiosis. *Genome Biol.* 4:R15. doi: 10.1186/ gb-2003-4-2-r15
- Batut, J., Daveran-Mingot, M. L., David, M., Jacobs, J., Garnerone, A. M., and Kahn, D. (1989). fixK, a gene homologous with fnr and crp from *Escherichia coli*, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. *EMBO J.* 8, 1276–1286. doi: 10.1002/j.1460-2075.1989.tb03 502.x
- Biswas, B., and Gresshoff, P. M. (2014). The role of symbiotic nitrogen fixation in sustainable production of biofuels. *Int. J. Mol. Sci.* 15, 7380–7397. doi: 10.3390/ijms15057380
- Cermola, M., Fedorova, E., Taté, R., Riccio, A., Favre, R., and Patriarca, E. J. (2000). Nodule invasion and symbiosome differentiation during Rhizobium etli-Phaseolus vulgaris symbiosis. *Mol. Plant Microbe Interact.* 13, 733–741. doi: 10.1094/MPMI.2000.13.7.733
- Chang, W. S., Franck, W. L., Cytryn, E., Jeong, S., Joshi, T., Emerich, D. W., et al. (2007). An oligonucleotide microarray resource for transcriptional profiling of *Bradyrhizobium japonicum. Mol. Plant Microbe Interact.* 20, 1298–1307. doi: 10.1094/MPMI-20-10-1298
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: an Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Mol. Plant* 13, 1194–1202. doi: 10.1016/j.molp.2020.06. 009
- Cheng, G., Karunakaran, R., East, A. K., Munoz-Azcarate, O., and Poole, P. S. (2017). Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. *FEMS Microbiol. Lett.* 364:fnx045. doi: 10.1093/femsle/fnx045
- Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2010). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Res.* 38, 1767–1771. doi: 10.1093/nar/gkp1137
- Čuklina, J., Hahn, J., Imakaev, M., Omasits, U., Förstner, K. U., Ljubimov, N., et al. (2016). Genome-wide transcription start site mapping of *Bradyrhizobium japonicum* grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation. *BMC Genomics* 17:302. doi: 10.1186/s12864-016-2602-9

CZ, YH, ZS, SC, WG, HY, ZY, and DQ contributed substantially to the completion of this work. All authors contributed to the article and approved the submitted version.

FUNDING

This research was funded by the National Natural Science Foundation of China (Grant No. 32071964), the National Key Research and Development Program of China (Grant No. 2020YFD1000903-10), and the Basic Scientific Research Service Fee Special of the Central Scientific Research Institute (Grant No. 1610172018001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2021.754837/full#supplementary-material

- Cytryn, E. J., Sangurdekar, D. P., Streeter, J. G., Franck, W. L., Chang, W. S., Stacey, G., et al. (2007). Transcriptional and physiological responses of *Bradyrhizobium japonicum* to desiccation-induced stress. *J. Bacteriol.* 189, 6751–6762. doi: 10.1128/JB.00533-07
- Delmotte, N., Ahrens, C. H., Knief, C., Qeli, E., Koch, M., Fischer, H. M., et al. (2010). An integrated proteomics and transcriptomics reference data set provides new insights into the *Bradyrhizobium japonicum* bacteroid metabolism in soybean root nodules. *Proteomics* 10, 1391–1400. doi: 10.1002/ pmic.200900710
- Earl, C. D., Ronson, C. W., and Ausubel, F. M. (1987). Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J. Bacteriol. 169, 1127–1136. doi: 10.1128/jb.169.3.1127-1136.1987
- Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5:113. doi: 10.1186/1471-2105-5-113
- Edgren, T., and Nordlund, S. (2004). The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060. doi: 10.1128/JB.186.7.2052-2060. 2004
- Fehr, W. R., Caviness, C. E., Burmood, D. T., and Pennington, J. S. (1971). Stage of Development Descriptions for Soybeans, *Glycine Max* (L.) Merrill1. *Crop Sci.* 11, 929–931. doi: 10.2135/cropsci1971.0011183X001100060051x
- Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., et al. (2010). Molecular analysis of legume nodule development and autoregulation. *J. Integr. Plant Biol.* 52, 61–76. doi: 10.1111/j.1744-7909.2010. 00899.x
- Fischer, H. M., and Hennecke, H. (1984). Linkage map of the Rhizobium japonicum nifl-I and nitDK operons encoding the polypeptides of the nitrogenase enzyme complex. *Mol. Gen. Genet.* 196, 537–540. doi: 10.1007/ BF00436206
- Franck, S., Franck, W. L., Birke, S. R., Chang, W.-S., Sangurdekar, D. P., Cytryn, E., et al. (2014). Comparative transcriptomic analysis of symbiotic *Bradyrhizobium japonicum*. *Symbiosis* 63, 123–135. doi: 10.1007/s13199-014-0294-y
- Franck, S., Strodtman, K. N., Qiu, J., and Emerich, D. W. (2018). Transcriptomic Characterization of *Bradyrhizobium diazoefficiens* Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. *Int. J. Mol. Sci.* 19:3918. doi: 10.3390/ijms19123918
- Franck, W. L., Chang, W. S., Qiu, J., Sugawara, M., Sadowsky, M. J., Smith, S. A., et al. (2008). Whole-genome transcriptional profiling of *Bradyrhizobium japonicum* during chemoautotrophic growth. *J. Bacteriol.* 190, 6697–6705. doi: 10.1128/JB.00543-08

- Hauser, F., Lindemann, A., Vuilleumier, S., Patrignani, A., Schlapbach, R., Fischer, H. M., et al. (2006). Design and validation of a partial-genome microarray for transcriptional profiling of the *Bradyrhizobium japonicum* symbiotic gene region. *Mol. Genet. Genomics* 275, 55–67. doi: 10.1007/s00438-005-0059-7
- Hennecke, H. (1990). Nitrogen fixation genes involved in the *Bradyrhizobium japonicum*-soybean symbiosis. *FEBS Lett.* 268, 422–426. doi: 10.1016/0014-5793(90)81297-2
- Hirsch, A. M. (1992). Tansley Review No. 40. Developmental Biology of Legume Nodulation. New Phytol. 122, 211–237. doi: 10.1111/j.1469-8137.1992.tb04 227.x
- Horvath, B., Kondorosi, E., John, M., Schmidt, J., Török, I., Györgypal, Z., et al. (1986). Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. *Cell* 46, 335–343. doi: 10.1016/0092-8674(86)90654-9
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* 44, D457–D462. doi: 10.1093/nar/gkv1070
- Karr, D. B., and Emerich, D. W. (1988). Uniformity of the microsymbiont population from soybean nodules with respect to buoyant density. *Plant Physiol.* 86, 693–699. doi: 10.1104/pp.86.3.693
- Karr, D. B., Suzuki, F., Waters, J. K., and Emerich, D. W. (1990). Further Evidence for the Uniformity of the Microsymbiont Population from Soybean Nodules. J. Plant Physiol. 136, 659–663. doi: 10.1016/S0176-1617(11)81 340-4
- Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* 12, 357–360. doi: 10.1038/nmeth. 3317
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* 35, 1547–1549. doi: 10.1093/molbev/msy096
- Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12:323. doi: 10.1186/1471-2105-12-323
- Li, Q. G., Zhang, L., Li, C., Dunwell, J. M., and Zhang, Y. M. (2013). Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae. *Mol. Biol. Evol.* 30, 2602–2611. doi: 10.1093/molbev/mst152
- Li, Y., Tian, C. F., Chen, W. F., Wang, L., Sui, X. H., and Chen, W. X. (2013). Highresolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of *Leucaena leucocephala*. *PLoS One* 8:e70531. doi: 10.1371/journal.pone.007 0531
- Li, R., Feng, Y., Chen, H., Zhang, C., Huang, Y., Chen, L., et al. (2020). Whole-Genome Sequencing of *Bradyrhizobium diazoefficiens* 113-2 and Comparative Genomic Analysis Provide Molecular Insights Into Species Specificity and Host Specificity. *Front. Microbiol.* 11:576800. doi: 10.3389/fmicb.2020.57 6800
- Li, X., Deng, Z., Liu, Z., Yan, Y., Wang, T., Xie, J., et al. (2014). The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes. *BMC Genomics* 15:723. doi: 10.1186/1471-2164-15-723
- Lindström, K., and Mousavi, S. A. (2019). Effectiveness of nitrogen fixation in rhizobia. *Microb. Biotechnol.* 13, 1314–1335. doi: 10.1111/1751-7915.13517
- Lindström, K., and Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. *Microb. Biotechnol.* 13, 1314–1335.
- Lorkiewicz, Z. (1997). Nodulation genes in the Rhizobium-plant signal exchange. *Acta Biochim. Pol.* 44, 1–12. doi: 10.18388/abp.1997_4434
- Martínez-Salazar, J. M., Sandoval-Calderón, M., Guo, X., Castillo-Ramírez, S., Reyes, A., Loza, M. G., et al. (2009). The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. *Microbiology* 155, 386–397. doi: 10.1099/mic.0.021428-0
- Mergaert, P., Kereszt, A., and Kondorosi, E. (2020). Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. *Plant Cell* 32, 42–68. doi: 10.1105/tpc.19.00494
- Moulin, L., Béna, G., Boivin-Masson, C., and Stêpkowski, T. (2004). Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene

co-transfer within the Bradyrhizobium genus. *Mol. Phylogenet. Evol.* 30, 720–732. doi: 10.1016/S1055-7903(03)00255-0

- Okazaki, S., Kaneko, T., Sato, S., and Saeki, K. (2013). Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. *Proc. Natl. Acad. Sci. U. S. A.* 110, 17131–17136. doi: 10.1073/pnas.1302360110
- Oldroyd, G. E., Murray, J. D., Poole, P. S., and Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. *Annu. Rev. Genet.* 45, 119–144. doi: 10.1146/annurev-genet-110410-132549
- Palander, S., Näsi, M., and Valkonen, E. (2005). Effect of age of growing turkeys on nutrient digestibility and energy value of cereal-soybean-based diets. Arch. Anim. Nutr. 59, 139–147. doi: 10.1080/1745039051233138 7945
- Pessi, G., Ahrens, C. H., Rehrauer, H., Lindemann, A., Hauser, F., Fischer, H. M., et al. (2007). Genome-wide transcript analysis of *Bradyrhizobium japonicum* bacteroids in soybean root nodules. *Mol. Plant Microbe Interact.* 20, 1353–1363. doi: 10.1094/MPMI-20-11-1353
- Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989). The effect of interspecies transfer of Rhizobium hostspecific nodulation genes on acidic polysaccharide structure and in situ binding by host lectin. *J. Biol. Chem.* 264, 5710–5714. doi: 10.1016/S0021-9258(18)83 607-9
- Putnoky, P., Grosskopf, E., Ha, D. T., Kiss, G. B., and Kondorosi, A. (1988). Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J. Cell Biol. 106, 597–607. doi: 10.1083/jcb.106.3. 597
- Raymond, J., Siefert, J. L., Staples, C. R., and Blankenship, R. E. (2004). The Natural History of Nitrogen Fixation. *Mol. Biol. Evol.* 21, 541–554. doi: 10.1093/ molbev/msh047
- Redondo, F. J., De La Peña, T. C., Morcillo, C. N., Lucas, M. M., and Pueyo, J. J. (2009). Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. *Plant Physiol.* 149, 1166–1178. doi: 10.1104/pp.108. 129601
- Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., et al. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. *Plant J.* 77, 817–837. doi: 10.1111/tpj.12442
- Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., et al. (2020). Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. *Plant Cell* 32, 15–41. doi: 10.1105/tpc.19.0 0279
- Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4, 406–425.
- Serova, T. A., Tsyganova, A. V., and Tsyganov, V. E. (2018). Early nodule senescence is activated in symbiotic mutants of pea (*Pisum sativum L.*) forming ineffective nodules blocked at different nodule developmental stages. *Protoplasma* 255, 1443–1459. doi: 10.1007/s00709-018-1246-9
- Tittabutr, P., Sripakdi, S., Boonkerd, N., Tanthanuch, W., Minamisawa, K., and Teaumroong, N. (2015). Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence. *Microbes Environ.* 30, 310–320. doi: 10.1264/jsme2.ME15120
- Vasse, J., De Billy, F., Camut, S., and Truchet, G. (1990). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. *J. Bacteriol.* 172, 4295–4306. doi: 10.1128/jb.172.8.4295-4306. 1990
- Vercruysse, M., Fauvart, M., Beullens, S., Braeken, K., Cloots, L., Engelen, K., et al. (2011). A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene expression during symbiotic nongrowth. *Mol. Plant Microbe Interact.* 24, 1553–1561. doi: 10.1094/MPMI-05-11-0140
- Voroshilova, V. A., Boesten, B., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., and Priefer, U. B. (2001). Effect of mutations in *Pisum sativum* L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. *Mol. Plant Microbe Interact.* 14, 471–476. doi: 10.1094/MPMI.2001.14.4.471
- Wang, S., Hao, B., Li, J., Gu, H., Peng, J., Xie, F., et al. (2014). Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into

host specificity and symbiosis island dynamics. *BMC Genomics* 15:440. doi: 10.1186/1471-2164-15-440

- Yang, L., El Msehli, S., Benyamina, S., Lambert, A., Hopkins, J., Cazareth, J., et al. (2020). Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence in the Interaction With Medicago truncatula. *Front. Plant Sci.* 11:137. doi: 10.3389/fpls.2020.00137
- Yuan, S. L., Li, R., Chen, H. F., Zhang, C. J., Chen, L. M., Hao, Q. N., et al. (2017). RNA-Seq analysis of nodule development at five different developmental stages of soybean (*Glycine max*) inoculated with *Bradyrhizobium japonicum* strain 113-2. Sci. Rep. 7:42248. doi: 10.1038/srep42248
- Zhang, L., Liu, J. Y., Gu, H., Du, Y., Zuo, J. F., Zhang, Z., et al. (2018). Bradyrhizobium diazoefficiens USDA 110- Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis. J. Proteome Res. 17, 3061–3074. doi: 10.1021/acs.jproteome.8b00209
- Zhou, S., Zhang, C., Huang, Y., Chen, H., Yuan, S., and Zhou, X. (2021). Characteristics and Research Progress of Legume Nodule Senescence. *Plants* 10:1103. doi: 10.3390/plants10061103

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Yuan, Zhou, Feng, Zhang, Huang, Shan, Chen, Guo, Yang, Yang, Qiu, Chen and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.