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Abstract

Objective: The precise segmentation of kidneys from a 2D ultrasound (US) image is crucial for diagnosing and monitoring
kidney diseases. However, achieving detailed segmentation is difficult due to US images’ low signal-to-noise ratio and low-
contrast object boundaries.

Methods: This paper presents an approach called deep supervised attention with multi-loss functions (MLAU-Net) for US
segmentation. The MLAU-Net model combines the benefits of attention mechanisms and deep supervision to improve seg-
mentation accuracy. The attention mechanism allows the model to selectively focus on relevant regions of the kidney and
ignore irrelevant background information, while the deep supervision captures the high-dimensional structure of the kidney
in US images.

Results: We conducted experiments on two datasets to evaluate the MLAU-Net model’s performance. The Wuerzburg
Dynamic Kidney Ultrasound (WD-KUS) dataset with annotation contained kidney US images from 176 patients split into train-
ing and testing sets totaling 44,880. The Open Kidney Dataset’s second dataset has over 500 B-mode abdominal US images.
The proposed approach achieved the highest dice, accuracy, specificity, Hausdorff distance (HD95), recall, and Average
Symmetric Surface Distance (ASSD) scores of 90.2%, 98.26%, 98.93%, 8.90 mm, 91.78%, and 2.87 mm, respectively,
upon testing and comparison with state-of-the-art U-Net series segmentation frameworks, which demonstrates the potential
clinical value of our work.

Conclusion: The proposed MLAU-Net model has the potential to be applied to other medical image segmentation tasks that
face similar challenges of low signal-to-noise ratios and low-contrast object boundaries.
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Introduction

Ultrasound (US) is one of the mainstays of medical diag-
nostics for its broad applicability and efficacy. It allows
for both a qualitative and quantitative evaluation, offering
real-time insights without ionizing radiation. Despite its
advantages, US imaging encounters challenges such as
artifact presence, noise interference, and subjective inter-
pretation, distinguishing it from modalities like X-ray, com-
puted tomography (CT), and magnetic resonance imaging
(MRI).1 A valid strategy to deal with many of these limita-
tions is the use of computer-aided diagnosis (CAD), which
greatly enhances the diagnostic accuracy. Effective image
segmentation significantly, enhances the analysis of US
images, ensuring precise delineation of anatomical struc-
tures for thorough interpretation and clinical diagnosis.
Although several techniques have been developed for seg-
menting US images, their segmentation capability is still
inadequate when dealing with relatively complex images.2

US, one of the most commonly used imaging modalities,
is a ubiquitous and effective screening and diagnostic tool
for physicians and radiologists. In particular, US imaging
is widely used in prenatal screening worldwide due to its
safety, low cost, non-invasiveness, real-time imaging, con-
venience, and user experience.3

Recently, there has been a growing interest in automated
medical image analysis methods, including kidney ultra-
sound (KUS) segmentation. Segmentation of KUS images
is a difficult task due to the complexity of the kidney and
its structure and speckle noise in US images.4,5 In contrast,
accurate segmentation of the kidney region is essential for
various clinical applications such as disease diagnosis, sur-
gical planning, and treatment monitoring.6Traditionally,
KUS image segmentation involved manual contouring of
the kidney, which is time-consuming and subject to user
variability.7,8 To address these limitations, several semi-
automatic segmentation methods have been proposed.9–11

Conversely, these methods rely heavily on manual initial-
ization and may produce errors due to unclear boundaries
and uneven intensity distribution.12 Consequently, there is
a growing need for automatic and robust KUS segmentation
techniques to improve segmentation accuracy and efficiency.

Interest in medical image segmentation (MIS) using
deep learning (DL) techniques has grown significantly,
and various convolutional neural network (CNN) architec-
tures such as U-Net,13 FCN,14 CPFNet,15 Deeplabv3,16 and
SegNet have been proposed.17 These approaches have
greatly improved segmentation accuracy and reliability
compared to traditional segmentation networks. The deep
neural networks are used to learn high-level representations
of medical images and capture the spatial relationships
between complex anatomical structures. The stimulation
method includes depth supervised attention (DSA) and
multiple loss functions (MLFs). The use of various loss
functions and an attention module enhances the flexibility

and precision of segmentation results. The observation
mechanism allows the network to selectively highlight rele-
vant image regions while using MLFs, allowing the model
to cover different aspects of the segmentation task and
improve the model and overall performance. For example,
Chen et al. proposed a similar approach for US kidney seg-
mentation using a modified U-Net architecture with a deep
controlled attention mechanism and multiloss features.18

They reported a significant improvement in segmentation
accuracy compared to existing methods, showing the poten-
tial of this approach for KUS segmentation problems.
Moreover, Feng et al. presented a CNN-based approach
that integrates multi-level contextual information and multi-
task learning for re-segmenting US images. Their segmen-
tation methods were more accurately applied than
conventional ones. In addition, a DL-based framework
using a bidirectional network with multilevel feature
fusion was proposed for kidney segmentation in 3D-US
volumes, which showed strong performance in segmenting
kidneys of different shapes and sizes.19

Furthermore, attention mechanisms have been com-
monly employed in MIS tasks. Attention-guided U-Net
for brain tumor segmentation based on MRI images has
improved accuracy by incorporating attention mechanisms
to guide the network and focus tumor regions.20 In addition,
a self-supervised attention-guided network has been intro-
duced for cardiac image segmentation, which uses self-
supervised learning and attention mechanisms to improve
segmentation accuracy, especially when labeled data is
limited.21 Multi-loss features have also shown their ability
to increase the performance of DL networks in MIS tasks.
The accuracy of pancreas segmentation from CT images
was improved by incorporating a multiloss attention-guided
network with dice loss and focal loss functions.22 Moreover, a
multi-task DL approach withMLFs was shown to improve the
segmentation accuracy of liver tumors from CT images.23

However, kidney segmentation in 2D US images is still a
problem in most cases, as the signal-to-noise ratio is low
and the contours of the object are poorly contrasted. In
most recently proposed CNNs for segmentation,24 they do
not allow capturing the whole high-dimensional structure
of a 2D kidney from US entirely, as loss functions based on
weak supervision tend to be inefficient to integrate spatial rela-
tionships between neighboring pixels; such approaches fail to
produce regularly shaped segmentation masks.

To improve the performance of MIS and reduce the com-
plexity of the network structure, we proposed a model
called deep tracking MLAU-Net for KUS image segmenta-
tion. The model consists of 2D U-Net with two main regu-
latory components: attention and depth tracking. The main
contributions of our work are threefold. (a) The proposed
MLAU-Net introduces new depth enhancements and attention
gates that enrich the model and allow it to focus on essential
image features while ignoring noise. (b) The model
includes extensive monitoring as an adjustment method and

2 DIGITAL HEALTH



encompasses target functions. Across the decoder layers, these
target functions deal with small data and deeper networks.
The process involves carefully transitioning from deeper
blocks to the original segmentation size, ensuring that
the model effectively captures high-dimensional struc-
tures. (c) A preprocessing pipeline, including custom nor-
malization and efficient data augmentation during training,
ensures model reliability and efficiency using various US
images. These advances pertain to enhancing the accuracy
and efficiency of medical image analysis in CAD. The
remaining sections of this work are organized in a
uniform manner. In the “Related work” section, various
related studies are reviewed and the characteristics and chal-
lenges associated with existing approaches are described,
while the proposed MLAU-Net approach for KUS image seg-
mentation is detailed in the “Materials and methods” section.
The performance of the various measures is reviewed in the
“The Experiment” section; finally, the conclusions of the pro-
posed approach are presented in the “Experimental results and
discussion” section.

Related work
In recent years, considerable research has been conducted
on KUS segmentation using DL methods. Several studies
have proposed different methods to achieve accurate and
efficient kidney segmentation inUS images. U-Net,13 a pioneer-
ing encoder–decoder CNN-based framework, has demonstrated
exceptional image segmentation, leading to the develop-
ment of many U-shaped variants. Weighted Res-UNet25

uses a weighted attention mechanism to segment small
regions, while U-Net++26 introduces a U-shaped layout
with nested dense bypasses to reduce the semantic gap.
Dense-UNet uses a densely connected structure to provide
optimal separation between intra-output and inter-
institution scans.27 The integration of low- and high-level
details is achieved through full-scale skip connections in
U-Net3+. ENS-UNet provides a U-shaped architecture
with minimal pre- and post-processing requirements,28 while
C-UNet includes inception-like convolutional blocks, recur-
rent convolutional blocks, and extended convolutional layers
to segment skin lesions.29 Image segmentation tasks often
utilize CNN-based techniques that leverage their potent
feature extraction capabilities by concentrating on adjacent
pixels.30,31

An attention-based U-Network, which includes attention
mechanisms to improve segmentation accuracy, has been
proposed for kidney segmentation in US images.32 This
innovative method is complemented by an efficient kidney
segmentation approach that uses an attention-based dual
network that efficiently captures contextual information to
enable precise segmentation.23 Additionally, a self-guided
attention model adaptable for kidney segmentation
using US images has emerged, employing self-supervised
learning to enhance network performance.33 Moreover, a

multidimensional attention-guided U-Network tailored for
renal tumor segmentation from CT images has been intro-
duced, enhancing segmentation accuracy, particularly for
tumor regions.34 Bidirectional attention-guided U-Net for
kidney segmentation from multicontrast CT images has
demonstrated the efficacy of bidirectional and attentional
mechanisms for accurate segmentation.35,36 Similarly, a com-
parable attention module, incorporating two convolutional
layers followed by softmax, was integrated into the U-Net
hierarchical pooling framework for left atrial segmentation.37

Recent advancements include the incorporation of additional
attention gate modules into the bypass interfaces of the U-Net
decoding path, enhancing the model’s ability to capture add-
itional information from the encoder.38,39 Table 1 summarizes
previous studies on KUS segmentation using deep-learning
approaches. These studies had different goals and specific lim-
itations. Their objectives ranged from applying multitasking
CNNs to the precise kidney segmentation of US.

Materials and methods
The main objective of this work was to propose an
MLAU-Net model designed for accurate US kidney seg-
mentation of healthy organs to assist the radio-oncologist.
This section provides a detailed overview of the proposed
segmentation methodology. Figure 1 depicts the framework
tailored for KUS segmentation.

KUS dataset

One of the most challenging aspects of deep learning (DL)
approaches is developing datasets that require many manu-
ally labeled images to train a neural network effectively.
The WD-KUS dataset was created via our collaborative
research with Guangzhou Medical University and its First
Affiliated Hospital. This dataset comprises 44,880 KUS
images obtained from patients with a clinical indication
for US investigations of their kidneys using TELEMED
SmartUs EXT-1 M/3 M. In accordance with privacy mea-
sures, all personally identifiable information (PII) was care-
fully removed during the dataset collection process. The
study was conducted in accordance with the Institutional
Ethics Committee (IEC) at the First Affiliated Hospital of
Guangzhou Medical University.

Deep supervised multi-loss attention 2D U-Net
framework (MLAU-Net)

The model uses a single-channel 2D renal US image as input,
and the output is a 2D image of identical dimensions depicting
the kidney segmentation map. To achieve these segmentation
goals, the MLAU-Net approach is proposed with specific
modifications, including feature depth enhancement and an
attention gate, which enhance focus on important image features
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while reducing noise. In addition, the model includes deep
supervision as a regularization technique that embeds objective
functions in the decoder layers to address the challenges of
small datasets and deeper networks. This approach requires
carefully transitioning from deeper blocks to the original
segmentation size, ensuring the efficient capture of high-

dimensional structures. In Figure 2, MLAU-Net frame-
work for KUS segmentation, emphasizing the integra-
tion of attention mechanisms and MLFs. Attention
gates selectively focus on relevant features, while
various loss functions, including dice and focus loss,
optimize training for accurate segmentation.

Table 1. A summary of the objectives and limitations of previous studies using deep learning methods for human kidney ultrasound
segmentation.

Authors Architecture
Number of
Images Evaluation Metrics Limitations of the Method

Shi Yin et al.2 Boundary
Regression
Network

185 US kidney
images

• Dice
• Mean
• Accuracy
• IoU

Rely heavily on pre-trained image classification
networks like VGG-16; thus, it might not be easily
adapted to the subtleties and idiosyncrasies of
kidney segmentation in the US images

Deepthy Mary
Alex et al.4

YSegNet 700 2D US images • Accuracy
• Recall
• Precision
• Specificity
• F1 score
• IoU

Dependent on boundary extraction may have
problems when segmenting the correct kidney
from images with weak boundaries. Weak
boundaries are not clearly distinguishable,
especially in low contrast or features of noise and
speckle potentially bringing uncertain accuracy
upon segmentation

Gongping
Chen,
et al.40

Multi-scale inputs
pyramid (MSIP)

400 Kidney
images

• Accuracy
• Dice
• Jaccard
• Precision
• Recall
• ASSD

model displays a high performance for kidney
segmentation from US images however although
it can detect the boundary of the kidney, the
boundaries are often blurred and the
texture-based model may not work for various
heterogeneous structures, not implemented
through real-time processing

Peng, et al.41 Spider-Net KiTS2019
300 images

• Dice
• PPV (Positive

Predictive Value)
• Hausdorff95

Complexity of the dual-channel design,
Spider-net lies in its computational complexity, as
training and inference may require significant
computational resources due to the use of
multiple attention modules and fusion of CNN and
Transformer architectures.

Chen, et al.18 Asymmetric
U-Shaped
Network

300 Kidney US
images

• Jaccard
• Dice
• Accuracy
• Recall
• Precision
• ASSD
• AUC

Increased risk of overfitting, especially if the model is
trained on a limited dataset, which may limit its
performance on diverse or unseen data

Pengceng,
et al.42

A-PSPNet 1850 annotated
ultrasound
images

• MIoU
• MPA

Modest computational overhead but potential
challenges in generalizing to different datasets,
with further validation on larger datasets needed.
kidney contours exhibit significant variations, it is
difficult to accurately segment the renal
ultrasound images for A-PSPNet, which may
reduce the efficiency of the contrast image for
generating the first detection image as well as the
identification of ROIs in ultrasonic images.
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Depth and the number of initial filters. The model designs
seven layers and 16 starting filters instead of the conven-
tional five layers and 64 starting filters. Increasing the
depth of the model ensures that the deeper layers capture
more complex and abstract information essential for encod-
ing latent details needed for effective feature representation.
Concrete concerns about available computational resources
recommend using a five-layer model with 16 initial filters
for the most efficiency, even though the seven-layer struc-
ture could boost performance metrics. Based on the flexible
and parametric structure of the model, it is possible to easily
modify the number of layers, providing flexibility in balan-
cing computational restrictions with performance. A com-
prehensive description of the architecture of the proposed
MLAU-Net model is given in Table 2. The framework’s
multilevel attention (MLA) processes enhance its overall
performance and capacity to hold intricate features. The
essential features, including layer type, filter size, and acti-
vation functions, are detailed in each row, corresponding to
a specific layer or module in the model. This detailed model
summary is invaluable for understanding the proposed
MLAU-Net architecture’s structural complexity.

Attention mechanism in MLAU-Net. The introduction of
attention gates into the U-Net algorithm is done at the
level of the concatenation of the skip connections with
the up-sampled signal coming from deeper layers in the
decoder module. The intricate details of attention gates, elu-
cidating the process, are visualized in Figure 3, which com-
prises a visual representation of how an attention gate
enhances the model’s focus on relevant KUS features.43

Here, x is the skip connection from the encoder, and g is
the decoder feature from the previous block. These two
vectors are summed elementwise in the attention unit. In
this way, aligned weights become more extensive, while
unaligned weights become smaller and, thus, less relevant.
The vectors are then computed using the ReLU activation
function and a 1× 1× 1 convolution followed by a
sigmoid layer that ensures all coefficients are in the interval
αi ∈ [0, 1], so all in all, upon entering a ghost cell, the atten-
tion mechanism is determined by the importance of the crit-
ical parts of the US image. In the case of image processing
using DL, the analogy is that attention helps us to “bring
into focus” the informative parts of an image and blank
out other artifacts, such as noise, so that their contributions
do not enter the final output.44 The output of attention gates
is the element-wise multiplication of input feature maps and
attention coefficients:

x̂li,c = xli,c · αli (1)

A single scalar attention value is calculated for every pixel
vector in the default configuration. xli ∈ RFl . Here, Fl cor-
responds to the number of feature maps in layer l. Each
attention gate is trained to concentrate on a subset of
target structures selectively. As labeled in Figure 3, a
gating vector gi ∈ RFg is used for each pixel i to determine
focus regions. The formulation of the attention gate is as
follows:

qlatt = ψT (σ1(W
T
x x

l
i +WT

g gi + bg))+ bψ , (2)

αli = σ2(q
l
att(x

l
i, gi; Θatt)). (3)

Figure 1. Proposed MLAU-Net pipeline for KUS segmentation.
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Here, σ2 denotes the sigmoid activation function

σ2(xi,c) = 1
1+ exp(−xi,c)

. (4)

The attention gate is characterized by a set of parameters
Θatt containing, and the linear transformation is

Wx ∈ RFl×Fint , (5)

Wg ∈ RFg×Fint . (6)

The linear transformations are calculated through channel-
wise 1× 1× 1 convolutions applied to the input tensors,
where the concatenated features xl and g are linearly mapped
to a RFint dimensional intermediate space. We observed
that the attention gate parameters can be trained using standard
back-propagation updates, eliminating the necessity for
sampling-based update methods employed in hard-attention.45

Deep supervision. Deep supervision involves incorporating
companion objective functions into the final three hidden
layers in the decoder of the network. The final loss, as illu-
strated in Figure 5 featuring the proposed MLAU-Net, incor-
porates dice loss Ldice and focus loss Lfocal . The benefits
of deep supervision are twofold. For small training data-
sets and relatively shallow networks, deep supervision
acts as a robust regularization method for training. For
somewhat larger datasets, it helps bring deeper networks,
avoiding the typical convergence problems associated
with such data, such as vanishing or exploding
gradients.46

Learning rate decay. Learning rate decay is a primarily uti-
lized technique to improve performance in DL models. This
involves periodically reducing the learning of the optimizer

Figure 2. MLAU-Net framework for KUS segmentation incorporated with deep supervision and an attention gate.

6 DIGITAL HEALTH



Table 2. Summary of the proposed MLAU-Net model.

Layer (Type: Depth-Idx) Output Shape Parameter Number

MLAU-Net [64, 1, 128, 128] –

ModuleList: 1-1 – –

Encoder: 2-1 [64, 16, 128, 128] –

DoubleConv: 3-1 [64, 16, 128, 128] 1242

Encoder: 2-2 [64, 32, 64, 64] –

MaxPool2d: 3-2 [64, 16, 64, 64] –

DoubleConv: 3-3 [64, 32, 32, 32] 6976

Encoder: 2-3 [64, 64, 32, 32] –

MaxPool2d: 3-4 [64, 32, 32, 32] –

DoubleConv: 3-5 [64, 64, 32, 32] 27,776

Encoder: 2-4 [64, 128, 16, 16] –

MaxPool2d: 3-6 [64, 64, 16, 16] –

DoubleConv: 3-7 [64, 128, 16, 16] 110,848

Encoder: 2-5 [64, 256, 8, 8] –

MaxPool2d: 3-8 [64, 128, 8, 8] –

DoubleConv: 3-9 [64, 256, 8, 8] 442,880

ModuleList: 1-2 – –

Decoder_attention: 2-6 [64, 128, 16, 16] –

up_conv_block: 3-10 [64, 128, 16, 16] 295,040

AttentionBlock: 3-11 [64, 128, 16, 16] 16,577

DoubleConv: 3-12 [64, 128, 16, 16] 443,136

Decoder_attention: 2-7 [64, 32, 64, 64] –

Lup_conv_block: 3-13 [64, 32, 64, 64] 73,792

AttentionBlock: 3-14 [64, 32, 64, 64] 4193

DoubleConv: 3-15 [64, 32, 64, 64] 110,976

Decoder_attention: 2-8 [64, 32, 64, 64] –

up_conv_block: 3-16 [64, 32, 64, 64] 18,464

(continued)
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when the validation metric plateaus for a certain number of
time steps (e.g., 20). This adjustment helps the model
approach the actual minimum of the loss function, which

can improve overall performance. Implementing a learning
rate decay policy is often valuable for optimizing DL
frameworks.

Table 2. Continued.

Layer (Type: Depth-Idx) Output Shape Parameter Number

AttentionBlock: 3-17 [64, 32, 64, 64] 1073

DoubleConv: 3-18 [64, 32, 64, 64] 27,840

Decoder_attention: 2-9 [64, 16, 128, 128] –

up_conv_block: 3-19 [64, 16, 128, 128] 4624

AttentionBlock: 3-20 [64, 16, 128, 128] 281

DoubleConv: 3-21 [64, 16, 128, 128] 7008

Conv2d: 1-3 [64, 1, 128, 128] 17

ReLU: 1-4 [64, 1, 128, 128] –

Total parameters: 1,592,743

Trainable prams: 1,592,743

Non-trainable prams: 0

Total multi-adds (G): 58.02

Input size (M.B.): 4.19

Forward/backward pass size (M.B.): 2372.53

Figure 3. The attention gate works by adjusting the input functions (x1) using attention factors (α) calculated from the attention gate
component. To determine the ratio, we carefully analyze the activations and contextual information conveyed by the input signal (g) on a
larger scale. Then, we reorganize the attention coefficients using interpolation. This step-by-step process enables us to precisely refine and
focus on regions of space, taking advantage of how input features, attention coefficients, and contextual details interact with each other in
the input signal.
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The experiment. The input provided to the network is the
US 2D image containing the renal US data, and the
output will be the 2D kidney segmented image. The follow-
ing pipeline is created to train and test image classification
models on the WD-KUS dataset depending on the different
types of data augmentation needed. It also includes using
the AdamW optimizer and two loss function training sets
with different weights to make the model work
appropriately.

Preprocessing

Normalization methods. In the proposed MLAU-Net, we
employed min-max normalization to scale the data
between 0 and 1, ensuring consistency across all input
images. This approach was chosen due to the absence of
significant outliers in our US image dataset. Specifically,
we applied the following formula to normalize the data:

Iout = Iin −min (Iin )
max (Iin )−min (Iin )

. (7)

This min-max normalization technique was selected to
facilitate convergence during model training and to ensure
that the model effectively learns the relationships between
input and output.

Resizing. Finally, every image is resized to a standard size
of [128, 128] pixels since all the input/output images
must have the same size to be fed into the DL model. The
values chosen are explained in terms of powers of
2. Since we are implementing a U-Net architecture that
gradually down samples the volumes by a factor of 2,
using a size that is a power of 2 will avoid size errors in

the inner layers of the model. This value is a parameter
that should be low enough (limited by the computational
resources) to be able to perform the training and high
enough to have an amicable spatial resolution. This value
can be optimized as a parameter and increased for future
finer outputs.

Data augmentation. Regarding data augmentation, the most
common techniques for medical images are as follows:

Affine transformations:

• Rotations: Slight rotations in a range (−10°, 10°) will
considerably increase the number of cases and make
the model more robust.

• Scalings: Slight scaling are applied to the input volume
that zooms the patient’s body by 10%.

Training for several epochs on a limited dataset requires us
to take specific precautions against overfitting. To combat
overfitting, we use many different data augmentation
methods. Through the training cycle, the following data
augmentation methods are applied to the data on the fly:
random rotations, random scaling, random skewing, gamma
correction augmentation, and mirroring. These methods
augment the original training dataset and improve the model
on new data that may look different. Annotated data additions
are fed into the data loader of the DL model and applied with
predefined probabilities. In other words, at each step of each
epoch, each data sample is transformed according to defined
transformations and probabilities. The training speed is also
not compromised because monetary transformations allow
us to complete these steps efficiently. Other transformations
for data augmentation, such as noise addition, flipping, or

Figure 4. Data augmentation effects on a single image. Various transformations, including random rotations, scaling, skewing, gamma
correction, and mirroring, applied during on-the-fly augmentation contribute to the enhanced training dataset.
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other distortion transformations, should not be included since,
in the medical image domain, it is essential to preserve the ori-
ginal relationships and orientations for the model to learn con-
textual anatomical information. Figure 4 represents the results
of data augmentation on a single image.

Dataset splitting

Wuerzburg-Dynamic Kidney Ultrasound (WD-KUS): A col-
laboration was established with the First Affiliated Hospital
of Guangzhou Medical University to generate the
Wuerzburg-Dynamic Kidney Ultrasound (WD-KUS)
dataset from patients with a clinical indication requiring
US investigation of their kidneys. WD-KUS dataset includes
44,880 images from 176 patients. The data is divided into
training, validation, and testing. The training set consists of
33,395 images with ground truth labels from 131 patients.
The validation set contains 1357 images with ground truth
labels from 13 patients. The test set comprises 10,128
images with ground truth labels from 32 patients. The specifics
of this data-splitting process are detailed in Table 3.

K-fold cross-validation is a technique used to assess a
model’s performance and robustness. It involves splitting
the dataset into equally sized folds of k. The model is
trained on k−1 folds and tested on the remaining folds.
This process is repeated k times, with each fold used as
the test set once. The final performance metric is obtained
by averaging the results from all k iterations.

Implementation and evaluation methods

Loss function and model training. All experiments were exe-
cuted in Pytorch, and the GPU was an RTX 4090. The DL
process uses the WD-KUS and Open Kidney Dataset’s47

dataset for training networks to classify renal US images.
The final results of the trained models are tested with an
independent test set. In the training phase, training frames
are applied to various random data augmentation strategies
such as auto-brightness, contrast, gamma, Gaussian blur,
Gaussian noise, arbitrary rotation, elastic deformation,
random clipping, and scaling. The AdamW optimizer,
with 100 epochs, a batch size of 16, and a weight decay
of 0.001, is utilized to optimize the networks and reduce
overfitting. The final loss used in the model is calculated
as shown in Figure 5.

Two loss functions, dice loss Ldice and focus loss Lfocal,
with varying weights (W1 andW2), are used to train the net-
works, as formulated in equation (8). The dice loss calcu-
lates the overlap between predicted and actual labels and
is frequently employed in segmentation tasks. The focus
loss is a modified version of the focal loss function that
emphasizes difficult-to-classify samples by assigning

Table 3. Detailed overview of dataset splitting for kidney ultrasound
(WD-KUD) images. This table outlines the division of patients’ kidney
ultrasound images into training and test sets, including the number
of patients, total images, ground truth annotations, and allocation
for training and validation subsets.

Split Name
Number of
Patients

Total
Images

Ground Truth
Available

Training Set 131 33,395 Yes

Validation
Set

13 1357 Yes

Test Set 32 10,128 Yes

Figure 5. Calculation of the loss in the proposed approach.
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them higher weights, thereby directing the network to pay
more attention to them during training.

Ltotal = W1 × Ldice +W2 × Lfocal . (8)

In equation (8), weights 1 and W2 are pre-determined and
set manually to balance the dice loss and focus loss contri-
butions during training. These weights are not learned or
trained but are chosen to optimize both loss functions.

The weighted dice loss was selected based on a quantitative
evaluation of loss functions. The comprehensive loss function
for the network can be expressed as presented in equation (9).

Ldice = − 2
|P|

∑
k∈P

∑
h∈I

vkhu
k
h∑

h∈I
vkh +

∑
h∈I

ukh
, (9)

where u is a one-hot encoding of the ground truth segmenta-
tion map, and v is the network’s softmax output. With h ∈ I
indicating the number of pixels in the training patch/batch
and k ∈ P being the classes, m,n have the shape I × P.

Focal loss (Lfocal ) is derived from the cross-entropy loss
and aims to tackle the issue of category imbalance by
assigning additional weights to challenging or easily mis-
classified objects. Examples include backgrounds with
noisy textures, partial objects, or the specific objects
under focus. The focal loss is defined in equation (10) as
follows:

Lfocal (pt) = −(1− pt)
s log(bt), (10)

where s is the focusing parameter and bt is the model’s
estimation probability for ground truth y ∈ {±1},

bt = b y = 1
1− b y = 0

{
. Using the focal loss can improve

training stability when dealing with a situation with an
imbalance in the classes.

We chose various standard evaluation metrics to assess
the segmentation performance of our network. These metrics
include dice score, average symmetric surface distance
(ASSD in mm), accuracy, specificity, recall, and 95th percent-
ile of Hausdorff distance (HD95 in mm). The formulations for
these metrics are provided in equations (11)–(18), as detailed
in Ref. 48 The metrics used for evaluation are based on true
positives (TPs). The segmentation model correctly identifies
these pixels as belonging to the target class (e.g., lesion,
organ, etc.). True negatives (TNs this term isn’t commonly
used because the focus is on identifying positive (target)
regions rather than classifying the entire image as negative),
false positives (FPs), and false negatives (FNs). The metrics
determined should range from 0 to 1 or 0 to 100%, and the
performance of the proposed model increases when the calcu-
lated metrics’ values are high.

Dice = 2TP
2TP+ FP+ FN

. (11)

ASSD =
∑

c∈R min
d∈B

∥ c− d ∥ +∑
d∈B min

c∈A
∥ c− d ∥

NR + NS
.

(12)

R and S represent the boundaries of segmented and refer-
ence images, and a and b denote locations on R and S accord-
ingly.

Accuracy = TP+ TN

TP+ TN + FP+ FN
. (13)

Specificity = TN
TN + FP

. (14)

Recall = TP
TP+ FN

. (15)

HD95(A, B) = max (d95(A, B), d95(B, A)), (16)

d95(A, B) = max K95 dis(a, B)
a ∈ A

( )( )
, (17)

dis(a, B) = min︸︷︷︸
b∈B

||a− b||. (18)

The distance between a and b is indicated by ∥c− d ∥. The
numbers N.R. and N.S. refer to the number of positions on R
and S.

Experimental results and discussion. In this study, we
adopted six frequently employed metrics to quantitatively
compare various methods for KUS image segmentation per-
formance. The six evaluation indicators include accuracy,
dice, HD95, recall, specificity, and ASSD. Accuracy,
dice, recall, and specificity vary from 0 to 1. A higher
score indicates superior method quality, whereas lower
ASSD scores correspond to improved segmentation
results for the method. Figure 6 shows results in images

Figure 6. Visual analysis of MLAU-Net results; red denotes the
label, and green represents the model’s predictions.
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featuring both the input images and the segmented output
masks obtained using the proposed MLAU-Net framework.
In this representation, the red color indicates the label, while

the green color shows the prediction. Figure 6 show that the
images the proposed framework predicted closely resemble
the original mask.

Figure 7. Qualitative analysis of MLAU-Net and different baseline methods on the WD-KUD dataset. Red indicates the label, and green
represents the model’s predictions. Column 1 displays the input image, Column 2 shows the mask, Columns 3–9 exhibit the outputs of
baseline models, and the final column depicts the prediction of the proposed model.

Figure 8. The open kidney dataset was used to perform a qualitative analysis of MLAU-Net and various baseline methods. This figure is
represented by the red color, which symbolizes the label, and the green color denotes the model’s predictions. Column 1 depicts the input
image, column 2 shows the ground truth mask, and columns 3–9 illustrate results of different baseline models. The last one gives an
output for MLAU-Net predicted thus.

12 DIGITAL HEALTH



Qualitative analysis

In particular, Figures 7 and 8 present a qualitative analysis
of the WD-KUS dataset and Open Kidney Dataset47 using
the proposed MLAU-Net model, contrasting it with seven
other state-of-the-art approaches. For visual comprehen-
sion, segmented maps of sample images from the test
dataset are depicted for both the proposed models and the
competing models in Figure 7.

The suggested framework consistently outperforms the
competing models, even in scenarios involving missing
boundaries and shape variability. The boundary of the
target area appears indistinct in U-Net and its variants. In
contrast, the proposed approach demonstrates resilience to
noise and other factors in US images, resulting in segmen-
tations that closely align with the mask.

Quantitative analysis

Numerous kidney segmentation techniques have recently
been developed and implemented across various studies.
To assess the performance of these methods in comparison
to our proposed approach, we conducted a thorough quan-
titative analysis using metrics such as dice, specificity,
accuracy, HD95, recall, and ASSD.48 The results of this
comprehensive evaluation are presented in Table 4, which
offers a quantitative comparative analysis of MLAU-Net
and seven state-of-the-art segmentation approaches. All
the ablation experiments were conducted in a consistent
environment using our collected WD-KUS dataset, and in
Table 5, a comprehensive assessment of performance

metrics was conducted on an Open Kidney Dataset in a con-
sistent experimental environment. The table showcases the
results of ablation experiments, highlighting the efficacy of
MLAU-Net against established segmentation methods.

For quantitative analysis, comparative experiments were
conducted with seven widely employed segmentation
methods, specifically AttU-Net,43 Seg-Net,17 FCNN,51

U-Net,13 SDFNet,50 SwinUnet,52 and LinkNet.49 To
ensure a fair and unbiased comparison, each method under-
went complete training, and its segmentation results were
not subjected to any post-processing. The segmentation
accuracy of U-Net, SegNet, SwinNet, and SDFNet does
not match that of FCNN, but their results exhibit superior
visual effects. Conversely, FCNN, Linknet, and AttUnet
display less favorable visual outcomes, characterized by
noticeably jagged contours, suggesting a weakness in the
learning ability of these methods, particularly along the
kidney’s edge. Two conjectures arise: the methods struggle
to extract finer kidney features comprehensively, and sub-
stantial loss of kidney information occurs during deconvo-
lution. Through a comprehensive analysis of evaluation
matrices, significance tests, and segmentation results
across various networks, our proposed MLAU-Net demon-
strates a significant competitive advantage. Notably, it
reduces false and missed detection rates on the WD-KUS
and datasets. Computational performance trade-offs are
illustrated in Figure 9 by comparing accuracy against the
number of parameters for various baseline models and the
suggested MLAU-Net on the WD-KUS dataset.

To enhance the assessment of segmentation methods on
KUS images, we generated curves for accuracy, dice, recall,

Table 4. Quantitative analysis comparing MLAU-Net with seven state-of-the-art segmentation approaches. A comprehensive assessment of
performance metrics was conducted on our collected WD-KUS dataset in a consistent experimental environment. The table showcases the
results of ablation experiments, highlighting the efficacy of MLAU-Net against established segmentation methods.

Models
Dice (%) Mean
± SD

Accuracy (%) Mean
± SD

Specificity (%) Mean
± SD

HD95 (mm)
Mean± SD

Recall (%) Mean
± SD

ASSD (mm)
Mean± SD

AttU-Net43 88.62± 0.17 97.18± 0.04 98.91± 0.09 9.66± 0.28 90.62± 1.07 2.98± 0.08

LinkNet49 88.35± 0.60 97.2± 0.04 98.85± 0.01 9.82± 0.57 91.13± 0.63 3.02± 0.19

SDFNet50 87.16± 0.25 97.07± 0.05 98.86± 0.05 9.89± 0.42 89.99± 0.48 3.10± 0.09

FCNN51 88.79± 0.79 96.02± 0.16 98.91± 0.14 10.54± 0.84 88.92± 1.88 3.19± 0.25

U-Net13 86.02± 0.75 95.73± 0.11 98.56± 0.06 15.96± 1.10 88.65± 0.73 4.18± 0.20

SegNet17 86.47± 0.58 97.00± 0.07 98.78± 0.05 10.40± 0.35 89.96± 0.28 3.23± 0.08

SwinUnet52 85.22± 0.34 96.20± 0.05 98.44± 0.13 13.90± 0.28 85.08± 1.23 4.39± 0.03

MLAU-Net
(our)

90.21± 0.62 98.26± 0.11 98.93± 0.05 8.90± 0.15 91.78± 1.03 2.87± 0.05
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and specificity, as depicted in Figure 10. The visual
representation emphasizes the superior performance of
our approach to others, underscoring its aptness for
WD-KUS image segmentation.

In addition to assessing traditional metrics, we con-
ducted a comprehensive performance comparison between
different models using HD95 and ASSD, as shown in
Figure 11. The evaluated networks included AttU-Net,
LinkNet, SDFNet, FCNN, U-Net, SegNet, SwinUnet, and
the proposed MLAU-Net. Significantly, the suggested frame-
work outperformed all others across HD95 and ASSDmetrics,

affirming its exceptional segmentation accuracy and dice for
both datsets.

Through qualitative and quantitative analyses of our pro-
posed framework, we demonstrate the efficacy of each designed
component. Comparisons with state-of-the-art segmentation
methodologies reveal that our suggested network consistently
outperforms competitors across six widely used evaluation indi-
cators for two different datasets, as displayed in Figure 12.

Despite instances of false and missed detection in the
segmentation outcomes, our method demonstrates impres-
sive performance compared to alternative approaches. Our

Table 5. Quantitative study of MLAU-Net against SOTA techniques using an open kidney dataset.

Models
Dice (%) Mean
± SD

Accuracy (%) Mean
± SD

Specificity (%) Mean
± SD

HD95 (mm)
Mean± SD

Recall (%) Mean
± SD

ASSD (mm)
Mean± SD

AttU-Net43 92.22± 0.17 98.20± 0.03 98.11± 0.08 9.62± 0.31 91.72± 0.09 2.88± 0.07

LinkNet49 87.93± 0.38 96.2± 0.06 98.85± 0.01 9.82± 0.57 92.39± 0.43 2.09± 0.20

SDFNet50 89.21± 0.27 96.03± 0.07 98.76± 0.10 11.39± 0.12 90.63± 0.51 3.21± 0.17

FCNN51 90.39± 0.69 97.12± 0.11 98.21± 0.17 13.24± 0.64 90.12± 1.82 3.43± 0.27

U-Net13 91.12± 0.74 95.77± 0.17 98.16± 0.06 14.91± 1.12 89.45± 0.79 4.68± 0.21

SegNet17 91.47± 0.54 97.17± 0.10 98.12± 0.06 11.40± 0.41 91.92± 0.34 4.13± 0.09

SwinUnet52 89.31± 0.36 98.11± 0.07 98.57± 0.11 12.88± 0.31 89.09± 1.21 3.36± 0.05

MLAU-Net
(our)

93.43± 0.59 98.31± 0.10 98.96± 0.06 8.92± 0.16 93.81± 1.05 2.91± 0.06

Figure 9. The proposed model effectively balances performance efficiency and computational cost, showcasing the lowest number of
parameters among all baseline approaches. Presetting these parameters enables users to tailor computational resources and choose the
appropriate encoder–decoder for feature extraction, depending on their specific requirements in MIS.
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method exhibits enhanced robustness to WD-KUS images,
showing resilience against various influencing factors. In con-
clusion, the segmentation approach presented in this study
effectively addresses the challenges associated with the auto-
matic segmentation of the WD-KUS dataset, marking a sub-
stantial advancement in this domain.

Ablation experiments

In order to assess the effect of each component in the pro-
posed MLAU-Net framework, we performed a detailed
ablation study on three major modules: hybrid loss, deep
supervision and attention mechanism. K-fold cross-
validation with K= 5 was used for carrying out the study
to ensure its robustness and generalization. In our initial
experiment, hybrid loss, which consists of Dice loss as
well as cross-entropy loss, was removed, consequently
resulting in marked drops in Dice score and accuracy,
which indicated that it played a vital role.

In the second experiment, we eliminated deep supervi-
sion, leaving us with lower performance measurements

that highlighted its contribution to reducing FNs and
improving the segmentation accuracy. The last one turned
off an attention mechanism, which brought about evident
worsening in HD95, especially ASSD, showing how it
enhanced boundary delineation and reduced segmenta-
tion errors. Table 6 presents average figures (mean±
SD) for some essential performance metrics obtained
via the k-fold cross-validation method applied in ablation
studies.

Computational complexity analysis

The comparative analysis proposed study compared the
computational complexity levels for MLAU-Net with
other state-of-art models in terms of parameters and
floating-point operations per second. This comparison is
important as it determines how well a model performs in
relation to its computational efficiency. The segmentation
models that we evaluated were AttU-Net, Seg-Net,
FCNN, U-net, SDFNet, SwinUnet, and LinkNet. We
trained all these methods from scratch and fairly assessed

Figure 10. Proposed approach performance evaluation curves for accuracy, dice, recall, and specificity.
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Figure 11. Quantitative analysis of models using segmentation metrics for different SOTA models.

Figure 12. Performance comparison of MLAU-Net across two datasets.
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their segmentations without post-processing. As shown in
Figures 7–10 and Tables 4–5, our results demonstrate that
MLAU-Net achieves better segmentation performances
with less parameter numbers and lower computational
budget. Table 4 highlights that MLAU-Net outperforms
U-Net and FCNN on the WD-KUS dataset, with a Dice
Score of 90.21%, while maintaining fewer parameters
(Column 3) than other models. Similarly, Table 5 presents the
results on the Open Kidney Dataset, where MLAU-Net also
achieves a Dice Score of 93.43%, surpassing state-of-the-art
models in accuracy and computational efficiency. This proves
the effectiveness of MLAU-Net, significantly reducing false
alarms and missed segmentations on both the WD-KUS
dataset and public datasets. Quantitative comparisons are
made in Table 4 (WD-KUS) and Table 5 (Open Kidney
Dataset), while Figure 7 provides qualitative analysis for
the WD-KUS dataset and Figure 8 for the Open Kidney
Dataset. The performance evaluation curves in Figure 9
further confirm MLAU-Net’s ability to balance accuracy

and computational cost, reinforcing its robustness in seg-
mentation tasks across multiple datasets.

Analysis of segmentation challenges in MLAU-Net

While MLAU-Net achieves overall significant perform-
ance, here are certain cases when the situation is different.
This includes images with very low signal-to-noise ratio
and those that differ significantly from what was used for
training. In such situations, the attention mechanism that
is responsible for highlighting crucial details might find it
difficult to distinguish between noise and subtle renal con-
tours. Furthermore, the deep supervision part may not com-
pletely overcome poor contrast, thereby making it difficult
to draw exact boundaries. In future research, more advanced
techniques of denoising or adversarial training can be
studied in order to make handling of such images more robust.

Dealing with small or nonuniform kidneys is another
problem. The model could encourage larger kidneys over
others because of its inherent class imbalance in the data.

Table 6. Ablation study of MLAU-Net with K-fold cross-validation results for different modules.

Model Variation
Dice (%)
Mean± SD

Accuracy (%) Mean
± SD

Specificity (%)
Mean± SD

HD95 (mm)
Mean± SD

Recall (%)
Mean± SD

ASSD (mm)
Mean± SD

MLAU-Net 90.21± 0.62 98.26± 0.11 98.93± 0.05 8.90± 0.15 91.78± 1.03 2.87± 0.05

W/o Hybrid Loss 87.35± 0.58 97.85± 0.14 98.62± 0.07 10.25± 0.22 89.64± 1.25 3.14± 0.07

W/o Deep
Supervision

88.47± 0.65 97.98± 0.13 98.71± 0.06 9.85± 0.18 90.35± 1.20 3.05± 0.06

W/o Attention 86.22± 0.72 97.12± 0.09 98.48± 0.09 12.30± 0.25 87.50± 1.15 3.50± 0.08

Figure 13. Segmentation challenges in different scenarios: (Row 1) Stone shadow obscuring the target, (Row 2) Unclear shapes caused by
distortions or artifacts, and (Row 3) Irregular kidney shape due to anatomical variations
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Research into more advanced data augmentation methods
and loss functions that are class-weighted might help
improve the ability of neural networks to interpret kidney
shapes and sizes.

Moreover, anatomical variations or artifacts like renal
cysts, stones, or US beam distortions may cause uncertainties,
leading to less effective segmentation results. The proposed
approach often struggles to distinguish the target from the
background in these cases accurately. For example, stone
shadows may obscure important structures, distortions or arti-
facts can make shapes unclear, and irregular anatomical struc-
tures complicate the segmentation process. Addressing these
issues may require incorporating domain-specific knowledge
and multi-modal information. In Figure 13, we visualize
some challenging cases where MLAU-Net fails to accurately
separate the target from the background due to these factors.

Conclusion
Automatic segmentation of human KUS images is essential
in helping urologists diagnose and treat kidney diseases in
clinical practice. Nevertheless, factors such as the image
quality, kidney morphology, and heterogeneous structures
present challenges for accurate and automatic segmenta-
tion. In this study, we introduced MLAU-Net, a novel
framework that leverages well-controlled attention mechan-
isms and a hybrid loss strategy to enhance the segmentation
of low-resolution renal US images. Key components of
MLAU-Net, including attention gates, deep supervision,
and a meticulous preprocessing pipeline, significantly
improve existing methods. Our results demonstrate that
MLAU-Net excels in producing accurate segmentations
thanks to its advanced features. Including attention, gates
ensure that the model focuses on critical regions, while
deep supervision aids in refining segmentation outputs.
This makes MLAU-Net a valuable tool for precise
medical image analysis and diagnosis, addressing the inher-
ent challenges of low-resolution renal US imaging. In add-
ition, through performing more evaluation on MLAU-Net
using Open Kidney Dataset which is an open access
dataset used to further confirm its ability. According to
results, regardless of various metrics such as dice coeffi-
cient, accuracy, specificity, HD95, recall or ASSD this tech-
nique outperforms all modern techniques. This extensive
evaluation underscores the robustness and generalizability
of MLAU-Net in different clinical scenarios. The proposed
methodology, incorporating domain information integra-
tion and weighted feature fusion, yielded superior results,
particularly for segmenting malignant masses. MLAU-Net
demonstrates high accuracy and efficiency in KUS image
processing and holds promise for broader applications in
other MIS tasks. In the future, we aim to refine MLAU-
Net by incorporating specific pig KUS data and CT scan
results as more data becomes available. This continuous
improvement will increase its applicability and

effectiveness, overcoming difficulties of low signal-to-
noise ratios and weakly contrasted boundaries between
objects. Developing MLAU-Net further presently aims at
producing an all-encompassing solution towards MIS
thereby facilitating improved clinical practice diagnosis
and treatment planning.

List of abbreviations
MLAU-Net Multiloss attention U-Net
DL Deep learning
KUS Kidney ultrasound
PII Personally identifiable information
MRI Magnetic resonance imaging
IoU Intersection over union
TELEMED Telemedicine
LSTM Long short-term memory
CNN Convolutional neural network
SVM Support vector machine
GLCM Gray-level co-occurrence matrix
SIFT Scale-invariant feature transform
CT Computed tomography
ROI Region of interest
GPU Graphics processing unit
WD-KUS Wuerzburg-dynamic kidney ultrasound
ASSD Average symmetric surface distance
HD95 95th percentile of Hausdorff distance
SGD Stochastic gradient descent
MSE Mean squared error

Acknowledgment: This study was supported by the Guangzhou
Science and Technology Project (202201020535), Guangzhou
Medical University (2024SRP077), the National Natural Science
Foundation of China (82100805), Guangzhou Science and
Technology Planning Project (202102021129), and the Educational
Commission of Guangdong Province (2022ZDJS113). The authors
also acknowledge the support from Wuerzburg Dynamics Inc. for
the Weiding Joint Laboratory of Medical Artificial Intelligence at
Shenzhen Technology University.

Declaration of conflicting interests: The authors declared no
potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

The authors state that they have no known competing financial
interests or close personal ties that could have influenced the
research work presented in this paper.

Ethical approval: This study was conducted in accordance with
the ethical guidelines and approval of the Institutional Ethics
Committee (IEC) at the First Affiliated Hospital of Guangzhou
Medical University (No. ES-2024–046-02).

Funding: The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article: This work was supported by the National Natural Science
Foundation of China, The Educational Commission of Guangdong
Province of China, the School-Enterprise Cooperation Fund provided

18 DIGITAL HEALTH



by Wuerzburg Dynamics Inc. to the Weiding Joint Laboratory of
Medical Artificial Intelligence, Shenzhen Technology University,
Guangzhou Science and Technology Project, Guangzhou Science
and Technology Planning Project, Guangzhou Medical University
Scientific Research Capacity Improvement Program (grant number:
82100805, 2022ZDJS113, 202201020535, 202102021129, and
2024SRP077).

Guarantor: Rashid Khan and Bingding Huang.

Informed consent: All study participants provided written
informed consent or had their legally authorized representatives
do so prior to the initiation of the study. The study design and
informed consent procedures were reviewed and approved by
the Institutional Ethics Committee at the First Affiliated Hospital
of Guangzhou Medical University.

ORCID iD: Rashid Khan https://orcid.org/0000-0002-2410-
044X

Data availability: Data will be made available upon request from
the corresponding author. Code: https://github.com/qumais/
MLAUNet-for-Kidney-Ultrasound-Segmentation.git

References
1. Jiang H, Diao Z, Shi T, et al. A review of deep learning-based

multiple-lesion recognition from medical images: classifica-
tion, detection and segmentation. Comput Biol Med 2023;
157: 106726.

2. Yin S, Peng Q, Li H, et al. Automatic kidney segmentation in
ultrasound images using subsequent boundary distance
regression and pixelwise classification networks. Med Image
Anal 2020; 60: 101602.

3. Noble JA and Boukerroui D. Ultrasound image segmentation:
a survey. IEEE Trans Med Imaging 2006; 25: 987–1010.

4. Alex DM, Abraham Chandy D, Hepzibah Christinal A, et al.
YSegnet: a novel deep learning network for kidney segmenta-
tion in 2D ultrasound images. Neural Comput Appl 2022; 34:
22405–22416.

5. Yu H, Yang LT, Zhang Q, et al. Convolutional neural net-
works for medical image analysis: state-of-the-art, compari-
sons, improvement and perspectives. Neurocomputing 2021;
444: 92–110.

6. Hesamian MH, Jia W, He X, et al. Deep learning techniques
for medical image segmentation: achievements and chal-
lenges. J Digit Imaging 2019; 32: 582–596.

7. Guo Z, Li X, Huang H, et al. Deep learning-based image seg-
mentation on multimodal medical imaging. IEEE Trans
Radiat Plasma Med Sci 2019; 3: 162–169.

8. Yang X, Le Minh H, Cheng K-TT, et al. Renal compartment
segmentation in DCE-MRI images. Med Image Anal 2016;
32: 269–280.

9. Levienaise-Obadia B and Gee A. Adaptive segmentation of
ultrasound images. Image Vis Comput 1999; 17: 583–588.

10. Xie J, Jiang Y and Tsui H-t. Segmentation of kidney from
ultrasound images based on texture and shape priors. IEEE
Trans Med Imaging 2005; 24: 45–57.

11. Shim H, Chang S, Tao C, et al. Semiautomated segmentation
of kidney from high-resolution multidetector computed tom-
ography images using a graph-cuts technique. J Comput
Assist Tomogr 2009; 33: 893–901.

12. De Jesus-Rodriguez HJ, Morgan MA and Sagreiya H. Deep
learning in kidney ultrasound: overview, frontiers, and chal-
lenges. Adv Chronic Kidney Dis 2021; 28: 262–269.

13. Ronneberger O, Fischer P and Brox T. U-Net: convolutional
networks for biomedical image segmentation. In: Proceedings
of medical image computing and computer-assisted interven-
tion–MICCAI 2015: 18th international conference, Part III
18, Munich, Germany, October 5–9, 2015, Springer, 2015,
pp. 234–241.

14. Lin T-Y, Dollár P, Girshick R, et al. Feature pyramid net-
works for object detection. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
Honolulu, Hawaii, USA, July 21–27, 2017, pp. 2117–2125.

15. Feng S, Zhao H, Shi F, et al. CPFNet: context pyramid fusion
network for medical image segmentation. IEEE Trans Med
Imaging 2020; 39: 3008–3018.

16. Chen L-C, Papandreou G, Schroff F, et al. Rethinking atrous
convolution for semantic image segmentation, arXiv preprint
arXiv:1706.05587, 2017.

17. Badrinarayanan V, Kendall A and Cipolla R. Segnet: a deep
convolutional encoder-decoder architecture for image seg-
mentation. IEEE Trans Pattern Anal Mach Intell 2017; 39:
2481–2495.

18. Chen G-P, Zhao Y, Dai Y, et al. Asymmetric U-shaped
network with hybrid attention mechanism for kidney ultra-
sound images segmentation. Expert Syst Appl 2023; 212:
118847.

19. Yu C, Li S, Ghista D, et al. Multi-level multi-type self-
generated knowledge fusion for cardiac ultrasound segmenta-
tion. Inf Fusion 2023; 92: 1–12.

20. Chen B, Liu Y, Zhang Z, et al. TransAttUnet: multi-level
attention-guided U-net with transformer for medical image
segmentation. IEEE Trans. Emerg. Top. Comput. Intell
2023; 8: 55–68.

21. El-Taraboulsi J, Cabrera CP, Roney C, et al. Deep neural
network architectures for cardiac image segmentation. Artif
Intell Life Sci 2023; 4: 100083.

22. Sinha A and Dolz J. Multiscale self-guided attention for
medical image segmentation. IEEE J Biomed Health Inform
2020; 25: 121–130.

23. Wu J, Zhou S, Zuo S, et al. U-Net combined with multiscale
attention mechanism for liver segmentation in C.T. Images.
BMC Med Inform Decis Mak 2021; 21: 1–12.

24. Valente S, Morais P, Torres HR, et al. A deep learning method
for kidney segmentation in 2D ultrasound images. In: 2022
44th annual international conference of the IEEE engineering
in medicine & biology society (EMBC), IEEE, Glasgow,
Scotland, UK, July 11–15, 2022, pp. 3911–3914.

25. Xiao X, Lian S, Luo Z, et al. Weighted res-unet for high-
quality retina vessel segmentation. In: 2018 9th international
conference on information technology in medicine and educa-
tion (ITME), IEEE, 2018, pp. 327–331.

26. Al Suman A, Sarda S, Asikuzzaman M, et al. Two-stage u-net
++ for medical image segmentation. In: 2021 digital image
computing: techniques and applications (DICTA), IEEE,
2021, pp. 01–06.

Khan et al. 19

https://orcid.org/0000-0002-2410-044X
https://orcid.org/0000-0002-2410-044X
https://orcid.org/0000-0002-2410-044X
https://github.com/qumais/MLAUNet-for-Kidney-Ultrasound-Segmentation.git
https://github.com/qumais/MLAUNet-for-Kidney-Ultrasound-Segmentation.git
https://github.com/qumais/MLAUNet-for-Kidney-Ultrasound-Segmentation.git


27. Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely con-
nected UNet for liver and tumor segmentation from C.T.
Volumes. IEEE Trans Med Imaging 2018; 37: 2663–2674.

28. Meng Z, Fan Z, Zhao Z, et al. ENS-Unet: end-to-end noise sup-
pression U-Net for brain tumor segmentation. In: 2018 40th
annual international conference of the ieee engineering in medi-
cine and biology society (EMBC), IEEE, Honolulu, Hawaii,
USA, July 18–21, 2018, pp. 5886–5889.

29. Wu J, Chen EZ, Rong R, et al. Skin lesion segmentation with
C-UNet. In: 2019 41st Annual International Conference of the
IEEE engineering in medicine and biology society (EMBC),
IEEE, Berlin, Germany, July 23-27, 2019, pp. 2785–2788.

30. Ghosh S, Das N, Das I, et al. Understanding deep learning
techniques for image segmentation. ACM Comput Surv
(CSUR) 2019; 52: 1–35.

31. Wang R, Zhou H, Fu P, et al. A multiscale attentional unet
model for automatic segmentation in medical ultrasound
images. Ultrason Imaging 2023; 45: 159–174.

32. Chen G, Li L, Dai Y, et al. AAU-net: an adaptive attention
U-net for breast lesions segmentation in ultrasound images.
IEEE Trans Med Imaging 2022; 42: 1289–1300.

33. Yu M, Han M, Li X, et al. Adaptive soft erasure with edge
self-attention for weakly supervised semantic segmentation:
thyroid ultrasound image case study. Comput Biol Med
2022; 144: 105347.

34. Zhang Q, Liang Y, Zhang Y, et al. A comparative study of
attention mechanism based deep learning methods for
bladder tumor segmentation. Int J Med Inf 2023; 171:
104984.

35. Peng J and Wang Y. Medical image segmentation with
limited supervision: a review of deep network models. IEEE
Access 2021; 9: 36827–36851.

36. Vakanski A, Xian M and Freer PE. Attention-enriched deep
learning model for breast tumor segmentation in ultrasound
images. Ultrasound Med Biol 2020; 46: 2819–2833.

37. He A, Wang K, Li T, et al. H2Former: an efficient hierarchical
hybrid transformer for medical image segmentation. IEEE
Trans Med Imaging 2023; 42: 2763–2775.

38. Xu Z, Tian B, Liu S, et al. Collaborative attention guided mul-
tiscale feature fusion network for medical image segmenta-
tion. IEEE Trans Netw Sci Eng 2023; 11: 1–15.

39. Xie L, Cai W and Gao Y. Dmcgnet: a novel network for
medical image segmentation with dense self-mimic and
channel grouping mechanism. IEEE J Biomed Health
Inform 2022; 26: 5013–5024.

40. Chen G, Yin J, Dai Y, et al. A novel convolutional neural
network for kidney ultrasound images segmentation.
Comput Methods Programs Biomed 2022; 218: 106712.

41. Peng Y, Hu X, Hao X, et al. Spider-Net: High-resolution mul-
tiscale attention network with full-attention decoder for tumor
segmentation in kidney, liver and pancreas. Liver Pancreas
2024; 93: 106163.

42. Wen P, Guan Y, Li J, et al. A-PSPNet: a novel segmentation
method of renal ultrasound image. In: 2021 IEEE international
conference on systems, man, and cybernetics (SMC), IEEE,
Melbourne, Australia, October 17–20, 2021, pp. 40–45.

43. Oktay O, Schlemper J, Folgoc LL, et al. Attention u-net:
Learning where to look for the pancreas, arXiv preprint
arXiv:1804.03999, 2018.

44. Mnih V, Heess N and Graves A. Recurrent models of visual
attention. Adv Neural Inf Process Syst 2014; 27: 2204–2212.

45. Guo M-H, Lu C-Z, Liu Z-N, et al. Visual attention network.
Comput Vis Media 2023; 9: 733–752.

46. Chen G, Liu Y, Qian J, et al. DSEU-net: a novel deep super-
vision SEU-net for medical ultrasound image segmentation.
Expert Syst Appl 2023; 223: 119939.

47. Singla R, Ringstrom C, Hu G, et al. The open kidney
ultrasound data set, international workshop on advances in
simplifying medical ultrasound. Springer, Melbourne,
Australia, October 17–20, 2023, pp. 155–164.

48. Mohammadi R, Shokatian I, Salehi M, et al. Deep learning-
based auto-segmentation of organs at risk in high-dose rate
brachytherapy of cervical cancer. Radiother Oncol 2021;
159: 231–240.

49. Chaurasia A and Culurciello E, Linknet: exploiting encoder
representations for efficient semantic segmentation. In: 2017
IEEE visual communications and image processing (VCIP),
IEEE, St. Petersburg, Florida, USA, December 10–13,
2017, pp. 1–4.

50. Chen G, Dai Y, Li R, et al. SDFNet: automatic segmentation
of kidney ultrasound images using multiscale low-level struc-
tural feature. Expert Syst Appl 2021; 185: 115619.

51. Long J, Shelhamer E and Darrell T. Fully convolutional net-
works for semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2015, pp. 3431–3440.

52. Cao H,Wang Y, Chen J, et al. Swin-unet: unet-like pure trans-
former for medical image segmentation. In: Proceedings of
computer vision–ECCV 2022 workshops, Part III, Tel Aviv,
Israel, October 23–27, 2022. Springer, 2023, pp. 205–218.

20 DIGITAL HEALTH


	 Introduction
	 Related work
	 Materials and methods
	 KUS dataset
	 Deep supervised multi-loss attention 2D U-Net framework (MLAU-Net)
	 Depth and the number of initial filters
	 Attention mechanism in MLAU-Net
	 Deep supervision
	 Learning rate decay
	 The experiment

	 Preprocessing
	 Normalization methods
	 Resizing
	 Data augmentation

	 Dataset splitting
	 Implementation and evaluation methods
	 Loss function and model training
	 Experimental results and discussion

	 Qualitative analysis
	 Quantitative analysis
	 Ablation experiments
	 Computational complexity analysis
	 Analysis of segmentation challenges in MLAU-Net

	 Conclusion
	 List of abbreviations
	 Acknowledgment
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


