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ABSTRACT Although wastewater and sewage systems are known to be significant res-
ervoirs of antibiotic-resistant bacterial populations and periodic outbreaks of drug-resistant
infection, there is little quantitative understanding of the drivers behind resistant popula-
tion growth in these settings. In order to fill this gap in quantitative understanding of the
development of antibiotic-resistant infections in wastewater, we have developed a mathe-
matical model synthesizing many known drivers of antibiotic resistance in these settings
to help predict the growth of resistant populations in different environmental scenarios. A
number of these drivers of drug-resistant infection outbreak, including antibiotic residue
concentration, antibiotic interaction, chromosomal mutation, and horizontal gene transfer,
have not previously been integrated into a single computational model. We validated the
outputs of the model with quantitative studies conducted on the eVOLVER continuous
culture platform. Our integrated model shows that low levels of antibiotic residues present
in wastewater can lead to increased development of resistant populations and that the
dominant mechanism of resistance acquisition in these populations is horizontal gene
transfer rather than acquisition of chromosomal mutations. Additionally, we found that
synergistic antibiotics at low concentrations lead to increased resistant population growth.
These findings, consistent with recent experimental and field studies, provide new quanti-
tative knowledge on the evolution of antibiotic-resistant bacterial reservoirs, and the
model developed herein can be adapted for use as a prediction tool in public health pol-
icy making, particularly in low-income settings where water sanitation issues remain wide-
spread and disease outbreaks continue to undermine public health efforts.

IMPORTANCE The rate at which antimicrobial resistance (AMR) has developed and spread
throughout the world has increased in recent years, and according to the Review on
Antimicrobial Resistance in 2014, it is suggested that the current rate will lead to AMR-
related deaths of several million people by 2050 (Review on Antimicrobial Resistance,
Tackling a Crisis for the Health and Wealth of Nations, 2014). One major reservoir of resist-
ant bacterial populations that has been linked to outbreaks of drug-resistant bacterial
infections but is not well understood is in wastewater settings, where antibiotic pollution
is often present. Using ordinary differential equations incorporating several known drivers
of resistance in wastewater, we find that interactions between antibiotic residues and hori-
zontal gene transfer significantly affect the growth of resistant bacterial reservoirs.
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Wastewater and sewage systems are a major reservoir of resistant bacterial populations
due to the collection of antibiotic waste from humans and animals, inappropriate

drug disposal, and effluent from drug manufacturers, hospitals, and agricultural/veterinary
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settings (1). In some cases, environmental concentrations can reach, or even exceed, MICs of
certain antibiotics (2). This problem is particularly pertinent in low- and middle-income coun-
tries (LMICs) where cases of antibiotic-resistant infections have been rising and 70% of sew-
age produced is estimated to enter the environment untreated (1). For example, in 2016, an
outbreak of extensively drug-resistant (XDR) typhoid cases emerged in in the southern
Sindh province of Pakistan, and geospatial mapping revealed that the XDR Salmonella
enterica serotype Typhi infections spread around sewage lines in the city of Hyderabad in
Pakistan (3). Such outbreaks put the health and safety of surrounding populations at risk
and, due to the communicable nature of these infections, increase risk for populations
beyond the immediate vicinity of wastewater and sewage lines. Antibiotic pollution in
wastewater and sewage systems results in a complex environment with many interacting
antibiotic residues, and this pollution is a major driver of the antibiotic resistance that is
leading to outbreaks in surrounding communities (4, 5). One reason for this is that selec-
tive pressure from antibiotics in the environment is known to promote chromosomal re-
sistance mutations (2, 6, 7). Furthermore, the interactions between different antibiotic resi-
dues may also affect resistance due to the synergistic and antagonistic effects changing
the selective pressure on the bacteria (8). Additionally, the concentrations of antibiotic resi-
dues and disinfectants in sewage may be able to support and promote horizontal transfer
of resistance genes among bacteria (9–12). These mobile resistance genes have previously
been measured at high levels in wastewater and sewage (2). Though AMR and its drivers
have been studied in sewage and wastewater settings to some extent (2, 12, 13), one of
the largest gaps in understanding the emergence of AMR within a sewage environment is
the limited quantitative understanding of the effects and interactions of the many biologi-
cal and environmental mechanisms at work (14). Quantitative understanding of resistant
population growth in wastewater settings is critical in order to predict the development
of large resistant populations in wastewater that may pose a risk to local populations of
resistant infection outbreak. Furthermore, quantitative tools for understanding of resist-
ance can be used to develop and model strategies for preventing the emergence of large
resistant populations and therefore influence policy decisions. Therefore, there is a critical
need for developing quantitative methods of probing AMR in wastewater environments.
Our study is a step in filling this gap in knowledge.

Mathematical modeling has been an important tool in quantitatively studying
AMR development at both an epidemiological and mechanistic level (6, 8, 12, 15–17).
Epidemiological studies have included approaches that investigate bacterial popula-
tion dynamics in a number of biological contexts, including biofilms (15). At the pop-
ulation level, much of AMR modeling deals with disease states in which resistance
patterns are long established, with significant gaps in the study of resistance emer-
gence in new pathogens and the role of environmental factors in the development
of AMR (16). At the mechanistic level, modeling has been used as a tool to under-
stand the individual roles of both mutational resistance and plasmid-mediated resist-
ance (8, 12). Models based on resistance developed due to chromosomal mutations
have been used to study the role of synergistic and antagonistic antibiotic interac-
tions on the emergence of resistant populations, finding that increased synergy
increases the likelihood of resistance acquisition (8). Additionally, studies using mod-
eling as a tool to understand horizontal gene transfer (HGT) as a driver of AMR have
found HGT, specifically through the mechanism of conjugation, to be a significant
mode of resistance acquisition for Escherichia coli in settings, including agricultural
slurry (12). However, much of the work done recently has been focused on fitting
data in the absence of antibiotic exposure (17). Understanding how bacteria evolve
upon antibiotic exposure is important to develop strategies that prevent the emer-
gence of resistance (6). Thus, there remains a need for quantitative modeling of both
chromosomal mutation acquisition and HGT under selective pressure from antibiotics
to fully understand AMR development in settings such as sewage and wastewater
where antibiotic residues are often present. Here, we present a model of emergence and
growth of drug-resistant bacteria in wastewater, integrating acquisition of resistance
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through both chromosomal mutations and HGT while also incorporating the effects of an-
tibiotic interactions (Fig. 1).

RESULTS AND DISCUSSION
Model validation. In order to validate the developed model, experiments were

conducted with E. coli in a simplified experimental system including only one anti-
biotic (rifampicin) and no plasmid-containing bacteria such that there was only
chromosomal mutation as a mechanism for resistance. This experimental validation
was done on the eVOLVER, a continuous culture platform which allows for auto-
mated, highly flexible and scalable microbial growth and lab evolution. eVOLVER
allows for continuous flow conditions and independent, precise, and multipara-
meter control of growth conditions such as temperature and flow rate (18). This
allowed us to precisely recreate the model parameters in vitro in a high-throughput
and repeatable manner. For these eVOLVER studies, we set certain inflow and out-
flow rates, initial bacterial populations, and antibiotic concentrations as required
inputs for the computational model and then measured susceptible and resistant
bacterial populations over the course of the continuous evolution experiment. The
outputs of the study can then be directly compared to the outputs of the model.
The results of these studies are shown in Fig. 2a to c. The experiments showed that
at 6mg/liter and 8mg/liter rifampicin (where the MIC of rifampicin is 25mg/liter),
the resistant population developed to a steady state around the same order of
magnitude of the steady-state population of susceptible bacteria. This steady-state
resistant population was larger for the 8mg/liter rifampicin condition. At 12mg/li-
ter, the experiments showed that the resistant bacteria dominated the population,
and the susceptible population dropped to zero. After the conclusion of the experiment,
model equations and parameter values were adjusted to match the experimental behavior
(see Fig. 10 and Table 3). Notably, the mutation rates were increased by several orders of
magnitude to match the rapid in vitro development of resistance. Additionally, the experi-
mental results led to the addition of an equation for a theorized semiresistant population

FIG 1 Inputs and outputs for preliminary model of antibiotic resistance development in a single bacterial species in a wastewater
setting. ARG, antibiotic resistance gene.
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with a lower level of resistance (MIC=100mg/liter) (S1). This was added to match the ex-
perimental finding that resistance can coexist at a steady state with the susceptible popu-
lation. We theorized that the observed susceptible population also contained a subpopula-
tion of semi-resistant cells which were not detected by the 8� MIC resistance cutoff rate
of the experiment. These semiresistant cells would allow for a sustained susceptible popu-
lation in conditions with constant antibiotic pressure.

After adjustments, the resulting model outputs matched the general behavior of the re-
sistant and susceptible bacterial populations in response to the selected concentrations of
rifampicin (Fig. 2d to f). This established the ability of the model to match in vitro behavior
allowing for the development of a model with predictive capabilities.

Following this initial study, the adjusted model was used to make predictions for a
second experiment with different rifampicin concentrations (Fig. 3a and b). This second
experiment was again conducted using the eVOLVER with the same growth conditions,
and the results of the experiment qualitatively matched the behavior predicted by the
model (Fig. 3c and d). This predictive capability demonstrated the validity of the mod-
eling assumptions and prompted further simulation studies using the model.

Model simulations. Initial model simulations were done to compare the outputs of
our model with known scenarios in E. coli under low antibiotic pressure. In the scenario
of no HGT, as expected, only mutational resistance was observed (Fig. 4a). Likewise, for a
scenario in which there is no chromosomal mutation (chromosomal mutation rate = initial
mutant population=0), only resistance from HGT was observed and due to an assumed
higher growth rate due to a lower fitness cost for bacteria with resistance-conferring plas-
mids than those with chromosomal resistance mutations (19), this resistance overtook the
susceptible population at a higher rate (Fig. 4b).

Very low antibiotic residue concentration can promote resistant population
growth.We then turned our attention to simulating realistic scenarios in wastewater
and sewage. We studied the effects of changing antibiotic residue concentration on

FIG 2 Measured susceptible and resistant populations from eVOLVER experiments of E. coli grown in continuous culture in media containing 6mg/liter
rifampicin (a), 8mg/liter rifampicin (b), and 12mg/liter rifampicin (c). Postadjustment model outputs in arbitrary units (a.u.) for susceptible and resistant
populations of E. coli grown in media containing 6mg/liter rifampicin (d), 8mg/liter rifampicin (e), and 12mg/liter rifampicin (f).
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the development of antibiotic resistance (Fig. 5). Low subinhibitory concentrations
(0.5 to 2mg/ml), as would be present in wastewater settings (4, 5), were studied.
These concentrations are an order of magnitude lower than the MICs of each of the
two simulated antibiotics, which have been assumed as 25mg/ml based on our ex-
perimental results with rifampicin. At these low concentrations, increased antibiotic
residue concentration increased the rate of resistance development and decreased
the time to resistant population dominance (defined as time when Rm1Rp . S). This
is in agreement with several prior studies linking subtherapeutic antibiotic levels
with both chromosomal resistance mutation development and HGT (6, 7, 9–12).
Future studies will look at higher antibiotic concentrations and the point of inflec-
tion where this increase in antibiotic concentration begins to prevent resistance
through bactericidal activity. Furthermore, HGT was observed to be the dominant
mode of resistance, in agreement with patterns reported in studies of E. coli in other
settings (20).

Increase in HGT rate increases resistance at low concentrations. Additionally, the
effect of HGT was modeled by increasing the HGT rate, b (Fig. 6). Prior studies have indicated
that HGT rate is a less significant driver of resistance frequencies (21). However, our model

FIG 3 Postadjustment model predictions for susceptible and resistant populations of E. coli grown in media containing 3mg/liter rifampicin (a) and 10mg/
liter rifampicin (b). Measured susceptible and resistant populations from eVOLVER experiments of E. coli grown in continuous culture in media containing
3mg/liter rifampicin (c) and 10mg/liter rifampicin (d).
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shows that at very low subinhibitory concentrations of antibiotic, increased HGT rate signifi-
cantly decreases the time to resistant population domination. This result indicates that
increasing HGT rate allows resistance to be acquired at very low selective pressures where
there are infrequent chromosomal mutations. This result is important as it shows that
decreasing antibiotic levels in wastewater to low levels is not sufficient in preventing the
growth of resistant populations. At very low concentrations of antibiotics, the HGT rate of an-
tibiotic resistance genes in wastewater can affect the proliferation of resistant populations in
bacteria with high gene transfer rates. As the HGT rates of the multitude of bacterial species
in wastewater is not a commonly monitored parameter, this may be a factor to be mindful of
in wastewater surveillance, as these rates can have a significant effect on the evolution of re-
sistant population reservoirs even at low antibiotic concentrations.

Effect of bacterial killing rate. Because wastewater settings can often have low con-
centrations of antibiotics from various polluting factors (4, 5), we probed the specific effects of
antibiotic residues on the development of resistant populations. Individual antibiotics have dif-
ferent killing rates based on factors such as their modes of action. Thus, we investigated the
effect of bacterial killing rate on resistant population growth (Fig. 7). Increasing the killing rate
terms (d max,1 and d max,2) was observed to decrease the time it takes for the resistant popula-
tion to dominate under subinhibitory concentrations. This result is in agreement with previous

FIG 4 Sensitive and resistant populations under resistance only from chromosomal mutations (a) and resistance only from the HGT of resistance-conferring
plasmids (multidrug-resistant [MDR] plasmid) (b).

FIG 5 Sensitive and resistant populations under antibiotic residue concentrations of 0.5mg/ml antibiotic 1 plus 0.5mg/ml antibiotic 2 (a), 1mg/ml antibiotic
1 plus 1mg/ml antibiotic 2 (b), and 2mg/ml antibiotic 1 plus 2mg/ml antibiotic 2 (c). Time is shown in arbitrary units (a.u).
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studies showing that increased selective pressure from antibiotics at subinhibitory concentra-
tions can increase resistance development (6, 7).

Synergistic antibiotic interactions increase resistant population growth. The
interaction between two antibiotics has previously been shown to affect resistance ac-
quisition (22). Synergy is the interaction of multiple drugs to have a greater killing
action than the sum of their parts. Antibiotic synergy has also been shown to increase
the likelihood of resistance acquisition at subtherapeutic doses (8). However, the
effects of antibiotic interaction on the growth of resistant populations in wastewater
settings, where many antibiotic residues can be present, has not previously been
observed or modeled. In order to fill this gap, we have probed the effects of synergistic
effects between antibiotic residues on the system by varying the synergy parameter,
syn. Results from our model show that increased synergy between different antibiotics

FIG 6 Effect of horizontal gene transfer rate on time to resistant population dominance for
subinhibitory antibiotic residue concentrations (defined as time when Rm 1 Rp . S).

FIG 7 Effect of bacterial killing rate on time to resistant population dominance for subinhibitory
antibiotic residue concentrations (defined as time when Rm 1 Rp . S).
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resulted in a decrease in the time to resistant population elimination at suprainhibitory
concentrations (Fig. 8a). This result may initially seem counterintuitive but is in fact
consistent with previous studies. This is because the synergistic action between the
antibiotics increases the killing action to the point where it is effective on the resistant
populations at lower concentrations than for antagonistic pairs. Hence, the synergy
between the two antibiotics allows for greater bactericidal activity at lower concentra-
tions. However, at subinhibitory concentrations, increasing synergy between antibiot-
ics decreased the time to resistant population dominance (Fig. 8b). This is in agree-
ment with other models in which synergy between antibiotics was observed to
increase resistance acquisition (8). Our model further shows that these effects of syn-
ergy are observable even with low levels of antibiotic, such as the antibiotic residue
concentrations present in wastewater. While the effects of antibiotic interaction on re-
sistance acquisition have been previously modeled, low subinhibitory antibiotic con-
centrations such as those found in wastewater have not been well studied and are crit-
ical for understanding resistance development in wastewater settings (17).

Conclusion. Though we have been able to draw a number of conclusions on the rela-
tive effect of a variety of factors affecting resistance development in wastewater, we note
that our model does have limitations. First, our model is based on parameter values from lit-
erature, not all of which have been experimentally validated against wastewater conditions.
Additionally, other phenomena related to microbial growth have not been included in this
initial model. For example, the phenomenon of dormancy can allow persister cells within
the susceptible population to survive in the presence of antibiotic and resume growth after
antibiotic removal, providing a method for susceptible populations to survive higher doses
of antibiotic and develop resistance at a later time point (23, 24). Additionally, biofilm can
also serve as reservoirs of resistance and have been observed to be enriched with antibiotic
resistance genes downstream from wastewater effluent discharge points (25, 26). Finally, our
model takes into account only the stationary and death phases; however, the addition of
the long-term survival phase, which has been observed in bacterial species, including E. coli,
could allow for more precise understanding of population growth dynamics (27). The addition
of these terms in future modeling studies may allow for better quantification of resistance de-
velopment. However, despite these limitations, experimental validation demonstrated the abil-
ity of our model to qualitatively predict in vitro behavior of bacterial resistance development
in response to multiple subinhibitory concentrations of rifampicin (Fig. 3). We have also
assumed a simplified case where the two mechanisms of resistance acquisition that are mod-
eled are independent, that as interaction between HGT and chromosomal mutation and the

FIG 8 Effect of synergy of antibiotic combinations on time to resistant population elimination for suprainhibitory antibiotic residue concentrations (a) and
time to resistant population dominance for subinhibitory antibiotic residue concentrations (defined as time when Rm 1 Rp . S) (b).
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behavior of cells having both are unknown. This assumption can be tested through future ex-
perimental work. Our model also does not account for multiple bacterial species or a multi-
tude of antibiotic residues, as would be present in a complex environment like wastewater.
Interaction between the multiple bacterial species as well as quorum sensing within bacteria
of the same species could have an effect on resistant population size and is a future area of
expansion for this model. Additional improvements to the accuracy and robustness of the
model could be made through parameter initialization from field data and experimental vali-
dation of model inputs and outputs under specific wastewater conditions using the highly
tunable eVOLVER platform.

Despite these limitations, our model provides new, and important quantitative
insight on the evolution of resistant bacterial reservoirs. It also provides an integrated
framework to incorporate several aspects of resistance acquisition and growth previ-
ously lacking from models focused on AMR in wastewater settings. In terms of results,
we have shown that the HGT rate can be a significant driver of resistant population
growth at very low antibiotic concentrations (Fig. 5 and 6). This indicates that HGT
rates of bacteria in wastewater may be important to monitor in addition to antibiotic
residue concentration. We have also shown that synergy between the antibiotic resi-
dues present in wastewater can increase the rate of resistant population growth, even
at the low concentrations present in wastewater (Fig. 8). Thus, antibiotic residues in
wastewater may pose a greater risk than might be expected without taking these anti-
biotic interactions into consideration. This has important implications for determining
acceptable antibiotic levels in wastewater after treatment, as determining levels with-
out considering antibiotic interactions may lead to overestimating the permissible

FIG 9 Sensitive and resistant populations under selective pressure from antimicrobial combination therapy including chromosomal
mutation and HGT resistance mechanisms.
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level of antibiotic and allow for the proliferation of antibiotic-resistant bacterial popula-
tions. This model can be adapted for use as a prediction tool for public health policy
makers and be used to predict resistant population emergence in different sewage
and wastewater conditions. Additionally, it can be expanded to be used to model dif-
ferent resistant outbreak prevention strategies in sewage and wastewater treatment.

MATERIALS ANDMETHODS
Our mathematical model of the growth of antibiotic-resistant bacterial populations in wastewater

builds on prior studies (8, 12, 28) and extends it to incorporate a variety of critical, but overlooked, input
factors specific to the bacterial species, antibiotics, and environments of interest. The inputs can be
broadly classified into bacterial parameters, environmental parameters, and antibiotic parameters.
Bacterium-specific input factors include the growth rates of antibiotic-susceptible and -resistant strains,
mutation rates, and rates of HGT. The antibiotic-specific inputs, such as bactericidal activity and degree
of synergy, allow for the study of the effects of drug quality and antibiotic pollution on the development
of resistance. Additionally, environmental inputs, including physical fluid inflow and outflow rates and
antibiotic residue concentration, allow for the modeling of resistance development in a variety of set-
tings of interest. These input parameters can be used to model an output of resistant bacterial popula-
tions over time, thus allowing for the prediction of resistant population development (Fig. 1).

The model consists of ordinary differential equations governing the concentration of two antibiotics
(C1 and C2) over time as well as equations modeling the susceptible population (S) and populations re-
sistant to both antibiotics 1 and 2 from chromosomal mutation (Rm) or from HGT, specifically a resist-
ance-conferring plasmid (Rp) over time (Fig. 9 and Table 1). Additionally, two populations of bacteria
that are resistant through chromosomal mutation to each antibiotic individually are modeled (R1 and
R2). Each antibiotic is modeled with terms for the antibiotic residue concentration in the environment (E)
and the antibiotic clearance rate (ke). Each bacterial population is modeled with terms for growth rate
(a), which is limited by the carrying capacity (Nmax). The bactericidal activities of the antibiotics are mod-
eled by the term for killing rate in response to each antibiotic (d max,1 and d max,2). These killing terms are
modified by the antibiotic concentration where the killing action is half its maximum value for either
susceptibility ðC50

S Þ or resistance to each antibiotic ðC50
R;1; C50

R;2Þ. These killing rates and half-max concen-
tration terms are assumed to be equal for each antibiotic. Additionally, the killing rates are modified by
a synergy term (syn) with syn, 1 indicating antagonistic interaction and syn. 1 indicating synergistic
interaction. Also included in the model are terms for bacterial inflow (gs, gRm, gR1, gR2, and gRp) and out-
flow (kT) rates (Table 2). These inflow and outflow rates are determined by the physical flow rates of the
system of interest, and the outflow terms were validated experimentally as described below. As

TABLE 1Model variables and definitions

Variable Definition
C1 Antibiotic 1 concn (microgram/milliliter)
C2 Antibiotic 2 concn (microgram/milliliter)
S Susceptible (cells)
Rm Resistant to both antibiotic 1 and antibiotic 2 from chromosomal mutation (cells)
R1 Resistant to only antibiotic 1 from chromosomal mutation (cells)
R2 Resistant to only antibiotic 2 from chromosomal mutation (cells)
Rp Resistant to antibiotic 1 and antibiotic 2 fromMDR plasmid (cells)
E Environmental concn of antibiotic (microgram/milliliter/hour)
syn Synergy parameter (nondimensional)

TABLE 2Model parameter values and descriptions

Parameter Value Description Reference(s)a

ke 1.97 Antibiotic clearance (1/hour) 28
aS 13.66 Growth rate of susceptible bacteria (1/hour) 28
aRm 1.9 Growth rate of bacteria resistant from mutation (1/hour) 28
aRp 2.1 Growth rate of bacteria resistant from plasmid (1/hour) 12, 19, 28
Nmax 109 Carrying capacity (cells/milliliter) 30
gs; gRm; gR1; gR2; gRp 0 Bacterial influx rates (cells/hour) NA
kT 0 Bacterial efflux rate (1/hour) NA
dmax;1 ; dmax;2 27.14 Bacterial killing rate in response to antibiotic 1 and antibiotic 2 (1/hour) 28
C50

S ; C50
R;1; C50

R;2 12.5, 100, 100 Antibiotic concn where the killing action is half its maximum value
(microgram/milliliter)

Experimentally
determined

m1 C1ð Þ 2.35� 1026 (C1Þ Mutation frequency under antibiotic 1 (1/hour) 8
m2 C2ð Þ 2.35� 1028 (C2) Mutation frequency under antibiotic 2 (1/hour) 8
b 0.001 Gene transfer rate (1/hour) 12
aNA, not available.
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susceptible and resistant bacterial inflow and outflow rates for wastewater settings are not known, the
model simulations assume bacterial inflow and outflow rates of zero. However, these parameters are still
included due to their relevance for the modeling of systems such as wastewater where bacterial inflow
and outflow will affect resistant population development and they may be quantified in future field
studies. Chromosomal mutation is modeled through terms for mutation rates under antibiotic pressure
(m) which are concentration dependent. Parameters governing mutation rate and antibiotic interaction
are based on a previously developed model of Michel et al. (8). HGT is modeled assuming the mecha-
nism of plasmid conjugation and a HGT rate (b). HGT model terms and parameter values are adapted
from a model of HGT in agricultural waste of Baker et al. (12). Other model parameters are based on
experimentally derived parameters of E. coli in piglet studies (28, 29). We note that the incorporation of
all of these parameters, which have previously not been studied at once, into one single model can pro-
vide insights into their roles in the emergence and development of resistant populations. These equa-
tions were coded and solved in MATLAB (R2018a, Mathworks Inc.).

Experimental validation of the model was done using the eVOLVER system (24). The experiment was
initialized with inoculation of LB medium with E. coli MG1655 in static conditions at 37°C. Then, inflow
and outflow of rifampicin-containing LB medium at three concentrations (6, 8, and 12mg/liter) were
started at a flow rate of 16ml/h. Following the beginning of inflow/outflow, each culture condition was
sampled daily, and the concentration of total bacteria was monitored through optical density (OD)
measurements taken through the eVOLVER system and resistant bacteria were calculated through plat-
ing on selective LB agar containing 200mg/liter rifampicin. This rifampicin concentration is eightfold
greater than the experimentally determined MIC for rifampicin (25mg/liter). After the conclusion of the
experiment, model equations and parameter values were adjusted to match the experimental behavior
(Fig. 10 and Table 3).

FIG 10 Augmented model of sensitive, semiresistant, and resistant populations under selective pressure from rifampicin therapy
including only chromosomal mutation mechanisms.

TABLE 3 Adjusted model parameter values and descriptions based on eVOLVER experimental
conditions and results

Parameter Value Description
ke 1.97 Antibiotic clearance (1/hour)
aS 13.66 Growth rate of susceptible bacteria

(1/hour)
aR;1 4.99 Growth rate of bacteria resistant

from mutation (1/hour)
aS;1 8.3 Growth rate of bacteria

semiresistant from mutation (1/
hour)

Nmax 3� 108 Carrying capacity (cells/milliliter)
gs; gR;1; gS;1 0 Bacterial influx rates (cells/hour)
kT 0.8 Bacterial efflux rate (1/hour)
dmax;1 ; dmax;2 27.14 Bacterial killing rate in response to

antibiotic 1 and antibiotic 2 (1/
hour)

C50
S ; C50

S1; C50
R;1 12.5, 100, 200 Antibiotic concn where the killing

action is half its maximum value
(microgram/milliliter)

m1 C1ð Þ 8.5� 1023 (C1) Mutation frequency of full
resistance mutation (1/hour)

ms1 C2ð Þ 8.5� 1022 (C1) Mutation frequency of low
resistance mutation (1/hour)
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