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In quantitative pharmacology, multi-parameter receptor models are needed to account for 
the complex nonlinear relationship between fractional occupancy and response that can 
occur due to the intermixing of the effects of partial receptor activation and post-receptor 
signal amplification. Here, a general two-state receptor model and corresponding 
quantitative forms are proposed that unify three distinct processes, each characterized 
with its own parameter: 1) receptor binding, characterized by Kd, the equilibrium 
dissociation constant used for binding affinity; 2) receptor activation, characterized by an 
(intrinsic) efficacy parameter ε; and 3) post-activation signal transduction (amplification), 
characterized by a gain parameter γ. Constitutive activity is accommodated via an 
additional εR0 parameter quantifying the activation of the ligand-free receptor. Receptors 
can be active or inactive in both their ligand-free and ligand-bound states (two-state 
receptor theory), but ligand binding alters the likelihood of activation (induced fit). Because 
structural data now confirm that for most receptors in their active conformation, the small-
molecule ligand-binding site is buried inside, straightforward binding to the active form 
(direct conformational selection) is unlikely. The proposed general equation has parameters 
that are more intuitive and better suited for optimization by nonlinear regression than 
those of the operational (Black and Leff) or del Castillo–Katz model. The model provides 
a unified framework for fitting complex data including a) fractional responses that do not 
match independently measured fractional occupancies, b) responses measured after 
partial irreversible inactivation of the “receptor reserve” (Furchgott method), c) fractional 
responses that are different along distinct downstream pathways (biased agonism), and 
d) responses with constitutive receptor activity. Furthermore, unlike previous models, the 
present one can be reduced back for special cases of its parameters to consecutively 
nested simplified forms that can be used on their own when adequate (e.g., εR0 = 0, no 
constitutive activity; γ = 1: Emax model for partial agonism; ε = 1: Clark equation).

Keywords: affinity, biased agonism, constitutive activity, efficacy, free energy, G-protein–coupled receptors, 
ligand binding, partial agonism
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INTRODUCTION

The receptor concept, which is about a century old and undeniably 
represents “pharmacology’s big idea” (Rang, 2006), forms the 
basis of our current mechanism of drug action theories (Maehle 
et al., 2002); detailed reviews can be found in Neubig et al. (2003), 
Colquhoun (2006), Kenakin (2008), Jenkinson (2010), Ehlert 
(2015a), and Kenakin (2018b). Most commonly accepted receptor 
models are two-state models in which receptor occupancy and 
activation do not fully correspond (Katzung and Trevor, 2014; 
Rang et al., 2015). This is needed to describe well-recognized 
phenomena, such as partial agonism (partial activation despite 
full receptor occupancy) and the existence of receptor reserve 
(maximum or close to maximum activation at only partial 
occupancy) (Colquhoun, 2006; Kenakin, 2008; Kenakin, 2018b; 
Jenkinson, 2010). The quantitative forms of these models use 
one parameter to characterize the binding affinity of the ligand 
(typically Kd) and another one to characterize efficacy (e.g., τ, ε, 
Kε). However, outside of a core of quantitative pharmacology 
experts, these forms, including those of the operational (Black and 
Leff) and the minimal two-state (del Castillo–Katz) model, are 
not widely used because their parameters are not very intuitive, 
cumbersome to interpret, and often difficult to fit, plus they cannot 
be reduced to reproduce more widely used simple models (e.g., 
Clark equation) as special cases (see detailed discussion later).

Here, a general two-state model of receptor function is 
proposed that incorporates constitutive activity into our previous 
model (Buchwald, 2017). It integrates three distinct processes, 
each characterized with its own parameter: 1) receptor binding, 
characterized by Kd, the equilibrium dissociation constant used 
for binding affinity; 2) receptor activation, characterized by an 
(intrinsic) efficacy parameter ε (plus a baseline receptor efficacy 
εR0 for receptors with constitutive activity); and 3) post-activation 
signal transduction (amplification), characterized by a gain 
parameter γ. The final form can fit complex fractional response 
versus occupancy data, but it is also a true generalized model that 
can collapse back to consecutively nested simpler ones for special 
cases of its parameters (Figure 1).

PRESENT MODEL: TWO-STATE MODEL 
WITH BINDING, EFFICACY, AND 
AMPLIFICATION PARAMETERS

Main Concepts and Equations
In agreement with the generally accepted picture, the present model 
assumes that to produce a response, a ligand must first bind to a 
receptor and then activate it to initiate some downstream signaling. 
The main assumption of the two-state receptor theory that ligand-
bound (occupied) and active receptor states do not fully correspond 
is maintained, but a slightly different parametrization is employed 
to achieve more intuitive affinity (binding) and efficacy (activation) 
quantification. Binding of the ligand is assumed to alter the 
likelihood of activation; i.e., an induced fit type model is presumed. 
Receptors can be either active or inactive in their ligand-free or 
ligand-bound forms; however, the corresponding probabilities 
(i.e., times spent in the corresponding conformations) can be quite 

different. Ligand-free and ligand-bound states will be considered 
as an equilibrium ensemble of active and inactive conformations 
present. In general, a ligand-free receptor is overwhelmingly in an 
inactive conformation, and in cases where there is no constitutive 
activity, it is entirely so. Binding of an agonist, which is governed 
by its affinity parameter Kd, shifts the equilibrium toward the active 
state. The ability of a bound ligand to do so is characterized by 
an (intrinsic) efficacy parameter, ε. For receptors with constitutive 
activity, a basal receptor efficacy, εR0, is used to account for baseline 
activation in absence of a ligand. The signal (effect) generated 
by the active receptor can be amplified downstream, and this is 
characterized by a pathway-specific gain parameter γ. Hence, 
the most general form of the model uses four parameters: Kd, the 
equilibrium dissociation constant characterizing binding affinity; 
ε, an (intrinsic) efficacy characterizing the ability of bound ligand 
to activate the receptor (0≤ε≤1); εR0, a basal receptor efficacy 
characterizing constitutive activity (if present); and γ, a gain 
(amplification) parameter characterizing the nonlinearity of (post-
activation) signal transduction (1≤γ<∞). As explicit incorporation 
of a signal amplification parameter is a main novelty, one can 
designate this model as Signal Amplification, Binding affinity, and 
Receptor activation Efficacy (SABRE). The overall schematic of 
the present model in its most general form and the corresponding 
quantitative equation are shown below. The same, together with all 
its successive nested simplifications corresponding to special cases 
are shown in Figure 1.
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For cases with no constitutive activity (εR0 = 0, no active 
unbound receptor, R*), this reduces to the three-parameter model 
previously introduced corresponding to the portion highlighted 
in light blue above and represented by the bottom two rows of 
Figure 1 (models C–F) (Buchwald, 2017),
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Details of model parametrization and assumptions are discussed 
below, followed by highlights of its advantages and illustrative 
applications for complex response versus occupancy data. A detailed 
derivation of Equation 2 is included in Appendix 1.

Parametrization
Binding Parametrization, Kd

To produce a response, a ligand must first bind to the receptor. 
Binding parametrization is typically achieved via the widely 

used equilibrium dissociation constant (Kd), which is measured 
in units of concentration (usually molarity, M). In the simplest 
one-state model, where all occupied receptors are active and that 
forms the basis of the widely used one-parameter Clark equation 
(Figure 1F), Kd is expressed as a function of the equilibrium 
concentrations of the species involved as:

 
K L R

LRd = [ ][ ]
[ ]*  (5)

FIGURE 1 | The present general two-state SABRE receptor model (A) and its consecutively nested simplifications down to the Clark equation (B to F). For each 
model, a schematic illustration of its basic assumption on ligand binding and receptor activation is shown together with the corresponding quantitative form relating 
the fractional effect (E/Emax) to the ligand concentration [L].
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It is important to remember that K is not just an arbitrary model 
parameter: it is an entity measurable in equilibrium or kinetic 
binding assays, and it is related to the Gibbs free energy of 
binding (∆G) via the well-known thermodynamic equation:

 K e
G

RT=
−

0

 (6)

Here, T is the absolute temperature and R the universal gas constant, 
R = kBNA = 8.314 J/K·mol. Accordingly, to bind with 1 nM affinity 
(Kd = 10–9 M) at physiological temperature (T = 310 K), a ligand 
requires a free energy of binding of ∆G0 = –RT·lnKd = 53.4 kJ/mol 
(12.8 kcal/mol).

The present model uses a similar definition for Kd. It 
differentiates between active and inactive states (denoted by 
an asterisk; R vs. R* and LR vs LR*), but contrary to most 
two-state models that distinguish between binding affinities 
for the active and inactive states (e.g., Kd and Kd/α; Figure 
2), it considers ligand-bound and ligand-free states as 
ensembles of conformations characterizable by the same Kd. 
Hence, Kd  here  represents an average binding constant for 
the ensemble of active and inactive receptor forms that the 
ligand effectively sees. With this assumption, the definition 
of Kd will rely on  the total concentration of occupied and 

unoccupied receptors, which in the case of the full two-state 
model (Figure 1A) becomes

 
K L R R

LR LRd = +
+

[ ]([ ] [ ])
([ ] [ ])

*

*  (7)

This is a macroscopic equilibrium constant measurable 
in equilibrium binding assays that assess total binding to the 
receptor. In case of the minimal two-state model, where there 
is no constitutive activity (Figure 1C, [R*] = 0), it reduces to the 
previously used form (Buchwald, 2017):

 
K L R

LR LRd =
+

[ ][ ]
([ ] [ ])*  (8)

Binding, characterized by Kd, is not just snapping of a 
ligand into a rigid site (“key-in-the-lock”), which corresponds 
to that of the active conformation (inactive for an antagonist), 
but it also involves change in energy and possibly adaptation 
of the site to accommodate the ligand (“hand-in-the-glove”). 
The corresponding conformational shift (toward active states) 
leads to change in the downstream activation (induced  fit) 

FIGURE 2 | Typical two-state receptor model with assumption of different binding affinities for the inactive and active forms of the receptor (R and R*, respectively). 
Schematics (A) and a simplified illustration of the corresponding processes (B) are shown. The ligand can bind to the inactive form of the receptor (R) and 
contribute to its activation (induced fit, conformational induction) or bind to the active form (R*) and lock it preferentially in that conformation (conformational 
selection). The case corresponding to the minimal two-state theory (no constitutive activity, i.e., ligand-free receptor has no active form) is highlighted with a light 
blue background.
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(Figure 3). A key advantage of this definition is that Kd 
represents ensemble averages for the bound and unbound 
receptor forms and becomes independent from the value of 
the efficacy parameter (Buchwald, 2017). Another one is that 
it avoids the loop-related thermodynamic constrains (i.e., 
need for a same α for both Kd and Kε in Figure 2) as will be 
discussed in the section Mechanism of Receptor Binding and 
Activation.

Efficacy Parametrization, ε
The need for efficacy parametrization, besides that for 
binding, arose from the recognition of partial agonism, i.e., 
the existence of compounds that can occupy all receptors 
without achieving full activation. Well-known partial agonist 
examples include prenalterol (versus the full agonist adrenaline 
at β-adrenoceptors), pilocarpine (versus acetylcholine at 
muscarinic receptors), and impromidine (versus histamine at 
H2 receptors) (see Supplementary Figure S1 for representative 
chemical structures). Here, efficacy parametrization is done 
with an ε parameter that represents the fraction of ligand-bound 
receptors that are active (Buchwald, 2017):

 
ε =

+
[ ]

[ ] [ ]

*

*

LR

LR LR
 (9)

Hence, efficacy ε as defined here is a unitless parameter (but 
not an equilibrium constant such as Kε) and is an intrinsic efficacy 

in the sense that it is a characteristic of the ligand L (for a given 
receptor R). It ranges from 0 for an antagonist that can occupy all 
receptors but produces no effect to unity (1) for a full agonist that 
converts all occupied receptors to active ones. The activity here 
is the one measured immediately post-receptor; downstream 
signal amplification can complicate things as response from a 
partial agonist can be amplified to a maximum final response 
(see discussion later). A set of representative response curves 
obtained for a fixed binding affinity (Kd) but different efficacies ε 
are shown in Figure 4A.

Note that the efficacy ε as defined here is different from the 
efficacy e as defined by Stephenson, which was introduced to 
measure the ability of a drug to produce a response in a tissue. In 
Stephenson’s definition, the stimulus was S = e[LR*]/[Rtot], and 
e could have values from 0 up to infinity (Stephenson, 1956). In 
fact, ε is more similar to the efficacy as defined by Furchgott (ϵF = 
e/[Rtot]) representing “the capacity of a ligand to initiate stimulus 
from one receptor” (here, as measured right after the receptor 
before additional signaling steps). It is also similar to the intrinsic 
activity αA introduced by Ariëns (1954), which is the ratio of 
the maximum response produced by the partial agonist to that 
produced by the full agonist and is ultimately quantifying “effect 
per unit of pharmacon–receptor complex” (as long as there is no 
amplification).

With these assumptions, the fractional response (effect) fresp, 
which under the assumptions of no amplification (Figure 1D) 
equals the fraction of activated receptors fact, can be expressed 
as a function of ligand concentration only as (Buchwald, 2017):

FIGURE 3 | Present two-state model: schematics (A) and a possible simplified illustration (B). A single binding affinity (Kd) is assumed that represents an ensemble 
average of the binding to the active and inactive conformations. In most cases, direct binding of small-molecule ligand to the active R* form is unlikely (as 
indicated by the red X mark) since the ligand-binding domain (LBD) sites are buried deep inside the receptor and are not directly accessible from the surrounding 
environment. Again, the case corresponding to the minimal two-state theory (no constitutive activity, i.e., ligand-free receptor has no active form) is highlighted with 
a light blue background.
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This is essentially equivalent with a Clark equation that includes 
a scalable maximum (Emax model for partial agonism; Figure 1D). 

It is also equivalent with the model proposed by Ariëns (e.g., 
Equation 12 in Ruffolo, 1982) incorporating an intrinsic activity 
term (αA). Equation 10 links the definition of the maximum 
achievable effect (response) for a partial agonist, fresp,max = ε, to a 
two-state model (Figure 1D). With this definition, ε corresponds 
to the fraction of maximum activation a partial agonist can 
achieve as compared to the full agonist—as measured right after 
the receptor (to avoid possible confounding effects created by 
downstream amplification; see later). For full agonists, ε = 1 and 

FIGURE 4 | (A) Semilog concentration–response curves with the present model for a receptor without constitutive activity (Equation 4, Figure 1C) and ligands 
with 100 nM affinity (Kd = 10–7 M). Response curves shown are for a full and a weak partial agonist (ε=1, blue lines and ε=0.25, red lines, respectively) at different 
amplifications (γ=1, 3, and 100; denoted with full and dashed lines, respectively). Another partial agonist without amplification is also included (ε=0.70, γ=1 orange 
line) for comparison. Note that with the present model, the basic parametrization (ε=1, γ=1) fully reproduces the Clark model (blue and double green lines completely 
overlap), which could not be done with previous models such as the operational model. (B) Illustrative response curves with the present model for a case with 
constitutive activity (εR0=0.3) and no amplification (Figure 1B). Response curves for full, partial, and inverse agonists as well as a neutral antagonist with the same 
affinity as in A (Kd = 10–7 M) are shown as obtained with the efficacy parametrization of the present model.
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the above equation correspond directly to the Clark equation 
for response (Clark, 1926; Clark, 1933) (Figure 1F), which is 
mathematically equivalent with the Hill–Langmuir equation for 
ligand binding (Hill, 1909) and a special case of the versatile Hill 
equation (Hill, 1910) often used in pharmacological and other 
applications (Goutelle et al., 2008; Gesztelyi et al., 2012).

Incorporation of Constitutive Activity
Since the introduction of the concept in the late 1980s (Costa and 
Herz, 1989), it is now well recognized that certain G-protein–
coupled receptors (GPCRs) can be active even in the absence of 
an agonist (have constitutive signaling activity) and that some 
ligands can act as inverse agonists (i.e., reduce the activity of the 
ligand-free receptor) (Bond and Ijzerman, 2006). To incorporate 
such constitutively active receptors into the formalism of the 
present model (Figure 1A), a baseline receptor efficacy (εR0) is 
introduced along lines similar to the definition of ε (Equation 9), 
i.e., the fraction of unbound receptors that are active:

 
ε R0

=
+

[ ]
[ ] [ ]

*

*

R

R R
 (11)

However, contrary to ε, which is a ligand characteristic, εR0 
is a receptor and not a ligand characteristic. For such receptors, 
ligands known as inverse agonists reduce the signaling output 
below that of the basal state. In the present formalism, they 
will have efficacies that are smaller than this baseline receptor 
efficacy, εinv.agon.<εR0. Partial agonists remain those compounds 
that generate a response, albeit a submaximal one even at 
concentrations that saturate all receptor sites (εR0<ε<1), and 
so-called neutral antagonists do not discriminate between 
the two conformers (εR0=ε) and thus can block agonist, partial 
agonist, and inverse agonist activities. Some representative 
response curves that can be obtained with this parametrization 
are shown in Figure 4B, and further discussion is included later.

Gain (Signal Amplification) Parametrization, γ
Some kind of signal amplification is needed to account for the 
existence of “spare receptors” or “receptor reserves”: cases where 
almost maximal response can be achieved by occupying only a 
(small) fraction of all receptors. The concept has been introduced 
in the mid-1950s (Nickerson, 1956; Stephenson, 1956) with a 
method for its quantification described by Furchgott about a 
decade later (Furchgott, 1966; Furchgott and Bursztyn, 1967). 
Well-known extreme cases include, for example, the response of 
the human calcitonin receptor type 2 to calcitonin (where 20% 
occupancy already produces close to 100% response) (Chen 
et al., 1997) and guinea pig ileal response to histamine (where 2% 
occupancy already produces close to 100% response) (Kenakin 
and Cook, 1976; Adham et al., 1993; Kenakin, 2018b). Another 
example is the stimulation of β-adrenergic receptors in the 
heart by epinephrine where half-maximal increase of muscle 
contractility already occurs at 1% to 3% receptor occupancy in 
rats and at 10% to 20% occupancy in humans, and the effects 
saturate well before the receptors do (Brown et al., 1992). Detailed 
quantifications, including for different ligand series, have been 

done for several cases, typically GPCRs, such as the muscarinic 
acetylcholine (Furchgott and Bursztyn, 1967; Harden et al., 1986; 
Eglen and Whiting, 1987), opioid (Chavkin and Goldstein, 1984; 
Adams et al., 1990; Fox and Hentges, 2017), dopamine (Meller 
et al., 1987), 5-hydroxytryptamine (5-HT) (Meller et al., 1990), 
A1-adenosine (Dennis et al., 1992; Morey et al., 1998), and 
cannabinoid (Gifford et al., 1999) receptor systems.

Most commonly, such cases are due to strong signal 
amplification via a downstream cascade of saturable functions 
provided by second messengers or other systems (Strickland 
and Loeb, 1981; Koshland et al., 1982; Ferrell, 1996). Activation 
of adenylate cyclase and production of cyclic AMP (cAMP) as 
second messenger followed by further downstream cascading is 
a well-known example. For example, the mechanism by which 
epinephrine (acting on a myocyte) or glucagon (acting on a 
hepatocyte) sets off a cascade of phosphorylation leading to the 
production of glucose involves downstream amplification of the 
initial signal by several, possibly up to eight orders of magnitude 
(Nelson and Cox, 2012). As a result, epinephrine concentrations 
as low as 10–10 M in the blood can stimulate liver glycogenolysis 
and release of physiologically adequate levels of glucose. Such 
a small epinephrine stimulus can generate intracellular cAMP 
concentrations of 10–6 M (already a ~10,000-fold gain) followed 
by three more catalytic steps leading to release of glucose via 
another approximately 10,000-fold amplification (Lodish et  al., 
2003). In many ways, the resulting cascade mechanisms of 
signal amplification in biological systems resemble those used 
in electronic circuits (Grubelnik et al., 2009). Very strong 
amplification is not always desirable as amplification of noise-
level signals has to be avoided (Bialek and Setayeshgar, 2005).

In the present model, pathway-specific signal amplification is 
incorporated explicitly using a separate gain parameter γ. This 
is an important novel component that has not been explicitly 
included as such in previous models like the operational (Black 
and Leff) or the minimal two-state (del Castillo–Katz) model. 
Amplification is built in via use of a nonlinear hyperbolic-type 
response function (Buchwald, 2017). Hyperbolic relationships 
between fractional occupancy and fractional response have 
been found in several cases (see examples later), justifying the 
use of such functions. Use of hyperbolic functions also has 
the advantage that even if there is a cascade of such sequential 
saturable signal amplification functions with the output of one 
serving as input for the next one (as is often the case in biological 
systems), the overall response can be represented by a single 
hyperbolic-type response function (Trzeciakowski, 1999a). 
The nonlinear response (amplification) function used here is a 
classic hyperbolic function, just as it is in the operational model. 
However, to be able to reach its asymptotic limit, not [LR*] is used 
as its input, because [LR*] cannot be higher than [Rtot] and, hence, 
cannot cover the asymptotic part of the response function that is 
beyond the [Rtot] value, but its odds-ratio type (De Muth, 2014) 
transform: 𝛬 = p/(1–p) (see Buchwald, 2017 for further details). 
In other words, the input for the hyperbolic function here is not 
[LR*], but 𝛬 = [LR*]/([Rtot] − [LR*]) = fact/(1 − fact), with fact = 
[LR*]/[Rtot] representing the fraction of active receptors. For full 
agonists, fact corresponds to the fraction occupied foccup; fact = foccup 
if ε = 1. This extends the range of the input from 0–1, which is 
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the range for fact (i.e., [LR*]/[Rtot]), to 0–∞.1 Hence, the response 
function linking E to [LR*] will be:
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After some transformations and introduction of γ=[Rtot]/
Kγ, this leads to the final general form for the present three-
parameter model (Figure 1C) (Buchwald, 2017):
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Here, the just introduced γ parameter represent a unitless 
amplification (gain) factor. Since it is a gain, for all practical 
purposes, it has a value larger than unity, γ≥1. A set of 
illustrative response curves for a fixed value of Kd and different 
values of ε and γ are shown in Figure 4A. For a given ligand 
acting at a specific receptor, affinity (Kd) and efficacy (ε) should 
be the same (as long as receptor-binding and activation are 
not influenced by the environment, and signaling bias, which 
will be discussed later, is not considered), but transduction 
(signal amplification) could be pathway and tissue-dependent. 
Hence, γ, and, in fact, both of its components, Rtot and Kγ, can 
be tissue-dependent.

A slightly rearranged form of this equation provides a better 
understanding of the interplay between its parameters:
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 (14)

From here, it is clear that half-maximal activity (EC50) is 
observed at Kobs = Kd/(εγ+1–ε), and maximum (fractional) effect 
achievable by a given ligand is fresp,max = εγ/(εγ+1–ε). Hence, 
for a full agonist at the receptor (ε = 1), Kobs = Kd/γ and γ is a 
straightforward multiplication factor causing a left-shift of the 
sigmoid response function by γ units on a semi-log scale. Thus, 
for such an agonist, signal amplification causes no change in 
the shape of the response on semi-log scale, just a left-shift by γ 
increasing the apparent potency γ-fold (as illustrated by the blue 
lines in Figure 4A). For an agonist that produces only partial 
activation at the receptor (ε<1), downstream amplification 
can increase the maximum response, and sufficiently strong 
amplification can transform such a partial agonist into an 

1 This overcomes a problem of the operational model, namely that the effect E 
cannot reach its actual asymptotic limit via the hyperbolic function used there, E/
Emax = [LR*]/([LR*] + Kτ), even when all receptors are active ([LR*] = [Rtot]). The 
reason is that its input, [LR*], can only increase up to [Rtot] and not to infinity so 
that its actual maximum is [Rtot]/([Rtot] + Kτ) = τ/(τ + 1), which for low τ (high Kτ) 
values can be only a relatively small fraction. For a graphical illustration of this, see 
Fig. A2 in Buchwald (2017).

apparent full or close to full agonist. With a large enough γ, the 
maximum response, fresp,max = εγ/(εγ + 1 − ε), can approach unity 
even for small εs. However, for such partial agonists, the left 
shifts, (εγ + 1 − ε), are smaller than for a full agonist, (1·γ + 1 − 
1 = γ), so that the change in the apparent EC50 (Kobs) is less (red 
vs. blue lines in Figure 4A).

Finally, to include the effect of amplification for cases with 
constitutive activity (completely general case represented by 
model A in Figure 1), we will calculate the fraction of activated 
receptors fact, which is proportional with the effect right after the 
receptor, and use it as input for the amplification function. With 
the definitions of εR0, ε, and Kd, the receptor concentrations can 
be eliminated, and fact can be expressed as a function of [L] as:
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As before, this will serve as input via 𝛬=fact/(1–fact) for the 
present amplification function (Equation 12), resulting in the 
final form of the full four-parameter SABRE model:
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It can be seen from here that basal response ([L] = 0) is 
εR0γ/(εR0γ + 1 − εR0), whereas the maximum effect for a ligand 
L ([L]→∞) remains fresp,max = εγ/(εγ+1–ε) (see Supplementary 
Figure S2 for an illustration of the effects of different εR0 and γ on 
the response calculated with this equation). Rearranging this in 
a manner like that done for Equation 14 but also separating the 
basal response leads to
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Hence, the half-point of the transition is at 
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Consistent with the true generalized nature of the present 
model, if there is no constitutive activity, εR0 can be set to 0, and 
this recovers the simplified forms of the model that have been 
introduced earlier (Buchwald, 2017) (models C–F, Figure 1). 
Conversely, if there is no amplification (Figure 1B), γ = 1 and the 
total effect becomes:
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As illustrated in Figure 4B for some representative parameter 
values, this can describe concentration-response functions for 
full (ε = 1), partial (ε>εR0), and inverse agonists (ε<εR0), as well as 
neutral antagonists (ε=εR0).

The combination of all these effects can result in quite 
complex concentration-response curves that may make 
fitting with well-defined parameters difficult (see below). 
Nevertheless, the present four-parameter model can account 
for cases where the mixture of signal amplification and partial 
agonism causes complex responses, and several specific 
examples will be discussed (see also Buchwald, 2017 for the 
case of competitive partial agonism). It can also account for the 
observation of different responses created by the same agonists 
if observed along different pathways (biased agonism; e.g., 
Figures 13 and 14) or at different vantage points on the same 
downstream pathway involving multiple amplification steps 
(e.g., Figure 10).

Parametrization Considerations and Model Selection 
Criteria
Before closing this section on parametrization, a few general 
modeling related considerations have to be highlighted. The 
present model can fit complex data such as those illustrated 
in the section Fit of Complex Fractional Response Versus 
Fractional Occupancy Data; however, use of its fully 
parameterized version (Equation 2 or even Equation 4) only 
makes sense if sufficient data are available, and if occupancy 
(binding) and response (effect) can be assessed independently 
and under sufficiently similar conditions. Since adequate 
model fitting requires the availability of 5–10 (well distributed) 
data points for each adjustable parameter (Knofczynski and 
Mundfrom, 2008; Austin and Steyerberg, 2015; Kenakin, 
2018b), reliable fitting of the full model can only be 
accomplished if a sufficiently large number of data points are 
available. Along these lines, it has to be mentioned that the 
present model uses one more parameter than the operational 
model, e.g., three (Kd, ε, γ) vs. two (Kd, τ) for the case of no 
constitutive activity or four (Kd, ε, γ, εR0) vs. three [e.g., Kd, 
ε, χ (Slack and Hall, 2012)] for cases with constitutive activity. 
This is relevant because obtaining well-defined parameter 
values could require more data points, and rigorous model 
selection criteria advocate the use of the simplest model that 
can still provide adequate fit (George, 2000; Myung and Pitt, 
2004; Buchwald, 2005; Buchwald, 2007). However, the need for 
one extra parameter is more than compensated for by, on one 
hand, the intuitive nature of the present parameters (due to 
separation of efficacy in receptor activation from gain in signal 
amplification), and, on the other, the ability to use simplified 
forms with reduced number of parameters. Contrary to the 
operational models, with the present one, simplified forms can 
be recovered for special cases of its parameters, and these can 
and should be used on their own when adequate or when there 
is not enough data to support full parametrization. Note that 
Hill type extensions that involve an additional nH parameter 
to account for more or less abrupt response functions are not 
discussed here.

MODEL ASSUMPTIONS AND 
COMPARISONS WITH OTHER RECEPTOR 
MODELS

Mechanism of Receptor Binding 
and Activation
Currently, pharmacological receptors are classified into four main 
classes (from fast to slow mode of action): 1) ligand-gated ion 
channels (ionotropic receptors; part of the ion channel protein 
targets that also include voltage-gated and other ion channels), 
2) G-protein-coupled receptors (GPCRs; metabotropic receptors), 
3) catalytic receptors (including receptor tyrosine kinases), and 
4) nuclear hormone receptors (Rang et al., 2015; Alexander et al., 
2017). There are now significant biochemical, biophysical, and 
structural data that suggest that receptors (in particular, GPCRs) 
exist in a dynamic equilibrium between their inactive and active 
states. They can be active to some degree even in a ligand-free state 
(Changeux and Edelstein, 2011), and binding of ligands shifts 
this equilibrium (Hunyady et al., 2003). In general, ligand-free 
receptors are overwhelmingly in their inactive conformations; 
those that have no constitutive activity are entirely so. Binding of 
an agonist shifts the equilibrium toward the active state; binding 
of an inverse agonist shifts it even more toward the inactive state 
(Figure 4B).

The full two-state model, which allows for constitutive 
activity, is traditionally envisioned along the lines illustrated 
in Figure 2, whereby the ligand can either bind to the inactive 
form of the receptor and contribute to its activation (induced 
fit, conformational induction) or bind to the active form of the 
receptor and lock it preferentially in that form (conformational 
selection). The corresponding equilibrium constants are shown 
in Figure 2 following a commonly used notation (e.g., Fig. 1 in 
Trzeciakowski, 1999b, Fig. 1 in Roche et al., 2013, or Eq. 21  in 
Kenakin, 2017) that assumes the ligand as having an α-fold 
different affinity for the active versus the inactive form. Due to 
loop-related thermodynamic considerations, there are only three 
independent parameters: Kd = [L][R]/[LR] and Kd/α = [L][LR*]/
[LR*] are the equilibrium dissociation constants for the inactive 
and active receptor forms, respectively; and Kε = [R*]/[R] and 
αKε = [LR*]/[LR] are the equilibrium constants for the activation 
of the ligand-free and ligand-bound receptors.

The present SABRE model is based on a similar, but somewhat 
different formalism as summarized in Figure 3. It assumes that 
binding alters the propensity of the receptor for activation, but it 
does not consider different binding affinities for the active and 
inactive receptor forms. Kd represents an ensemble average of the 
binding to the active and inactive conformations in each state, 
and it is defined by Equation 7. Efficacy ε represents the fraction 
of ligand-bound receptors that are active (Equation 9), and the 
similarly defined baseline receptor efficacy εR0 characterizes 
the fraction of ligand-free receptor that is active (Equation 11). 
Finally, the signal generated at the receptor can be amplified 
following a transduction function characterized by the gain 
parameter γ (Equation 12).

There is one other aspect of receptor binding that has to be 
considered. With a rapidly rising number of detailed receptor 
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structures becoming available, including for several GPCRs, it is 
increasingly clear that most receptors in their active conformation 
have their small-molecule ligand-binding site buried deep inside. 
In many cases, binding sites, especially orthosteric ones, have been 
found to be fully buried (e.g., M2/3 muscarinic, β2 adrenergic, 
sphingosine-1-phosphate S1P, serotonin 5-HT, chemokine 
receptor CCR5, glutamate mGlu1, and others); in some, they are 
not and are partially solvent exposed (e.g., μ-opioid receptors 
and several peptide-activated class B GPCRs) (Manglik et al., 
2012; Lee et al., 2015; Shonberg et al., 2015; Lu and Wu, 2016). 
A set of representative 3D examples is included for illustration: 
the agonist (adrenaline) bound active form of the β2-adrenergic 
receptor (a type Aα GPCR) (Ring et al., 2013) (Figure 5), the 
agonist (2MeSADP) and antagonist (AZD1283) bound forms 
of the P2Y12 receptor (a type Aδ GPCR) (Zhang et al., 2014a; 
Zhang et al., 2014b) (Figure 6), the agonist (dexamethasone) 
and antagonist (mifepristone) bound forms of the glucocorticoid 
receptor (a nuclear receptor) (Kauppi et al., 2003) (Figure 7), 
and the agonist (glutamate) bound form of the AMPA receptor 
(a ligand-gated ion channel or ionotropic receptor) (Twomey 
et al., 2017) (Figure 8). The need for fully buried binding sites 
is not coincidental, as they allow the bound ligand to interact 
with the receptor along its entire surface, so that relatively small 
volumes can focus multiple interactions (ionic, polar, hydrogen 
bond, and others) and achieve sufficiently strong binding with 
good enough ligand efficiency [binding energy per unit size 
(Hopkins et al., 2004)]. Such binding sites had to evolve for all 
endogenous small-molecule ligands to allow adequate potencies. 
Along these lines, it is also not coincidental that traditional drug 

targets, such as GPCRs, ion channels, or enzymes, are exactly 
those that have such well-defined cavities or clefts for binding 
their natural ligands as they can also be exploited for druggability 
purposes (Bodor and Buchwald, 2012; Zhu et al., 2012; Santos 
et al., 2017). Druggability requires sufficient potency (in general, 
sub-micromolar potency, e.g., EC50 < 1 μM) with existing small-
molecule drugs having an average potency of 20 nM (Overington 
et al., 2006). This implies a need for strong enough binding 
energy (∆G0). The lack of well-defined binding pockets that make 
possible strong interactions along most of the ligand surface is a 
main reason why other therapeutic targets such as, for example, 
protein–protein interactions (PPIs) are so difficult to modulate 
by small molecules (Arkin and Wells, 2004; Scott et al., 2016; 
Bojadzic and Buchwald, 2018).

Because the ligand-binding domain (LBD) of most receptors 
in their active conformation is buried inside and is not accessible 
from the surrounding solvent, direct binding to the active form 
(conformational selection, selected fit) is an unlikely possibility 
for typical small-molecule ligands (highlighted by a red X in 
Figure 3). Since the LBD is not directly accessible from the 
outside when the receptor is in its active conformation (R*), it is 
unlikely that small-molecule agonists can simply “snap” in place 
and stabilize this conformation as required by a conformational 
selection mechanism (Figure 2). For the same reason, the 
assumption of a separate binding constant for the active state 
(e.g., Kd/α in Figure 2) and the need for a thermodynamic loop 
seem unrealistic for most small-molecule bindings.

If, a tightly closed binding site is needed for efficient binding 
and activation, active conformations need to have a closed LBD 

FIGURE 5 | Three-dimensional structure of the agonist (adrenalin, epinephrine) bound active form of the β2-adrenergic receptor (a type Aα GPCR). The structure 
[PDB ID 4LDO (Ring et al., 2013)] is shown from two different perspectives (the one on the right being a 90° rotated and somewhat enlarged view from the top). The 
receptor is covered with a semi-transparent gray surface and the secondary protein structure indicated; the ligand is highlighted as a darker solid CPK structure. 
The ligand is somewhat faded as it is buried inside the receptor and obscured by the covering semitransparent surface; this is intended to illustrate that this position 
is not accessible for direct binding from outside.
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that is not accessible directly from outside. The representative 
views showing fully buried agonists (Figures 5–8) were included 
here to highlight this. Further, this can also provide a plausible 
albeit simplified mechanism for the diminished ability of 
partial agonists to shift the equilibrium toward the active state 
(Supplementary Figure S3). Partial agonists or antagonists might 
hinder tight LBD closure (as illustrated in Figure 6 or Figure 7) 
reducing their efficacy in activating the receptor. The “Venus 
flytrap domain” of class C GPCR provides a possible illustration as 
it fluctuates between open and closed conformations with agonists 
generally stabilizing the closed conformation and antagonists 
maintaining the open conformation (Geng  et  al.,  2013; 

Koehl  et  al., 2019).  In  medicinal chemistry, it is well known 
that partial agonists and antagonists typically maintain certain 
important structural elements (pharmacophores) of the full 
agonists while also incorporating additional building blocks quite 
often resulting in larger molecular structures. Some well-known 
cases are illustrated in Supplementary Figure S1. Receptor 
binding is to a good degree size-dependent, and neither too small 
nor too large ligands can achieve the strongest binding (lowest 
energy) (Buchwald, 2008). The overall picture is certainly much 
more complex for various receptors, and this is a simplification 
of limited applicability. Nevertheless, it is mentioned as a 
possible simplified conceptualization that can be useful in some 

FIGURE 6 | Three-dimensional structure of the agonist (2MeSADP; top) and antagonist (AZD1283; bottom) bound forms of the purinergic P2Y12 receptor (a type Aδ 
GPCR). Structures [PDB IDs 4PXZ and 4NTJ (Zhang et al., 2014a; Zhang et al., 2014b)] are shown covered with a semi-transparent gray surface and the secondary 
protein structure indicated; ligands are highlighted as darker solid CPK structures. Both are shown from two different perspectives with the one on the right being 
a 90° rotated and somewhat enlarged view from the top. The ligands are faded as they buried inside the receptor and are obscured by the covering surfaces; 
however, the antagonist (bottom) is less buried than the agonist (top) so that part of its surface is not covered and accessible from outside as indicated by its more 
vivid colors where directly visible.
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applications [“All models are wrong, but some are useful” (Box, 
1979)]. Cases where full agonists induce LBD domain closure 
while partial agonists bind to a more open conformation have 
been shown, for example, for the AMPA receptor (Figure 8) 
(Jin et al., 2003; Twomey and Sobolevsky, 2018). On the other 
hand, structural information from co-crystallization studies 
with some GPCRs seem to suggest that their activation involves 
the translation of relatively modest structural changes within 
the ligand-binding site into larger-scale conformational shifts 
at the intracellular side of the receptor (Shonberg et al., 2014; 
Shonberg et al., 2015). Ultimately, these assumptions related to 
the activation and binding mechanisms (Figure 3, Figure S3) do 
not limit the general applicability of the formalism of the present 
model and its corresponding quantitative forms (Figure 1).

Advantage Versus other Quantitative 
Receptor Models
The quantitative form of the present general SABRE receptor 
model (Equation 2 or Equation 4) has no striking beauty resulting 

from an elegant simplicity; nevertheless, it has several benefits 
compared to other complex quantitative models that are mostly 
based on the operational (Black and Leff) model (Black and Leff, 
1983; Black et al., 1985):2
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Most existing quantitative pharmacological models assume 
receptor functions along the lines of this operational model-
based equation (Trzeciakowski, 1999a; Ehlert et al., 2011; 
Slack and Hall, 2012; Ehlert, 2015b; Copeland, 2016; Hall and 
Giraldo, 2018) with some additions needed for constitutive 
activity (Jenkinson, 2010; Kenakin, 2017; Kenakin, 2018b), 
including extension such as those by Ehlert and co-workers 

2 Except for the typical notation used, the mathematical form of the operational 
model is identical with that of the minimal two-state (del Castillo-Katz) model 
(Del Castillo and Katz, 1957; Jenkinson, 2010). In Jenkinson’s description, the τ 
used here was denoted as E (Jenkinson, 2010).

FIGURE 7 | Three-dimensional structure of the agonist- (dexamethasone; left) and antagonist- (mifepristone; right) bound forms of the glucocorticoid receptor (a nuclear 
receptor). Structures [PDB IDs 1P93 and 1NHZ (Kauppi et al., 2003)] are shown from two different perspectives (the bottom one being a 90° rotated view as indicated 
by the arrows). Receptors are shown covered with a semi-transparent gray surface and the secondary protein structure indicated; the ligands are highlighted as darker 
solid CPK structures. The ligands are faded as they buried inside the receptors and are obscured by the covering surfaces; however, the antagonist (right) is less buried 
than the agonist (left) so that part of its surface is not covered and accessible from outside as indicated by its more vivid colors where directly visible.
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(Ehlert et al., 2011) or Hall and co-workers (Slack and Hall, 
2012; Hall and Giraldo, 2018). However, there are noticeable 
disadvantages that hinder the widespread use of these Kd and 
τ-based equations, most of which are overcome by the present 
model. Although the overall forms of the present three-
parameter model (Equation 4) and that of the operational 
model (Equation 20) are quite similar (with εγ here replacing 
τ of the operational model, plus an additional ε present in 
the denominator), the present parametrization provides 
several advantages over τ-based models. These will be briefly 
highlighted below.

Better Suited for Fitting by Nonlinear Regression
Transforming the classic form of the operational model 
(Equation 20) in a manner similar to that done for the present 
model (Equation 14 vs. 13) leads to 
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Hence, for the operational model, the maximum fractional 
response achievable by a ligand is fresp,max = τ/(τ+1) and half-
maximal activity occurs at EC50 = Kobs = Kd/(1+τ). Because 

for full (or close to full) agonists, the maximum (fractional) 
response, τ/(τ+1), needs to be close to 1, τ needs to have large 
values, and those are difficult to obtain in a well-defined 
manner, as the τ/(τ + 1) fraction is no longer sensitive to 
changes in τ when approaching unity. Hence, fitting by 
nonlinear regression can result in large and ill-defined τ 
values, making the linked Kd values also badly defined. Since 
the calculated Kd is (τ + 1)-fold different from the observed 
Kobs, the operational model (Equation 20) can end up not 
just with ill-defined, but also unrealistic Kd values that are 
essentially meaningless from a binding perspective. Hence, 
this model is difficult to fit for full or close to full agonists, 
and results can be cumbersome to interpret (see, e.g., Table 1 
and Figure A1 in Buchwald, 2017 for specific illustrations). In 
agreement with this, mathematical identifiability analysis and 
simulation for the operational model has shown that when 
only functional assay data are available, only the transduction 
coefficient (τ/Kd) and not τ can be estimated precisely (Zhu 
et al., 2018). There are indeed applications employing the 
operational model either only to determine unresolved τ/Kd 
ratios (Kenakin et al., 2012) or with experimental Kd values to 
constrain the regression (Rajagopal et  al., 2011). Because in 
the present model, ε is restricted to the 0 to 1 range and Kd is 
independent of ε, fitting by nonlinear regression does not face 

FIGURE 8 | Three-dimensional structure of the agonist (glutamate) bound form of the AMPA receptor (a ligand-gate ion channel or ionotropic receptor). Structure 
[PDB ID 1P93 (Twomey et al., 2017)] is shown with the receptor shown covered with a semi-transparent gray surface and the secondary protein structure indicated; 
ligands are highlighted as darker solid CPK structures (inset shows a section around the bound ligand as an enlargement). As before, the ligands are faded as they 
buried inside the receptors and are obscured by the covering surfaces.
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these issues, and all parameters can be fitted in well-defined 
manner for partial and full agonists as long as there are 
sufficient data points. Several specific examples are included 
in the next chapter for illustration.

More Intuitive Parametrization
As highlighted by Equation 21, the Kd parameter of the 
operational model obtained from data fitting is different 
from the apparent (observed) Kobs as its value also depends 
on τ: Kobs = Kd/(τ+1). Although this allows the concentration–
response curve to shift from the concentration–binding curve, 
which is why such complex models are needed in the first 
place, it also makes Kd an empirical parameter not directly 
related to binding. As discussed above, for full or close to full 
agonists, τ needs to be large [e.g., τ>10 is needed for Emax = 
τ/(τ+1)>0.9], and Kobs values will be shifted considerably 
compared to Kd—often to unrealistically high values that 
are clearly far from the actual binding affinity of the ligand. 
Hence, it has become accepted to use Kd as an empirical 
parameter not necessarily related to receptor binding, and 
in some implementations, such as in GraphPad Prism, full 
agonists are not fitted at all with this model. It has been 
pointed out that for the operational model, changes in binding 
(Kd) and in conformation (τ) become indistinguishable for 
very efficacious agonists making interpretations difficult and 
cumbersome (Colquhoun, 1998).

Contrary to this, all parameters of the present model 
are straightforward, intuitive, and clearly related to their 
corresponding processes. Affinity (binding) is characterized by 
Kd, the binding constant, and values measured in equilibrium 
assays can be used directly in the model. This Kd is uncoupled 
from the post-binding ability to activate the receptor (efficacy) 
as well as the strength of the post-activation amplification. 
Efficacy (ability to activate the receptor) is characterized by ε, a 
ligand-specific unitless parameter ranging from 0 (for a ligand 
that keeps all receptors inactive) to 1 (for an agonist that shifts 
all receptors into active state). Nonlinear transduction, due 
to post-receptor amplification (gain), is characterized by  γ, 
a unitless parameter ranging from 1 (no amplification) to 
infinity.

Receptor Activation and Signal Amplification 
Are Separated
The present model also overcomes an essential hypothesis-
related problem of the operational (Black and Leff) and 
del Castillo–Katz models, namely, that although the final 
equations are mathematically identical (Equation 20), they 
arrive at it from two conceptually different approaches that 
are both incomplete. On one hand, the minimal two-state (del 
Castillo–Katz) model (Figure 2 without an R* state), which is 
now a generally accepted approach to describe switching of the 
receptor between active and inactive states, does not formally 
incorporate signal amplification (nonlinear transduction), 
which, as discussed, is known to exist. On the other, the 
operational (Black and Leff) model allows nonlinear response, 
but it is a single-state model that does not formally incorporate 

the possible existence of active and inactive ligand-bound 
receptor states (i.e., the possibility that not all occupied 
receptors are active), which is also known to exist. It makes 
up for this by limiting its output function to a maximum of τ/
(τ+1). Consequently, these models, in fact, merge together two 
different effects in their τ parameter: the “intrinsic efficacy” of 
the (bound) ligand to activate the receptor, which can lead to 
partial activation (partial agonism) even with a linear response 
function, and the “efficacy” of the post-activation amplification 
downstream from the receptor, which can create fractional 
response in excess of the fractional occupancy (“receptor 
reserve”) and can be tissue- or organ-specific. These issues are 
overcome by the present model, by the introduction of separate 
efficacy ε and gain γ parameters that are also decoupled form 
the binding affinity, Kd.

Reducibility to Previous and/or Simplified Models
Finally, another important advantage is that, contrary to 
previous models, the present one is a true generalized model: 
simplified forms can be recovered as special cases of its 
parameters, e.g., εR0 = 0 for no constitutive activity, γ = 1 for no 
amplification (no receptor reserve), and ε = 1 for full agonism 
only (Figure  1). When adequate and/or when there is not 
enough data to support full parametrization, these simplified 
forms can and should be used on their own. The operational 
model, and consequently all of its extensions, cannot be 
reduced back to simpler forms, such as the Emax model for 
partial agonism or the Clark equation, as there are no τ values 
for which Equation 20 converts back to any of them (see 
Buchwald, 2017 for details). Therefore, one cannot transition 
back to simpler forms despite being in general desirable for 
complex models to be able to recover simpler ones for special 
cases of their parameters. In contrast, the present general model 
can be reduced back to a whole series of consecutively nested 
simpler forms (Figure 1). For example, εR0 = 0 indicating no 
constitutive activity, reduces the general four-parameter model 
(Figure 1A) to the three-parameter model used before (Figure 
1C). Further, if there is no post-receptor amplification, γ = 1, 
this model (Figure 1C) collapses back to an Emax model for 
partial agonists with efficiency ε (Figure 1D):
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Finally, if only full agonists are considered (ε = 1), 
all occupied receptors are active (Figure 1F), and the 
corresponding equation collapses back to the well-known 
Clark equation, which forms the basis of the entire quantitative 
receptor theory:
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Consequently, one can start fitting with the simplest most 
adequate form corresponding to constrained parameters, and 
these constrains can be removed sequentially as needed based 
on the complexity of the data being fitted and the number of 
data points available. For the simplest case, one can start with 
εR0 = 0 (no constitutive activity), γ = 1 (no amplification—
fractional response overlaps with fractional occupancy), and 
ε = 1 (full agonism only) corresponding to a Clark model, 
and then remove these constrains as needed. On the other 
hand, the general model with all of its parameters released 
can fit complex cases where the fractional occupancy and the 
fractional response data are measured separately and do not 
correspond. In many cases, such data cannot be fit within the 
formalism of the operational model (e.g., to accommodate 
measured Kd values); a number of specific examples will be 
discussed below for illustration.

FIT OF COMPLEX FRACTIONAL 
RESPONSE VERSUS FRACTIONAL 
OCCUPANCY DATA

In systems with signal amplification (receptor reserve), the 
response readout from compounds of different efficacies (full, 
partial, and possibly inverse agonist) can be quite complex due 
to the intermixing of the effects of partial receptor activation 
with those of post-receptor signal amplification. This can result 
in complicated connections between fractional occupancy 
(foccup) and fractional response (fresp) that can be fitted only 
by multi-parameter models. Because the present model uses 
different parameters for efficacy (ε) and amplification (γ), it 
can untangle these in a manner not possible with previous 
models, which intermingled these two effects within the 
same parameter (τ). Furthermore, with the present model, 
response data can be connected to independently measured 
occupancy data in a manner not possible with the operational 
model so that unified fit for multiple ligands can be obtained 
for complex cases including a) fractional responses that do 
not match independently measured fractional occupancies, 
b) responses measured after partial irreversible inactivation 
of the “receptor reserve” (Furchgott method), c) fractional 
responses that are different along distinct downstream 
pathways despite being initiated by the same receptor (biased 
agonism), and d) responses with constitutive receptor 
activity. We will first discuss several examples that do not 
involve  constitutive  activity (εR0 = 0)  and  include a last one 
with εR0 > 0.

Response Versus Independently Measured 
Occupancy for Partial Agonist Series
This involves cases where detailed response data are measured in 
a given system in parallel with affinity (Kd) estimates for a series 
of compounds that include partial agonists of different efficacies, 
and fractional responses do not match fractional occupancies. 
In sufficiently complex cases, the fractional response can 
either exceed or lag behind the fractional receptor occupancy, 
sometimes even for the same compound (see Figure 9B for an 
illustration). After derivation of the corresponding equation, the 
ability of the present model to connect complex response data 
to measured occupancy will be illustrated with two sets of data 
involving α-adrenergic and M3 muscarinic receptors (Figures 9 
and 10, respectively).

Linking Fractional Response to Fractional Occupancy
With the present model, one can directly link the fractional 
response, fresp = E/Emax, to the affinity-determined fractional 
occupancy, foccup, which here is
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To do so (for the case of no constitutive activity), [L] in the 
expression of fresp (Equation 13) is replaced with its expression 
as a function of foccup, from Equation 26 above, [L]=foccupKd/(1–
foccup), leading to:
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Because of its two parameters (ε, γ), the present model 
allows quite flexible profiles. To avoid overparametrization-
related problems, fit for a given response-system should be done 
using a common gain (γ) parameter across all ligands, and this 
should allow a good estimate of the overall amplification. At 
full occupancy (foccup = 1), the maximum fractional response is 
fresp,max = εγ/(εγ − ε +1), which can be less than unity for low-
efficacy compounds.3

Illustration I: α-Adrenergic Receptor
These data involve concentration-dependent responses in 
a series of imidazoline type α-adrenoceptor agonists (e.g., 
phenylephrine, oxymetazoline, naphazoline, clonidine, and 

3 Note that the operational model not only cannot accommodate experimentally 
determined Kds into its fitting, but if fresp is expressed as a function of foccup via 
the same method (starting from Equation 20), a simple hyperbolic function 

is obtained f
f

f
resp
op mod occup

occup

. . =
+ 1

τ

 that cannot give any insight into the 

response of the system as a whole (as it involves only ligand-related individual 
τ parameters).
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tolazoline) (Ruffolo et al., 1979) and are often used as a textbook 
example to illustrate mismatch between fractional receptor 
occupancy and response (Rang et al., 2015). Contractions of 
isolated rat aorta were measured as response, and receptor 
binding (Kd) was assessed separately by two different methods. 
Response alone can be fitted well by a standard Emax model 
(Equation 10; Supplementary Table S1.B) or the operational 
model (Equation 20) giving fits of essentially identical quality 
(Buchwald, 2017). However, fit with the operational model results 
in K values that are different from the measured Kds and are quite 
meaningless for the full agonist phenylephrine (τ = 106.0; logK = 
−1.53 vs. logKd = −6.46) (Buchwald, 2017). While these models 
can be used for empirical fitting of the response data, they cannot 
connect the response to the independently determined binding 

data (Kd). This can be done, however, with the present model 
(Equation 4) without significant loss in the quality of fit while 
also reducing the overall number of adjustable parameters (n = 
6, 1 γ + 5 εs, versus the previous n = 10, 5 compounds, each with 
a Kd and Emax or KA and τ) (Figure 9A; Table S1.C). Decreasing 
the number of parameters is important as model simplification 
is always an essential consideration (George, 2000; Myung and 
Pitt, 2004; Buchwald, 2005; Buchwald, 2007). Hence, the present 
model can do more than just an empirical fit of the response data 
and can account for complex cases where fresp can either exceed 
or lag behind foccup depending on the ligand (Figure 9B). Fit 
here predicts a reasonable 11.9-fold amplification for this system 
(γ = 11.88 ± 2.02) and intrinsic efficacies ranging from 1.0 for 
phenylephrine to 0.009 for tolazoline (Table S1).

FIGURE 9 | Fit of complex concentration-response data with the present model, Case I: Activity and binding data for a series of imidazoline-type α-adrenoceptor 
agonists (data after Ruffolo et al., 1979). (A) Fractional response as a function of log concentration for five compounds (symbols) fitted by the present model 
(Equation 4) using independently derived Kd values for binding affinity. Fitting of the response data is done by adjusting only one common γ (gain) and five individual 
ε (efficacy) parameters (Table S1.C). Fractional receptor occupancy data [calculated from the average Kd determined by two different methods (Ruffolo et al., 1979)] 
are also shown as dashed lines to highlight the ability of the model to account for the ligand-dependent mismatch between fractional response and occupancy. 
(B) Fractional response vs. occupancy data for these five compounds (symbols) and their corresponding fit with the present model fitted directly via the newly 
derived Equation 27. Note that the functional response can either exceed or lag behind the fractional occupancy data; for one compound (oxymetazoline), both 
occur depending on the ligand concentration.
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Direct fit of the fresp vs. foccup data (Figure 9B) with the newly 
derived Equation 27 here constrained to a single amplification 
γ parameter for all compounds also results in very good fit 
and essentially identical ε and γ parameters (Table S1). The 
value of the correlation coefficient, r2 = 0.995, indicates that the 
model accounts for 99.5% of the variability in the quite complex 
response vs. occupancy data. Note that for oxymetazoline the 
fractional response exceeds the fractional occupancy at low 
occupancy (foccup<50%), but lags behind it at higher ones.

Illustration II: M3 Muscarinic Receptor
A second set of data used for illustration involves the M3 muscarinic 
receptor and a set of seven agonists including acetylcholine, 

carbachol, methacholine, oxotremorine, pilocarpine, and others 
(Sykes et al., 2009). This provides an even more complex test as 
two different responses were measured at consecutive vantage 
points after receptor activation: the stimulation of GTP binding 
to Gα subunits and the subsequent increase in intracellular 
calcium levels. Occupancy estimates are from pK values obtained 
from equilibrium competition experiments with N-methyl-[3H]
scopolamine, but dynamic measurements were also performed 
to assess association and dissociation rate constants (kon, koff), 
and they resulted in somewhat shifted, but very similar pK values 
(r2 = 0.99) (Sykes et al., 2009). If all data are placed on the same 
graph, it is already apparent that the amplification for the two 
subsequent responses quantified here is quite different: while it 

FIGURE 10 | Fit of complex concentration-response data with the present model, Case II: Activity and binding data for a series of muscarinic agonists (data after 
Sykes et al., 2009). Responses were measured at two different points after M3 receptor activation: stimulation of GTP binding to Gα subunits and subsequent increase 
in intracellular Ca levels, respectively. (A) Fractional GTP and Ca responses (closed and semi-open symbols, respectively) as a function of log concentration for seven 
compounds fitted by the present model using independently derived Kd values for binding affinity (Sykes et al., 2009) (Equation 4; thicker and thinner lines, respectively). 
Fitting of the response data is done by adjusting only two common γ (gain) and seven individual ε (efficacy) parameters (Table S2). Fractional receptor occupancy data 
[calculated from the Kd determined for the receptor binding by competition assays (Sykes et al., 2009)] are also shown as dashed lines to highlight the ability of the 
model to account for the ligand-dependent mismatch between the two different fractional responses and occupancy. (B) Fractional response vs. occupancy data in the 
GTP (left) and Ca (right) assays for these seven compounds (symbols) and their corresponding fit with the present model fitted directly via Equation 27. The very different 
amplification of these two responses assessed here at two different vantage points along the pathway is quite evident from these graphs.
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has to be close to unity for GTP binding (as Kds and Kobs≈EC50s 
roughly overlap), it has to be around four orders of magnitude for 
Ca increase (as the corresponding EC50s are left-shifted by about 
four log units) (Figure 10A). Fit of each of the two concentration-
dependent responses with the present model accounts for 98% 
of the variability in the data (Figure 10B). However, because 
amplification is very strong in the Ca increase assay and all 
agonists achieve essentially maximum activation, well-defined 
efficacies cannot be determined from these data alone. Therefore, 
a unified fit was performed on both responses using only a single 
set of ε efficacies (one each for the seven compounds) plus two γ 
gain parameters (one for each response) as adjustable parameters 
(Table S2). This confirmed that the two amplifications are indeed 
very different as the γ values obtained from this overall fit were 
2.1 and 10,089 for the GTP and Ca readout, respectively. The 
overall fit of these two response data sets with the same set of 
only 9 adjustable parameters was again quite good accounting 
for 95% of the variability in the data (r2 = 0.95; Figure 10A) with 
betanachol, acetylcholine, and maybe pilocarpine fitting less 
well. Obtained relative overall efficacies are summarized in Table 
S2. In agreement with the original observation, which looked at 
intrinsic activities and log τ values obtained from the operational 
model (Sykes et al., 2009), efficacies (ε) obtained here also 
correlate very well with the pkoff values (r2 = 0.86) while having no 
correlation with the pKd affinities (r2 = 0.01). In conclusion, the 
present model has the potential to connect activity data assessed 
at different vantage points and involving different amplification 
steps along the same downstream pathway to affinity and intrinsic 
efficacy data for complex series of partial agonists.

Response after Partial Irreversible 
Inactivation of the “Receptor Reserve” 
(Furchgott Method)
Another approach that can result in complex data difficult to fit 
with single unified models is the method of irreversible receptor 
inactivation introduced by Furchgott for the quantitative 
assessment of “receptor reserve” (Furchgott, 1966; Furchgott 
and Bursztyn, 1967). For receptors that can be irreversibly 
inactivated so that concentration-response functions can be 
established from the same preparation before and after (partial) 
inactivation, this approach allows the simultaneous estimation 
of affinity and efficacy. In the Furchgott approach, it is assumed 
that application of the irreversible inhibitor reduces the number 
of total receptors to a q fraction of the original, [Rtot]’=q[Rtot], 
thereby reducing the response-creating “stimulus” generated by 
a given ligand concentration [L] by the same q factor. Since the 
observed response is created via the same transduction function 
from the stimulus input, the concentrations [L] and [L]’ that 
create the same effect pre- and post-inhibition have to create the 
same stimulus. Assuming that the stimulus S is proportional to 
the concentration of occupied receptors [LR] (S = ϵF[LR]) and 
that there is a standard hyperbolic connection between ligand 
concentration [L] and occupied receptors, this leads to
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After some rearrangements, this results in a linear relationship 
between the reciprocals of equiactive concentrations that forms 
the basis of the Furchgott method (Furchgott, 1966; Furchgott 
and Bursztyn, 1967; Jenkinson, 2010):
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The slope and intercept of this line allow the simultaneous 
determination of q (fraction of receptor inactivated) and Kd 
(receptor affinity). The Furchgott approach makes no assumption 
regarding the nature of the transduction function, just that it stays 
the same after partial inactivation of Rtot. Since its introduction, 
the method has been applied in several cases with various ligand 
series typically for GPCRs, such as the muscarinic acetylcholine 
(Furchgott and Bursztyn, 1967; Harden et al., 1986; Eglen and 
Whiting, 1987), opioid (Chavkin and Goldstein, 1984; Adams 
et al., 1990; Fox and Hentges, 2017), dopamine (Meller et al., 
1987), 5-hydroxytryptamine (5-HT) (Meller et al., 1990), and 
A1-adenosine (Dennis et al., 1992; Morey et al., 1998) receptor 
systems.

Incorporation of Receptor Inactivation
Within the framework of the present model, there is a specific 
connection between the stimulus input, represented by the 
concentration of active receptors [LR*], and response as shown by 
Equation 12. The loss of total receptors available for ligation due 
to irreversible inhibition, [Rtot]’=q[Rtot], leads to a corresponding 
loss in the [LR*] related stimulus. From the definition of the 
efficacy ε (Equation 9), the concentration of active receptors is
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After inactivation leaves only a q fraction of Rtot, this becomes
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Assuming that inactivation does not affect the post-receptor 
signal amplification function (Equation 12), which remains 
the same γ-dependent function, and only the input stimulus is 
altered, the fractional response after inactivation will be
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After some transformations, this leads to:
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By comparing this to the expression of response before 
inactivation (Equation 4), it can be seen that within the framework 
of the present model, a q-fold decrease in Rtot translates into an 
apparent q-fold reduction of efficacy, ε’=qε. Hence, the model can 
be used with this formalism of “fractional efficacy” ε’ to fit partial 
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inactivation data obtained in Furchgott type experiments; two 
examples will be discussed below.

A notable problem with the receptor reserve concept is that 
it was originally defined as the fraction of receptors not required 
to achieve maximal response (for a full agonists) (Neubig et al., 
2003). However, because the transduction functions linking 
response to occupancy are always of asymptotic nature (i.e., they 
asymptotically approach a limited maximum response as ligand 
concentration increases), in most cases, virtually all receptors are 
needed for maximum response, but often, only a relatively small 
fraction is needed for an almost maximal response. Hence, the 
“reserve” or, in other words, the discrepancy between the measured 
fresp and foccup varies strongly depending on where (i.e., at what 
response level) it is assessed. As the half-maximal point is often 
used as a reference point, a frequently used way to express how 
much “reserve” or “spare” receptors are is to estimate the percent of 
receptors occupied that already produces half-maximal response 
(e.g., (Furchgott and Bursztyn, 1967; Kenakin and Cook, 1976; 
Meller et al., 1987; Adham et al., 1993; Chen et al., 1997; Morey 
et al., 1998; Kenakin, 2018b)). For the present model, this can be 
obtained from the reverse of Equation 27 linking fresp and foccup:
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Hence, in a system with a gain parameter γ, a ligand with 
efficacy ε will produce half-maximal effect (fresp = 0.5) at
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For a compound that produces full activation at the receptor 
(ε = 1), half-maximal effect is produced at foccup = 1/(1 + γ). This 
means that in a system with 10-fold amplification (γ = 10), half-
maximal response is produced at a receptor occupancy of 9.1%, 
while in a system with 100-fold amplification, it is produced 
already at 0.99% occupancy. For agonists with lower efficacies 
(ε < 1), these values will be different even in cases where the 
amplification is strong enough. For ligands with low enough 
efficacies, half-maximal response might not even be achieved at 
all, as γ + 1 > 1/ε is needed to have foccup<1 in Equation 34. This 
interplay between efficacy and amplification can explain why the 
discrepancy between fresp and foccup can be different for different 
compounds even if tissue response (amplification) remains the 
same—a problem that confounded these studies and the notion 
of receptor reserve for a long time (Kenakin, 1986).

Illustration III: Dopamine Receptor
A first illustration is provided with a detailed data set where 
amplification could be estimated with two different approaches. 
Data are for a series of compounds acting at the dopamine 
receptor, which can be inhibited by the irreversible antagonist 
N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline  (EEDQ) 
(Meller et al., 1987). In vivo dose response curves were generated 
in rats for the dopamine agonist reversal of γ-butyrolactone-
induced striatal L-DOPA (L-3,4-dihydroxyphenylalanine) 
accumulation for four compounds: N-propylnorapomorphine 

(NPA), EMD 23,448, and (+/–)3-(3-hydroxyphenyl)-N-n-
propylpiperidine [3-PPP(+) and 3-PPP(–)]. Data from one set 
of experiments following the Furchgott method indicates that 
response to NPA follows a typical hyperbolic response and is 
dose-dependently inhibited by EEDQ (Figure 11A). Fit with 
the present model (Equation 33, using a single Kd for NPA and 
a single γ for the response pathway) is very good (r2=0.99) and 
suggests an about 43-fold signal amplification (γ=42.6±65.1) 
with EEDQ caused fractional inhibitions (q) estimated from the 
ε values that are in good agreement with those obtained in the 
original paper (Meller et al., 1987) using the classic Furchgott 
approach (Equation 29) (Table S3). The common Kd of the 
fit (19.0 μg/kg) also agrees well with that obtained via regression 
from the Furchgott approach for the highest EEDQ dose  
(24.4 μg/kg).

Next, the data obtained in this assay for all four compounds, 
but without EEDQ-mediated inhibition can also be fitted with 
the present model using the fresp vs. foccup method (Equation 27) 
as applied previously (Figures 9B and 10B). Fractional responses 
plotted as a function of foccup (with occupancies calculated from 
Kds values derived originally with the Furchgott method; Figure 7 
in Meller et al., 1987) were fitted directly with the present model 
using Equation 27 with a single γ value. This also results in very 
good overall fit that accounts for as much as 95% of the overall 
variability in these data (r2=0.95) (Figure 11B). The relative 
efficacies as compared to NPA as a full agonist obtained here are 
0.19, 0.15, and 0.04 for EMD 23,448, 3-PPP(+), and 3-PPP(–) 
(Table S3), and they match very well those obtained originally by 
the Furchgott approach: 0.19, 0.12, and 0.05 (Meller et al., 1987). 
Finally, the two gain parameters obtained from two different 
data sets for this dopamine receptor system, γ=42.6±65.1 from 
the partial irreversible inhibition and γ=28.0±51.5 from the 
comparative activity of different agonists are consistent enough 
to support the applicability of the model here.

Illustration IV: Muscarinic Receptor
A second illustration is provided with an example that has been 
used to illustrate the capabilities of the τ-based operational 
model to explain unusual cases where full agonists become 
partial ones following receptor inactivation and even the order 
of apparent potencies changes (Kenakin, 1993; Kenakin and 
Christopoulos, 2011). Data are contraction of guinea-pig ileum 
following activation of muscarinic receptors with carbachol 
and oxotremorine in normal tissue and after the inactivation 
of muscarinic receptors by controlled alkylation with 
phenoxybenzamine (PHB) at two different strengths (10 μM for 
10 min and 3 μM for 20 min) (Kenakin, 1993). With the present 
model, unified fit of all data can be achieved using a single γ for 
this pathway, single Kds for carbachol and oxotremorine, and 
the same q values for the PBA-induced inactivation for both 
compounds (Figure 12, Table S4). This ε- and γ-based fitting 
can not only account for the apparent reversal of potencies, 
but even results in slightly better fit than that obtainable with 
the operational model and with more meaningful parameters 
(Buchwald, 2017). Fit indicates a strong amplification (≈21,000) 
that is then reduced more than a thousand-fold by alkylation and 
a 26-fold higher affinity (logKd of –6.04 vs. –4.62), but a 56-fold 
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less efficacy (ε of 0.018 vs. 1.0) for oxotremorine as compared 
to carbachol (Table S4). These Kd estimates are in very good 
agreement with those obtained for guinea pig ileum in a different 
work by the Furchgott method (–5.83 and –4.52 for carbachol 
and oxotremorine, respectively) (Eglen and Whiting, 1987) or 
measured for the M3 receptor in another work (–5.61 and –4.09) 
(Sykes et al., 2009).

Biased Agonism
For receptors that can signal through several downstream 
pathways simultaneously, such as GPCRs that are now known to 
couple to multiple G proteins as well as β-arrestins, it is conceivable 
that some ligands show differences in their ability to activate these 
pathways, even if they initiate from the same receptor, resulting 

in what has been designated as biased agonism (stimulus bias, 
functional selectivity, or ligand directed signaling) (Kenakin, 
1995; Rajagopal et al., 2011; Kenakin and Christopoulos, 2013; 
Shonberg et al., 2014; Stahl et al., 2015; Ehlert, 2018; Michel and 
Charlton, 2018; Smith et al., 2018; Wootten et al., 2018). It is 
generally assumed that this could happen because such receptors 
can assume multiple conformational states that differ in their 
ability to couple to the various intracellular effectors, and ligands 
can show preference in stabilizing some of these conformations 
leading to different outcomes. However, quantifying such signaling 
bias is difficult, and there are increasing doubts whether it is even 
worthwhile for most cases (Onaran et al., 2017; Kenakin, 2018a). 
The most widely used quantification tools rely on ∆∆log(τ/K) or 
∆∆log(Emax/EC50) versus a selected reference compound (Onaran 
et al., 2017; Michel and Charlton, 2018). In light of the formalism 
of the present model, a main problem is that due to the intermix 
of partial agonism at the receptor followed by signal amplification, 
fractional responses along different pathways are nonlinearly 
connected even at similar efficacies, and therefore, different 
approaches at quantification can yield different results.

Quantifying Bias With the Present Model
The present model might allow a better and more clearly 
parametrized approach. If it can fit the data, it allows the clear 
separation of pathway-specific differences in amplification from 
those in efficacies, which then can serve as cleaner indications 
of bias without a need for a reference agonist. If one assumes 
that the amplification for each signaling pathway is the same 
for all ligands (i.e., γk for pathway k, k = 1…l, is the same for 
all ligands Li, i = 1…j) then biased agonism can be suspected 
for ligands that show significantly different efficacies for two 
(or more) pathways initiating from the same receptor (i.e., εim 
vs. εin for the efficacy of ligand i, Li, for pathways m versus n). 
Hence, if receptor occupancy (binding affinity) data are available, 
one approach with the present model is to fit the data for each 
pathway with Equation 4 (Equation 2 if there is constitutive 
activity), and then compare efficacies between pathways. Bias is 
likely to be present for ligands with an efficacy ratio significantly 
different from 1. For cases where receptor occupancy data are 
available, the ability of the present model to connect (fractional) 
responses to (fractional) occupancy data (via Equation 4 or 27) 
provides a clear advantage, as it allows first an assessment of the 
adequacy of the model (i.e., whether unified gain parameters 
can provide adequate fit and well-defined efficacies for each 
response pathway) and then a detection of possible bias based 
on the obtained efficacy values. This is not possible with previous 
models, such as those based on the operational model, as they 
cannot incorporate experimental Kd values in their assessments. 
A modification of the operational model that uses experimental 
Kd values to constrain the regression has been proposed for 
bias detection by Rajagopal and co-workers (Rajagopal et al., 
2011; Onaran et al., 2017). The bias quantification proposed 
here is in fact most similar to this one, since the εγ values of 
the present model will be very similar to the τ values obtained 
with this modified operational model, especially at large γ 
amplifications where εγ ≈ εγ − ε (cf. Equations 4 and 20). Under 
such conditions, comparing these τ ratios (Rajagopal et al., 2011; 

FIGURE 11 | Fit of complex concentration-response data with the present 
model, Case III: Activity and binding data for the dopamine agonist reversal 
of γ-butyrolactone-induced striatal L-DOPA accumulation in rats (after Meller 
et al., 1987). (A) Percent of maximal response for N-propylnorapomorphine 
(NPA) and following inhibition by increasing doses of the irreversible 
antagonist EEDQ (0.5, 1.5, and 2×6 mg/kg). Experimental data (symbols) 
were fitted with the present model (lines) using Equation 33 with a single Kd 
and γ parameter and different ε values to account for the effect of inactivation 
via q. (B) Fractional response vs. occupancy data obtained in the same 
system (without inhibition) for four different compounds (NPA, EMD 23,448, 
(+)3-PPP, and (–)3-PPP). Occupancy data as calculated from Kd estimates in 
Meller et al. (1987). Data (symbols) were fitted with the present model (lines) 
using Equation 22 with a single γ parameter. Note that the gain parameters 
obtained from the same signaling pathway, but with different data sets 
derived from different methods are in good agreement (Table S3).
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Onaran et al., 2017) is essentially the same as comparing ε ratios 
(as γ values are fixed for pathways). However, this operational 
model based approach cannot fit full agonists in systems with low 
amplification, where Kd and Kobs are similar (e.g., Figure 14B and 
D), because full agonism can only be achieved with large τ’s so 
that Kobs = Kd/(τ + 1) will be shifted away from Kd. This limitation 
is avoided with the present parametrization.

If binding data are lacking, one can use fitted Kd
’s enforcing a 

single set of values for all pathways. However, this way well-defined 
parameters are difficult to obtain, and simultaneous fit cannot be 
done for multiple pathways and ligands in commercial software 
such as GraphPad Prism. An alternative is to use the present 
model to directly fit the data in so-called bias plots (Gregory et al., 
2010; Kenakin and Christopoulos, 2013) that are, in fact, relative 
response plots showing one response as a function of another one 
produced at the same ligand concentration (see, e.g., Figure 13). 
To derive the function directly connecting fractional responses 
fresp1 and fresp2 for the present model generated at the same ligand 
concentrations (hence, at the same fractional occupancies), foccup 
will be expressed from fresp for one of the pathways, and then used 
in the expression of the other. From Equation 27 (for pathway 2)

 
f

f
resp

occup

occup
2

2 2

2 2 1 1
=

− +
ε γ

ε γ( ) f  
(36)

and its reverse (Equation 34) for pathway 1

 
f

f
foccup

resp

resp
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− −
1

1 1 1 1 11ε γ ε γ( )  
(37)

one can link fresp2 to fresp1 directly by eliminating foccup:

 
f

f
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resp
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2

2 2 1

1 1 2 2 1 1 11 1
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+ − − −
ε γ

ε γ ε γ ε γ[ ( ) ( )]  (38)

This results in various curvilinear relative response plots such as 
those shown in Figure 13 generated with the parameters as indicated 
[intended to resemble Figure 2 of the general review (Kenakin and 
Christopoulos, 2013)]. Note that for pathways that have different 
amplifications (γ1≠γ2), the relative response plots are still curvilinear 
even for ligands that do not show bias (i.e., balanced or “non-biased” 
agonists that have the same efficacy for both pathways, ε1=ε2):

 
f

f
resp

resp

resp
2

2 1

1 2 1 1
=

+ −
γ

γ γ( )γ f  
(39)

Because of this nonlinearity, bias quantification is difficult 
especially for pathways that have considerably different 
amplifications. If the present model can fit the data, it allows the 
clear separation of pathway-specific differences in amplifications 
from those in ligand efficacies, which can then serve as indication 
of bias. Most biased agonism assessments published so far include 
only response measurements and no binding data; an example that 
includes affinity assessments too is discussed below for illustration. 
Due to the additional binding affinity data, such sets are better suited 
to judge the adequacy of the present model (i.e., whether unified gain 
parameters can provide adequate fit for each response pathway), and 
then detect actual bias based on the obtained efficacy values.

Illustration V: μ-Opioid Receptor
Biased signaling at the μ-opioid GPCR is of obvious interest for 
the possibility of achieving improved analgesia while reducing 

FIGURE 12 | Fit of complex concentration-response data with the present model, Case IV: Fractional response curves of guinea-pig ileum contraction mediated by 
muscarinic receptor activation with carbachol (CCh; blue diamonds) and oxotremorine (Oxtr; red circles) in normal tissue and following inactivation through alkylation 
with phenoxybenzamine (PHB) at two different strengths (data after Kenakin, 1993; Kenakin and Christopoulos, 2011). Unified fit of all data with the present model 
is shown (lines) using a single γ amplification parameter for this pathway, single Kd affinity parameters for carbachol and oxotremorine, and the same q values for the 
PBA inactivation for both compounds (Table S4).
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the unwanted side effects of opiate therapeutics, and oliceridine, a 
μ-opioid receptor (MOR) biased agonist, is one of the first products 
showing the clinical promise in developing biased agonists (Wadman, 
2017). To illustrate the fitting of biased agonism data with the present 
model, we will use data from a recent detailed study with a series 
of ligands including morphine, endomorphin, met-enkephalin, 
DAMGO (L-tyrosyl-D-alanyl-glycyl-N-methyl-L-phenylalanyl-
glycinol), and Pfizer standard-1 (2-(L-tyrosylamino-1-[N-acetly-L-
phenylalanyl)-amino]-2-methylpropane hydrochloride) in cAMP 
and β-arrestin2 assays with the wild-type and two mutated μ-opioid 
receptors in which binding affinity estimates were also obtained using 
a [3H]diprenorphine competition assay (Hothersall et al., 2017).

Fit with the present model (Figure 14A and B) indicates that 
while there is essentially no amplification for the β-arrestin2 
response (γ2 ≈ 1), there is a strong amplification for the cAMP 
response (γ1 = 62.0 ± 53.7) (Table S5). This is in agreement with 
the general observation that there is usually much stronger 
amplification in the G-protein mediated pathway than in the 
β-arrestin mediated one (Ehlert, 2018). Overall, quite good fits 
can be obtained accounting for 97% and 96% of the variability 
in the data for the cAMP and β-arrestin2 assays, respectively, 
even though the Kd-based model struggles somewhat to fit 
the data for DAMGO and met-enkephalin in the β-arrestin2 
assay (Figure 14B). Part of the problem is more evident in 
the corresponding fractional response versus occupancy plot 
(Figure 14D), where it is clear that the fresp vs. foccup plot for these 
two compounds has an unusual upward curvature unsuitable 
to fit with the present model (Equation 27). Because of the 

large difference in the amplifications (>60-fold), the relative 
response (“bias”) plot is highly curved even for balanced (non-
biased) agonists (Figure 14E). This makes the assessment 
of bias difficult, as even five-fold differences in the efficacies 
for activation of the receptor pathways (ε1 vs ε2) can be easily 
overshadowed by the differences in amplifications (γ1 vs γ2). 
Due to the amplification in cAMP, the corresponding ε values 
cannot be well determined and have significant uncertainties 
when fitting directly the relative response plot with Equation 
38 (Figure 14E); hence, without binding information (Kds), 
there is not enough data to determine bias in a well-defined 
manner. Including the binding data, and fitting with the 
Kd-based model either directly (Equation 4; Figure 14A 
and B) or via the response vs occupancy data (Equation 27; 
Figure  14C and D) gives better defined efficacies (Table S5). 
Bias calculated this way as the ratio of the two efficacies (εcAMP/
εβ-arrestin2) ranges from 0.281 ± 0.235 for DAMGO to 1.549 ± 
0.525 for endomorphin-2. Of these, only that for DAMGO, 
a compound sometimes used as reference (Thompson et al., 
2015), can be considered as indicating significant bias as it is the 
only one where the ratio ±2SD does not include 1, suggesting 
possible bias toward β-arrestin (Table S5). Note, however, that 
because of the somewhat poorer fit of the Kd-based model of 
the β-arrestin response for DAMGO, this conclusion should 
be treated with some caution. Further, in agreement with the 
original publication, this bias is not significant compared to 
Pfizer standard-1 as reference, since that compound also has a 
slight bias toward β-arrestin (0.783 ± 0.662).

FIGURE 13 | Simulated relative response (“bias”) plots with the present model (Equation 38) for two pathways with different amplifications (γ1=10 and γ2=30) 
and for agonists A–D with efficacies ε1 and ε2 as indicated. Small circles along the lines indicate the responses corresponding to 50% occupancy (i.e., at ligand 
concentrations of Kd) to illustrate the mismatch between fractional responses and fractional occupancies along each pathway.
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Constitutive Activity
All examples discussed so far involved applications of the three-
parameter model (Figure 1C) that assumes no constitutively active 
receptors (i.e., no ligand-free R* form). As a simple illustration of 
the ability of the present general model to fit responses obtained 
from systems with constitutive activity, a case with opioid receptors 
of different constitutive activity is included below.

Illustration VI: μ- and δ-Opioid Receptors
A set of fractional receptor-G protein coupling (FRC) data assessed 
via a cell-free bioluminescence resonance energy transfer (BRET) 
assay for δ- and μ-opioid receptors (DOR, MOR) with different 
opioid compounds that share a peptidomimetic scaffold (Vezzi et al., 

2013) was fitted with the present model assuming constitutive 
activity, but no amplification (εR0>0, γ=1; Figure 1B, Equation 19). 
This is included simply to illustrate the ability of the model as is to fit 
such data with non-zero baseline (Figure 15) and to reproduce fitting 
with classic three-parameter (top, bottom, ED50) models. In both 
cases, very good fits were obtained that account for more than 99% of 
the variability in the data (r2=0.991) despite the wide range of ligand 
efficacies (Table S6). Furthermore, the fitted curves indeed fully 
overlapped with those obtained with a standard three-parameter log 
agonist vs. response model (Emax with adjustable bottom); they are 
both shown but are indistinguishable in Figure 15. With the present 
model, εR0 values for each of the receptors were assumed to be shared 
values across the ligand series (as they are receptor characteristics) 

FIGURE 14 | Fit of complex concentration-response data with the present model, Case V: Activity and binding data for different opioids in cells expressing 
wildtype μ-opioid receptor in the cAMP (A) and β-arrestin2 (B) assays, respectively (after Hothersall et al., 2017) and fitted with the present model (Equation 4). 
Corresponding fractional response vs. occupancy plots generated using pKi values derived from [3H]diprenorphine competition assays and fitted with the model 
(Equation 27) are shown for cAMP (C) and β-arrestin2 (D). A relative response plot (“bias plot”) showing the fractional responses plotted against each other is 
included in (E).
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resulting in values of 0.464 ± 0.007 and 0.087 ± 0.008 for the δ- and 
μ-opioid receptors, respectively. Note that amplification may be 
present, but its magnitude cannot be determined from these data 
alone; hence, γ=1 was used. An illustration of the effects of different 
amplifications (γ) on the response generated by a receptor with 
constitutive activity with the present model (Equation 16) for a set of 
ligands of various efficacies (εR0, ε) is included in Figure S2.

CONCLUSION

In conclusion, a general two-state SABRE receptor model has 
been proposed here together with corresponding quantitative 
forms (Figure 1). By using separate parameters for binding 
affinity (Kd), activation efficacy (ε), and signal gain or 

amplification (γ), it can account for complex fractional response 
versus occupancy data while also maintaining an intuitive nature 
for its parameters. Contrary to the operational model, it can be 
reduced back to consecutively nested simpler models, such as the 
Clark equation or its Emax version for partial agonists, via special 
cases of its parameters (e.g., γ=1 for no amplification or ε=1 for no 
partial agonism). This provides a straightforward bridge to such 
simplified cases from a full two-state receptor model as well as 
to their corresponding basic equations that are more suitable for 
fitting by nonlinear regression. The model can connect receptor 
response and binding data via its efficacy and gain parameters, 
and several complex cases where they were measured separately 
were included for illustration including data from partial agonist 
series, partial receptor inactivation (Furchgott method), biased 
agonism, and constitutive activity.

FIGURE 15 | Fit of complex concentration-response data with the present model, Case VI: Activity data for fractional receptor-G protein coupling obtained with 
different opioids that share a peptidomimetic scaffold in δ- and μ-opioid receptors (top and bottom, respectively; after Vezzi et al., 2013) and fitted with the present 
model (Equation 19).
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