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Abstract

Introduction: In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer
subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to
smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-
like SUM149 breast cancer cell line.

Methods: We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-
centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH
(244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on
previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast
cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25%
of SWITCHdna-defined genomic segments were called micro-aberrations (,64 contiguous probes, , 15 kb).

Results: Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number
gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH
arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered
expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq
showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately
affected the 59 regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was
associated with poor survival.

Conclusion: Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic
aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms
not detected using conventional DNA copy number analyses.
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Introduction

A hallmark of many human cancers is genomic instability, and

cancer itself can be thought of as the result of an altered ploidy [1].

In order to gain a greater understanding of the causes underlying

tumor formation, one must understand the core events and

changes of cancerous cells. The genetic identity of each cell

determines the fate of the cell and thus the cancer genome is

a source of information to be mined in order to identify both the

ways cancers arise and how they can be treated. The importance

of studying the cancer genome cannot be understated as genomic

alterations have been linked to cancer causation both broadly and

in specific subgroups of patients [2,3,4,5,6]. Dysregulation of gene

expression is one mechanism by which cells become tumorigenic.

It has been shown that alterations on a genomic DNA level are

likely to cause associated changes in gene expression [7,8].

Previous global gene expression profiling studies of breast

carcinomas have identified at least five distinct subtypes of breast

cancer [9,10,11,12,13] with specific patterns of Copy Number

Aberrations (CNA) that can also define genetic events associated

with different expression subtypes [14,15]. The interplay between

genomic DNA changes and gene expression is something that can

yield much information about the underlying processes that

contribute to breast cancer formation and development. Contin-

ued investigation of copy number abnormalities in breast cancer is
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likely to yield additional insights into the pathogenesis of the

disease.

As knowledge about breast and other cancers advances, we are

finding that there are numerous complex ways by which the

genome can be disrupted. While certainly gross chromosomal

aberrations and rearrangements have been seen to initiate disease

[3], more subtle derangements of the genome can also contribute

to tumor formation as well. With the continued advancement in

technologies to detect DNA copy number changes, previously

difficult to detect varieties of genetic abnormalities are continuing

to be discovered. Through the use of a high-density array

comparative genomic hybridization (HD-aCGH) platform, it is

possible to detect both gross and fine-scale aberrations in genes

[16,17]. Small-scale CNA, here termed micro-aberrations, repre-

sent a previously under-investigated source of copy number

variation that may shed light on breast subtype characteristics and

tumorigenesis. These micro-aberrations have not previously been

the focus of any dedicated study and thus we sought to design

assays to identify and characterize them. Enhanced detection,

cataloguing, and validation of these events could be an avenue

through which we can gain a greater understanding of breast

cancer genomes through the improved ability to detect genetic

events affecting gene expression and function. We focused our

investigation on 128 genes shown to be of importance in breast

and other cancers; we reasoned that because these genes were

frequently disrupted in cancer, they might be more likely to harbor

detectable micro-aberrations. Furthermore, any micro-aberrations

that might be detected within these genes would be more likely to

be biologically relevant and functional than ones that might be

detected within a randomly selected panel of genes. Thus, in this

study, we utilize a fine-resolution platform to identify these small

scale events and examine the functional consequences that result

when they are present.

Methods

Ethics Statement
All samples used in this study were collected using IRB-

approved protocols and all patients signed informed consent forms

and the data were analyzed anonymously.

Breast Cancer Patient Dataset
The dataset used here contained both gene expression and high-

density array comparative genomic hybridization (HD-aCGH)

copy number data from a set of breast tumors from UNC ‘‘HD-

UNC94’’ (n = 94). Additionally, the SUM102 and SUM149 breast

cancer cell lines [18] were obtained from Dr. Steve Ethier, and

assayed using these high-density tiling arrays. Tumors in the

dataset were assayed for gene expression patterns using Agilent

DNA microarrays as previously described [19]. Log2 ratio data

were taken from the UNC Microarray Database (UMD), filtering

for a lowess normalized intensity value of 10 or above for each

channel, and 70% present data values, and then used for further

analyses. Data is available from Gene Expression Omnibus under

GSE36889 Sample information including clinical data, subtype,

source, GEO Sample ID and overlap with copy number

information, can be found in Table S1.

Classifying Tumors for Gene Expression-based Subtype
Classification
The Lowess normalized gene expression R/G Log2 ratio data

from the HD-UNC94 data set used different gene expression

microarray platforms. The dataset was therefore then limited to

the probes/genes shared across both platforms. After column

standardization of both platforms (samples at N(0,1)), Distance

Weighted Discrimination (DWD) [20] was used to remove

platform bias prior to classification for the gene expression arrays.

After normalization, the R/G Log2 ratio data was collapsed (via

averaging) from probes to HGNC gene symbols. The PAM50

gene set predictor [19] was used to assign subtypes to the tumors.

Tiling Array Design
The custom HD-aCGH tiling platform was designed using

Agilent’s E-array v5.0 online (https://earray.chem.agilent.com/

earray/) software and built on the Human 244 k Custom Oligo

platform (GPL15359 Agilent UNC Perou Lab 1X244 k Custom

Tiling CGH Array). 230,606 probes cover a total region of 45 Mb,

which includes the full genomic sequence of the 128 genes of

interest as well as the region 150 kb upstream and downstream of

each of these genes (Table S2); this design gave an average

resolution of 200 bp between contiguous probes. Labeling and

hybridization were performed according to manufacturer’s

instructions using the Agilent Genomic DNA Labeling Kit PLUS

(Catalogue Number 5188–5309). A Human Genomic DNA Pool

(Promega, Catalogue Number G3041) was used as reference

DNA, which was compared versus every tumor or cell line sample.

Microarrays were scanned on an Agilent DNA Microarray

scanner (G2565CA) and the data uploaded to the University of

North Carolina Microarray Database (UMD, www.genome.unc.

edu).

Identification of CNA and microCNA with SWITCHdna
To determine regions of Copy Number Aberration (CNA), we

utilized the SWITCHdna algorithm [14], focusing on individual

genes. For the purposes of this study, the analysis window was

limited to the genomic region of each gene and its introns, plus the

5 kb upstream of the start codon, and downstream of the end of

the 39UTR (Table S2). In order to further filter the identified

segments, we set the cutoff for the absolute value of the log2 ratio

to be greater than 0.30 in order to reduce false positives. After

identifying all genomic segments of alteration using SWITCHdna,

we analyzed the distribution of sizes of aberrant segments and

established a cutoff of ,64 contiguous SWITCHdna probes, or ,
#15 kb as the definition of a micro-aberration, which equates to

the smallest 25% of CNA in this dataset.

In order to identify the regions of genes most commonly affected

by micro-aberrations, each gene was divided into four quadrants

based upon a proportional splitting of each gene into four equal

segments: 59 End (typically being the promoter region, 59UTR,

beginning regions of gene), 59 Middle (first K of gene), 39 Middle

(second K of gene), 39 End (typically being the end regions of

gene, 39 UTR, downstream region). For every micro-aberration

instance, the affected quadrants were tallied for each quadrant,

and the proportion of affected quadrants out of all possible

quadrants was calculated. Similarly, each micro-aberration in-

stance was assessed in terms of whether it encompassed the

promoter or 59 untranslated region (UTR) of each gene, with the

promoter region defined as genomic space upstream of the

transcription start site.

mRNA-seq
mRNA-seq was performed on total RNA isolated from cell lines

and tumors using the Qiagen RNeasy Mini Kit (Cat. No. 74104).

Library preparation was performed using the TruSeq RNA

Sample Kit from Illumina (Cat. No. RS-930-2001) following the

low input protocol detailed in the manufacturer’s guidelines.

1676 bp nucleotide reads were generated using an Illumina GAII

sequencer for the SUM102 cell line. For the two tumor samples
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(UNC990141B and UNC040182B), we sequenced using

a 2650 bp configuration using an Illumina HiSeq2000. In all

cases, the read data were aligned to the human HG19 reference

genome from the UCSC genome browser [21], and mapped using

MapSplice [22]. The alignments were visualized using the

Integrative Genomics Viewer (IGV) [23] for evidence of micro-

aberrations. To investigate the molecular mechanisms of these

aberrations, we next collected the reads aligning to the target

regions and performed de novo assembly with the Trinity [24].

Default assembly settings were used, and the de novo assembled

contigs then compared to the reference using BLAST.

Survival Analysis
The patients in the dataset were rank ordered by total number

of SWITCHdna-defined aberrations, and micro-aberrations, and

separated in the top 67% and bottom 33%; additional rank order

splits were also evaluated, but data not shown. Survival analyses

were performed using the Kaplan-Meier test in R [25].

Results

Copy Number Micro-aberrations are Present in Breast
Tumor Subtypes
In order to test the hypothesis that primary breast cancer

genomes contain areas of small-scale copy number gains and

losses, termed micro-aberrations, we designed a custom, high-

resolution, high-density, comparative genomic hybridization tiling

array (HD-aCGH) with an average probe spacing of 200 base

pairs, and which was focused on 128 selected genes (Table S2). We

assembled a dataset of 94 tumors and 2 cell lines and tested them

on this HD-aCGH array. Each tumor was also classified into one

of five previously defined gene expression subtypes using the

published PAM50 identifier [19], and genomic DNA copy number

aberrations identified using the SWITCHdna algorithm [14].

Using this HD-aCGH array, we were able to identify both

previously observed large scale amplifications and deletions, and

novel small-scale copy number aberrations, which we have

highlighted a few selected examples here; the SUM149 cell line

has a previously identified micro-amplification in exon 2 of the

PTEN gene [16], which we also clearly observed using our HD-

aCGH platform (Fig. 1A). A number of other relatively small

intra-genic aberrations were also detected, including a focal

deletion in PTEN in a basal-like tumor (Fig. 1B), an intra-genic

deletion in RB1 in a different basal-like tumor (Fig. 1C), and

a small RB1 amplification in yet a third basal-like tumor (Fig. 1D).

To objectively define a micro-aberration, we established a size

definition of the smallest 25% of SWITCHdna identified

aberrations in this dataset, which resulted in the size cut off of

approximately 64 contiguous probes (,15 kb). The previously

identified PTEN micro-amplification in the SUM149 cell line is

able to be identified using these criteria. The genomic landscape of

the basal-like subtype exhibited many of these micro-aberrations,

as basal-like tumors showed the highest incidence of these events

(Table 1).

The value of the high-density tiling array platform is also shown

in another example of a RB1 alteration (Figure 2). Each identified

micro- and macro-aberration segment for this gene is plotted with

the RB1 exons identified by each gray stripe, along with the

location of each RB1 probe on the tiling array (green segments),

and also shown are probes from an earlier 109,000 feature single

nucleotide polymorphism (SNP) platform [14], which was used in

a previous study examining whole-genome landscapes of breast

tumor subtypes (5 probes: red lines) (Figure 2A). The micro-

aberration segments overlap with at most one genome-wide probe

from the 109K arrays, and thus would have never been called a loss

given how most aCGH programs call ‘‘changed segments’’, which

was the case for SWITCHdna. In addition, several macro-

aberrations identified from the tiling array platform have minimal

overlap with the 109K genome-wide probes. 49/94 samples

assayed here on the HD-aCGH array had previously been assayed

on the 109K SNP platform and the results of this overlap set for

RB1 were compared directly in terms of CNA assignment

agreement by SWITCHdna. Again, focusing on the RB1 gene

as our example case, we observed copy number aberrations in six

of these 49 samples by the HD-aCGH array for RB1; only two of

these six samples’ CNA were detectable by the 109K SNP array

and these were the aberrations that spanned the whole gene. The

remaining four, all of which were intra-genic events, were missed

by the copy number segments generated from the whole-genome

array (data not shown). This is illustrated in two example RB1

gene plots directly comparing the probes and segments from the

high-density tiling array and the 109 k SNP array (Figure 2B, 2C).

Small Scale Copy Number Aberrations can Affect Gene
Expression
Beyond simply determining the frequency of micro-aberrations

present within each gene or tumor, we wanted to assess whether

the presence of micro-aberrations would result in functional

consequences. We first assigned a copy number status for each

gene and each sample (gross copy number gain, gross copy

number loss, micro-amplification, or micro-deletion) and then for

each gene, determined whether the corresponding gene expression

was concordant with the type of genomic aberration observed (i.e.

micro-amplifications result in increased expression and/or micro-

deletions result in decreased expression of the involved gene). We

found similar rates of concordant expression between micro-

aberrations and gross aberrations, with 30–40% of the tested genes

showing 100% agreement between aberration type and gene

expression, meaning that for these genes, every sample that

displayed a micro-amplification in the gene also had greater than

median expression of the gene and likewise every sample that had

a micro-deletion in the gene had less than median expression of

the gene. Another 50–75% of the tested genes showed at least 50%

concordance between aberration type and gene expression

meaning at least half of the samples that displayed a copy number

aberration had altered expression of the affected gene in the same

direction as the CNA (Table 2). These findings suggest that the

micro-aberrations have functional effects upon gene expression

similar to what is seen with larger scale CNA. We also examined

the expression status of each micro-aberration by micro-aberration

type to determine if there was an association between micro-

amplifications and high expression and micro-deletions and low

expression across all events instead of within genes. When all

micro-aberrations are combined, there is no significant difference

in expression level between samples with micro-aberrations versus

those without, but significant differences by Fisher’s Exact test

were observed when looking within micro-amplifications or micro-

deletions (Table 3). A number of genes containing micro-

aberrations also showed differential expression of the involved

gene when comparing the aberrant vs. non-aberrant groups by

ANOVA (Figure 3). ANOVA box plots are shown for the genes

NUF2 (Fig. 3A) and UBE2T (Fig. 3B), where samples with micro-

amplifications had significantly higher expression of the gene than

those without micro-amplifications. Also shown is ZNF217

(Fig. 3C), where samples with micro-deletions had lower

expression of the gene than those without micro-deletions, and

SLC7A6 (Fig. 3D) where the samples with micro-deletions had

higher expression than the samples that do not; we do note that

Micro-Scale Genomic Aberrations in Breast Cancer
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the sample size is small in some cases, but overall these data

suggest that micro-aberrations can affect gene expression.

Genomic Micro-amplification Causes Exon Skipping
We performed a closer examination of the micro-amplification

of the PTEN gene in the SUM149 cell line, as it is a validated

aberration that has now been identified by multiple groups. Using

mRNA-seq data, we assessed the expression of the PTEN gene on

an exon level to determine the functional consequence of the DNA

micro-amplification. For comparison, we also examined the data

for the SUM102 cell line, which has no genomic alterations in

PTEN (data not shown). The distribution of aligned reads for each

exon is shown for each cell line (Figure 4A), with the SWITCHdna

copy number segments for SUM149 shown in genomic space for

reference (Figure 4B). In SUM149, there is a lack of PTEN gene

expression starting from the middle of exon 2, which coincides

with the location of the genomic DNA micro-amplification. In

comparison, the SUM102 cell line has aligned reads throughout

Figure 1. Selected examples of intra-genic micro-aberrations. A) The previously identified PTEN exon 2 micro-amplification in SUM149 cell
line DNA. B) Intra-genic deletion in PTEN in basal-like tumor BR-970137B. C) Focal deletion of RB1 in basal-like tumor UNC020510B, and D)
amplification of RB1 gene in basal-like tumor UNC030459B. The locations of the tiling array probes are indicated with black crosses. Exons are
highlighted with grey bars. SWITCHdna called segments are indicated in blue.
doi:10.1371/journal.pone.0051719.g001
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the entirety of the PTEN gene, thus the micro-amplification in

SUM149 causes a loss of expression of all downstream exons.

Additionally, we sought to validate other micro-aberrations

using mRNA-seq data. We were able to observe instances where

the presence of a micro-aberration resulted in production of inter-

exon mRNA reads with sequence infidelity. In the 990141B tumor

sample, the presence of a micro-amplification in the EGFR gene

results in many mRNA-seq reads that mapped outside of the exon,

and that often contain misalignments (Figure S1). This finding was

not observed when examining data from the SUM102 cell line

data that does not contain a similar micro-aberration. Similarly, in

the UNC040182B tumor sample, a micro-deletion in the BCL11A

gene results in mRNA-seq reads that align outside of the exon

containing multiple sequence errors, a finding likewise not

observed in the unaffected SUM102 cell line data (Figure S2).

We pursued further analysis by performing de novo assembly of

mRNA-seq reads that mapped to the region of EGFR micro-

amplification in the 990141B tumor sample and generated two

contigs that aligned to the reference mRNA sequence, aside from

5 bases at the start of the contig and 3 bases at the end of the

contig (Figure S3). The 5 base unaligned sequence occurs twice

within the aligned reference region and may represent the site

joining a duplication of the stretch of genome that results in the

micro-amplification. de novo assembly of mRNA-seq reads that

mapped to the region of BCL11A micro-deletion in the

UNC040182B tumor sample generates a contig that begins at

the end of the of the affected exon and extends into intronic space

(Figure S4); this could be attributed to loss of the beginning of the

exon, which then causes mis-splicing and the generation of an

altered mRNA. Thus in these two cases, the micro-aberrations

affected the mRNA structures.

The 59and Promoter Regions of Genes are most
Commonly Affected by Micro-aberrations
In order to assess whether certain regions of genes were more

commonly affected by micro-aberrations than others, we por-

tioned each of the 128 genes on the HD-aCGH array into four

quadrants: 59 End, 59 Middle, 39 Middle, and 39 End, based upon

a proportional splitting of each gene into 4 equal segments. For

every micro-aberration instance (n = 330), we noted the quadrants

that it occupied, and then for each quadrant, determined what

proportion of the total possible quadrants were affected by a micro-

aberration event (Figure 5A). We found that the 59 end of the gene

was disproportionately affected by micro-aberrations (88% vs.

,40%). Additional refinement of the affected region was also

performed and a large percentage of micro-aberrations also

affected the promoter (defined as the area upstream of the coding

region) and 59 UTR regions as well (80.6% and 79.7%

respectively). Of the aberrations whose area of effect was limited

only to the 59 End, the promoter region was affected at a higher

rate than the 59 UTR region (Figure 5B, 92.0% vs. 68.1%).

Micro-aberration Frequency Associated with Poorer
Survival
The survival outcomes of patients with varying levels of copy

number aberrations were also assessed to determine if an

association was present. We identified the number of copy

number micro-aberrations per sample using our SWITCHdna

criteria and rank-ordered the patients in terms of micro-

aberration frequency. Each patient in the HD-UNC 94 dataset

was assigned to one of two groups depending on whether they

were in the top 67% of microCNA or the bottom 33%.

Kaplan-Meier analysis was performed examining overall

(Fig. 6A) and relapse-free survival (Fig. 6B). We saw that

patients with the least genomic instability as assessed by

SWITCHdna-called micro-aberrations had significantly better

outcomes in terms of both overall and relapse-free survival. A

caveat to these analyses is that the sample size is small, and

additional rank order splits of the data were only trending

towards significance, but similar to what has been seen before

for large numbers of large scale changes [26,27], tumors with

the most numbers of changes tended to show worse survival.

Lastly, we examined the frequency of micro-aberrations for

each of the 128 genes tested (Table S3). Here, we list the top 17

most micro-aberrant genes among those that were tested on this

tiling array with breakdown by micro-amplification and micro-

deletion (Table 4). We also show the number of micro-aberrations

that would be expected by chance for each gene based on the

distribution of log-ratio values within our dataset and our cutoffs

for micro-aberrations. Genes such as MYC and PIK3CA, known to

be activated in many cancers tend to show more micro-

amplifications; others known to be inactivated in cancer such as

RB1 and PTEN display comparatively more micro-deletions. Gene

Set Enrichment Analysis was performed using DAVID [28] on the

genes exhibiting more than one micro-aberrations in our study,

where the background for the analysis was limited to the 128 genes

present on the tiling array in order to control for our biased initial

selection of genes. We observed that micro-aberrant genes were

more likely to be involved in interphase of the mitotic cell cycle

(Table 5).

Table 1. Copy Number Micro-aberrations by Subtype.

Average
Micro-aberrations/Sample

Median
Micro-aberrations/Sample

% Samples with Micro-
aberration

Subtype

Basal-like (n = 31) 4.29 4 83.87

Luminal A (n = 27) 3.07 1 74.07

Luminal B (n = 21) 3.81 2 80.95

HER2-enriched (n = 10) 2.90 2 80.00

Normal-like (n = 5) 2.00 0 40.00

The mean and median numbers of micro-aberrations for samples within each subtype are shown, as is the percentage of samples within each subtype that exhibited
any micro-aberrations.
doi:10.1371/journal.pone.0051719.t001
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Discussion

The previous discovery of micro-aberrations within genes [16]

using a high-density aCGH array, and the lack of description of

such features in many whole-genome aCGH-based breast cancer

studies [14,15,29,30] suggests that these micro-aberrations may

occur regularly in breast cancer genomes and that they simply

have not yet been detected in previous studies due to the resolution

of typical SNP-based aCGH platforms. To address this hypothesis,

we assembled a dataset of 94 breast tumors and two breast cancer

cell lines and tested them on a custom-designed aCGH tiling

array; this array was targeted to 128 gene panel focused on

important cancer relevant genes, and previously identified basal-

like cancer specific regions and genes (Table S2) [14,15,31,32].

By utilizing a previously tested segmentation and aberration

calling algorithm called SWITCHdna [14], we analyzed the tiling

array data and proceeded to generate a numerical definition of

a micro-aberration (,64 probes, ,15 kb). Essentially all of these

micro-aberrations would be mostly undetectable using lower-

resolution genome-wide platforms, as these segments would be

covered by at most one probe on such arrays (Figure 2). An

analysis of the frequency of micro-aberrations within our dataset

samples suggests that the basal-like subtype had the most frequent

occurrences of these events, mirroring their high overall genomic

instability [15,30,33,34,35]; thus the presence of micro-aberrations

did correlate with the presence of large aberrations. We note that

the frequency of micro-aberrations observed in our dataset was

similar to that for both gross copy number aberrations and single-

nucleotide variants, when we examine the same genomic regions

targeted in this study for comparable distribution of tumor samples

(data not shown).

Our data also shows that at least in some cases, these events

have functional downstream consequences (Fig. 3 and 4, Table 2

and 3, Fig. S1 and S2). One point of discussion is the mechanisms

by which these micro-aberrations might lead to altered gene

expression. It is intuitive how micro-deletions might result in

decreased gene expression of the affected gene. However, it is less

clear how micro-amplifications can result in increased expression

of the affected gene. One proposed mechanism is that micro-

amplifications might preferentially occur in the 59 promoter site,

given the overall predilection for micro-aberrations to occur in

that region, and those micro-amplifications that occur in the

promoter have higher rates of positive concordance than those

that occur elsewhere. This did not appear to be the case within this

dataset (data not shown), but is a mechanism worth considering for

expanded studies. Another mechanism could be that the affected

gene is disrupted in a heterozygous fashion, and upregulation of

the remaining copy occurs as a result. The current platform is not

Figure 2. Comparison of HD-aCGH tiling array and 109K
Illumina SNP platform generated SWITCHdna copy number
segments for RB1. A) Using the 49 samples in common between

these two platforms, each copy number aberrant segment called by
SWITCHdna is plotted by its location within the RB1 gene. Pink
segments indicate micro-aberrations and blue segments indicate
macro-aberrations. Exons are highlighted in grey bars. The locations
of the tiling array probes are indicated with green segments and the
corresponding locations of probes from a previously used 109K Illumina
genome-wide SNP platform are indicated in red. Regions without any
probe coverage are colored black. B, C) Two representative examples
are shown illustrating the different detection thresholds achieved by
the tiling array platform and the 109 k SNP platform for CNA in RB1.
Exons are highlighted in grey bars. The locations of the tiling array
probes are indicated with crosses, where black crosses represent probes
within the gene and grey crosses indicate probes in the upstream/
downstream regions of the gene. The corresponding locations of the
109K genome-wide SNP probes are indicated with orange circles.
SWITCHdna called segments for each platform are also shown with
tiling array segments in blue and 109K platform segments in orange.
doi:10.1371/journal.pone.0051719.g002
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Table 2. Analysis of Concordant Expression by Aberration Type.

# of Genes with CNA with Concordant Gene Expression

Gross Gains Gross Losses Micro-amplifications Micro-deletions

# 100% Concordant/# with
Aberration

(%) 32/105 (30.5%) 25/83 (30.1%) 24/64 (37.5%) 22/53 (41.5%)

# .= 50% Concordant/# with
Aberration

(%) 79/105 (75.2%) 54/83 (65.1%) 34/64 (53.1%) 36/53 (67.9%)

Analysis within genes of concordant expression by aberration type. Results are shown for gross copy number gains, gross copy number losses, micro-amplifications, and
micro-deletions and the frequency that genes are 100% concordant by gene expression or .= 50% concordant by gene expression. A concordant sample is defined as
a sample where a copy number gain, or micro-amplification, is accompanied by high expression of the affected gene or a copy number loss or micro-deletion is
accompanied by low expression of the affected gene.
doi:10.1371/journal.pone.0051719.t002

Figure 3. The presence of micro-aberrations can result in differential expression by copy number status. Samples with micro-
amplifications in A) NUF2 and B) UBE2T are associated with significantly higher expression of the gene than samples without these aberrations.
Samples with micro-deletion in C) ZNF217 are associated with significantly lower expression of the gene than samples without these aberrations.
Samples with micro-deletion in D) SLC7A6 are associated with significantly higher expression of the gene than samples without these aberrations.
doi:10.1371/journal.pone.0051719.g003
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designed to distinguish between homozygous and heterozygous

change, but this is a mechanism by which altered expression might

occur.

The finding of exon skipping at the point of the focal

amplification in the PTEN gene in the SUM149 cell line is

particularly interesting given the otherwise normal copy number

for this gene in this cell line. The exact mechanism that induces

this exon skipping is yet to be determined, but one can imagine

that some aspect of the amplified DNA sequence results in an

alteration to the pre-processed transcript that could cause early

truncation or some sort of structural interference [36,37]. Like-

wise, the presence of the micro-aberrations in the 990141B tumor

sample with EGFR, and the UNC040182B tumor sample and

BCL11A, may cause mRNA mis-processing because the micro-

aberration alters the DNA sequence in such a way that splice-site

junctions are altered and we are able to observe inter-exon

mRNA-seq reads. Using targeted de novo assembly of 990141B

mRNA-seq data, we are able to generate contigs that suggest an

in-place tandem duplication of a region of EGFR that may be the

cause of the micro-amplification detected in the tiling array and

the source of expression disruption. When examining data on the

UNC040182B tumor sample, we are able to produce a contig that

covers only the latter portion of the affected exon, but extends out

into intronic space. The micro-deletion located in this region may

Table 3. Analysis of Gene Expression Relative to Median Expression by Aberration Type.

Micro-aberrations by Expression Status

Micro-amplifications

Micro-aberration No Micro-aberration Fisher’s Exact Test p-value

Greater than Median Expression 68 4601

Less than Median Expression 65 6927 p= 0.01

Micro-deletions

Micro-aberration No Micro-aberration Fisher’s Exact Test p-value

Greater than Median Expression 54 6898

Less than Median Expression 61 4914 p= 0.02

All Micro-aberrations

Micro-aberration No Micro-aberration Fisher’s Exact Test p-value

Greater than Median Expression 122 11499

Less than Median Expression 126 11841 p= 1

For micro-amplifications, micro-deletions, and all micro-aberrations combined, the number of samples with or without micro-aberration and with greater than median
or less than median expression are displayed. P-value calculated by Fisher’s Exact Test.
doi:10.1371/journal.pone.0051719.t003

Figure 4. Micro-amplification in PTEN in the SUM149 cell line disrupts exon expression. A) The distribution of mRNA-seq reads by exon is
shown for the SUM149 and SUM102 cell lines. B) For reference, the genomic space of the PTEN gene is shown, along with the copy number status by
SWITCHdna across the PTEN gene in SUM149.
doi:10.1371/journal.pone.0051719.g004
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knock out the initial portion of the exon, resulting in the

production of the observed aberrant mRNA (Figure S3 and S4).

We also found that the 59 end of genes tended to be the most

heavily affected by micro-aberration events, specifically the

promoter region of the gene (Figure 5). It is unclear what leads

Figure 5. Frequency that genomic quadrants are affected by micro-aberrations. A) The percentage of total possible instances that a given
genomic region is overlapped by a micro-aberration segment is displayed for each genomic quadrant (59 End, 59 Middle, 39 Middle, 39End) and the 59
UTR and promoter regions. B) For the micro-aberrations that only affected the 59 End region, the % of instances where it affected the promoter or 59
UTR is listed.
doi:10.1371/journal.pone.0051719.g005
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Figure 6. Higher levels of micro-aberrations are associated with worse survival outcomes. A) Kaplan-Meier plots for overall survival and B)
relapse-free survival are shown for the patients in the tiling array datasets. The patients were split into two groups, the top 67% in terms of total
micro-aberration versus the bottom 33%. (N = 94).
doi:10.1371/journal.pone.0051719.g006

Table 4. Micro-aberration Frequency by Gene.

Top 17 Genes with the Most Micro-aberrations

Gene Name
# of Micro-aberration Occurrences
(All/Amp/Del)

# Micro-aberrations Expected by
Chance* p-value**

1. NUF2 23/22/1 0 ,.001

2. NAT1 21/0/21 0 ,.001

3. FZD7 11/4/7 0 ,.001

4. MYC 11/11/0 0 ,.001

5. ELOVL5 11/5/6 0 ,.001

6. PIK3CA 11/8/3 0 ,.001

7. CENPF 10/9/1 0 0.002

8. UBE2T 9/7/2 0 0.003

9. S100A11 8/7/1 0 0.007

10. ZNF217 8/5/3 0 0.007

11. RB1 7/2/5 0 0.01

12. CCNB1 7/0/7 0 0.01

13. CELSR1 6/3/3 0 0.03

14. MIA 6/4/2 0 0.03

15. TP53BP2 5/4/1 0 0.06

16. MDM2 5/4/1 0 0.06

17. PTEN 5/2/3 0 0.06

A) The top 17 genes that displayed the most micro-aberrations are shown, along with the number of micro-aberrations (All)/micro-amplifications (Amp)/micro-deletions
(Del) seen within each gene. The expected number of micro-aberrations for each gene, corrected for gene size, is calculated based on the distribution of log2 ratio
values for our dataset and the probability of observing a segment meeting our micro-aberration cutoffs. p-values calculated by Chi-square test.
*Based on the distribution of log-ratio data within our dataset and the probability given this distribution of contiguous probes meeting the cutoffs for micro-
aberrations, with correction for gene size.
**p-value based on Chi-square test.
doi:10.1371/journal.pone.0051719.t004
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to this predilection, but it does suggest that this specific portion of

the gene may be more prone to this type of genomic alteration.

The involvement of the promoter region does suggest that the site

of active transcriptional processing may lead to a structural

genomic weakness that causes a predisposition towards micro-

aberrations. This finding may also aid in explaining either the

factors involved in the formation of micro-aberrations versus

macro-aberrations or the possible downstream consequences of

such events.

A limitation of our study is that we are currently unable to

determine if any of these micro-aberrations are subtype specific. If

they are, this would 1) mirror whole genome study findings, and 2)

potentially showcase an alternative means of gene disruption that

unravels previously unexplained expression data. As one example,

RB1 dysfunction has been shown to be associated with the basal-

like subtype [38]. We have found in our own studies, that RB1-

LOH was highly correlated with gene expression subtype and

patient outcomes, while RB1 protein expression on the same

samples was not [39]. An intra-genic micro-aberration could

potentially explain such cases, as the genetic abnormality may only

affect a portion of the gene such that a protein is still produced and

the majority of it intact, but it does not function properly.

Expanded studies with high-resolution platforms like whole

genome sequencing will allow us to answer this question with

increased precision.

Future studies with whole-genome sequencing technology and

data are also an additional avenue by which these micro-

aberrations can be validated, detected, and further defined.

Varying amounts of sequencing depth would, however, be needed

depending on the nature of the micro-aberration. Micro-deletions

should be comparatively easier to detect as they are due to the

absence of DNA, thus reasonably low coverage should be sufficient

to call these events. Micro-amplifications would be more complex,

especially if one did not know in advance what the nature of the

micro-amplification was. Thus, in order to reliably identify all

micro-aberrations, one would need sequencing depth capable of

performing a de novo whole genome assembly [40,41]. Targeted

assembly is able to yield some insights (Figure S3 and S4), but full

assembly would undoubtedly generate more answers.

From a broader viewpoint, it stands to reason that other tumor

types may also exhibit these types of events, but as yet they have

not been widely described [42,43]. However, similar intragenic

deletions in RB1 and PTEN were recently described in melanoma

cell lines (SKMEL-207, A2058, and SKMEL-178 [17]), suggesting

that these types of micro-genomic events are present in other

cancers.

In examining the specific genes on the tiling array that displayed

micro-aberrations, we noted that genes that were involved in

interphase of the mitotic cell cycle were particularly prone to these

small-scale events (Table 5, Table S3). Given that our panel of

targeted genes was focused on cancer relevant genes, there was

some inherent enrichment for genes of this Gene Ontology class,

but even within the background of genes on the array itself, there

was a statistically significant enrichment for cell cycle genes.

Coupled with our finding of micro-aberrations being localized to

promoter regions, we speculate that cell cycle genes are more

prone to these events because of their consistent and often high

level of transcriptional activity.

We were also able to make the observation that higher genomic

instability in the form of micro-aberrations in our dataset was

associated with worse survival outcomes (Figure 6). An overall high

level of genomic instability has been found to associate with worse

survival [26,27], and here we see that finding extended to micro-

instability in our dataset. There was however, a high concordance

of overlap between patients that had many large scale changes and

many micro-aberrations, and overall, patients with higher total

numbers of CNA were associated with poorer outcomes (data not

shown). Nonetheless, the same rank-ordering split that was

performed on the micro-aberrations did not result in identical

findings for overall aberrations, suggesting that while there could

be confounding of the micro-aberration survival findings by

overall genomic instability, there may also be characteristics

unique to the micro-aberrations themselves. Furthermore, the

concordance between gross aberrations and micro-aberrations

suggests that there may be common mechanisms of genomic

instability at play, which may yield insights into how micro-

aberrations arise.

Conclusions
In addition to exhibiting gross copy number changes, breast

tumor genomes contain focal micro-aberrations as well when

examined using a high-resolution platform. These micro-aberra-

tions occur within the background of global genomic instability

and can have disruptive effects upon gene expression. These

micro-events represent a potential means of mutagenesis in genes

that have been otherwise determined to be normal in terms of

gross copy number or SNV-based somatic mutations. Continued

investigation into these events with improved tools will allow their

increased detection and likely highlight their importance as an

additional means of altering gene function.

Supporting Information

Figure S1 mRNA-seq read distribution for EGFR in the
990141B tumor sample. The distribution and alignment of

mRNA-seq data for the 990141B tumor sample (top lane) and

SUM102 cell line sample (bottom lane) for the EGFR gene is

visualized using IGV. The corresponding tiling array copy number

plot for the tumor sample and gene and the associated area of

genomic coverage is highlighted in the bottom panel.

(PDF)

Figure S2 mRNA-seq read distribution for BCL11A in
the UNC040182B tumor sample. The distribution and

alignment of mRNA-seq data for the UNC040182B tumor sample

(top lane) and SUM102 cell line sample (bottom lane) for the

BCL11A gene is visualized using IGV. The corresponding tiling

array copy number plot for the tumor sample and gene and the

associated area of genomic coverage is highlighted in the bottom

panel.

Table 5. Gene Set Enrichment Analysis of Micro-aberrant Genes.

Gene Set Name # Genes in Overlap Fisher Exact p-value

GOTERM_BP_FAT: Interphase of Mitotic Cell Cycle 13 .034

Results of a Gene Set Enrichment Analysis of the genes exhibiting more than one micro-aberration are displayed, showing an enrichment of a cell-cycle related pathway.
doi:10.1371/journal.pone.0051719.t005
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(PDF)

Figure S3 de novo assembly of targeted EGFR micro-
amplification mRNA-seq data in the 990141B tumor
sample. A) The two contigs aligned to the region of EGFR micro-

amplification are visualized in space using the UCSC genome

browser. B) The aligned region of the contigs are displayed in red

with the unaligned base pairs at the start and end of the sequence

written out. Sites within the aligned region where the unaligned

GACCT sequence are observed are highlighted with black boxes.

(PDF)

Figure S4 de novo assembly of targeted BCL11A micro-
deletion mRNA-seq data in the UNC040182B tumor
sample. The contig aligned to the region of BCL11A micro-

deletion is visualized in space using the UCSC genome browser,

with the location of the reference exon site displayed. A magnified

view of the region is also provided.

(PDF)

Table S1 Clinical data table. Table containing all information

on the human breast samples used in this study including

outcomes data, microarray and GEO accession number IDs.

(XLSX)

Table S2 Gene list, tiling array coverage, and analysis windows.

List of the 128 genes on the tiling array with EntrezGene ID along

with their genomic coordinates by NCBI build 36.1 (hg18) of the

reference human genome. Coordinates are also provided showing

the total coverage on the tiling array for each gene as well as the

+/25 kb analysis window that was used.

(XLSX)

Table S3 Micro-aberration information table. Table containing

information on all micro-aberrations identified using the defined

parameters described in this manuscript from the tiling array.

Information for each listed micro-aberrant segment includes

Sample name, Subtype, Affected gene, Start position, Stop

position, and Average log-ratio for the segment.

(XLSX)
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