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Abstract

Background Ctns�/� mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue
browning and profound muscle wasting. Ctns�/� mice are 25(OH)D3 and 1,25(OH)2D3 insufficient. We investigated whether
vitamin D repletion could ameliorate adipose tissue browning and muscle wasting in Ctns�/� mice.
Methods Twelve-month-old Ctns�/� mice and wild-type controls were treated with 25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/
day and 60 ng/kg/day, respectively) or an ethylene glycol vehicle for 6 weeks. Serum chemistry and parameters of energy ho-
meostasis were measured. We quantitated total fat mass and studied expression of molecules regulating adipose tissue brow-
ning, energy metabolism, and inflammation. We measured lean mass content, skeletal muscle fibre size, in vivo muscle
function (grip strength and rotarod activity), and expression of molecules regulating muscle metabolism. We also analysed
the transcriptome of skeletal muscle in Ctns�/� mice using RNAseq.
Results Supplementation of 25(OH)D3 and 1,25(OH)2D3 normalized serum concentration of 25(OH)D3 and 1,25(OH)2D3 in
Ctns�/� mice, respectively. Repletion of vitamin D partially or fully normalized food intake, weight gain, gain of fat, and lean
mass, improved energy homeostasis, and attenuated perturbations of uncoupling proteins and adenosine triphosphate content
in adipose tissue and muscle in Ctns�/� mice. Vitamin D repletion attenuated elevated expression of beige adipose cell bio-
markers (UCP-1, CD137, Tmem26, and Tbx1) as well as aberrant expression of molecules implicated in adipose tissue browning
(Cox2, Pgf2α, and NF-κB pathway) in inguinal white adipose tissue in Ctns�/�mice. Vitamin D repletion normalized skeletal mus-
cle fibre size and improved in vivo muscle function in Ctns�/� mice. This was accompanied by correcting the increased muscle
catabolic signalling (increased protein contents of IL-1β, IL-6, and TNF-α as well as an increased gene expression of Murf-2,
atrogin-1, and myostatin) and promoting the decreased muscle regeneration and myogenesis process (decreased gene expres-
sion of Igf1, Pax7, and MyoD) in skeletal muscles of Ctns�/� mice. Muscle RNAseq analysis revealed aberrant gene expression
profiles associated with reduced muscle and neuron regeneration, increased energy metabolism, and fibrosis in Ctns�/� mice.
Importantly, repletion of 25(OH)D3 and 1,25(OH)2D3 normalized the top 20 differentially expressed genes in Ctns�/� mice.
Conclusions We report the novel findings that correction of 25(OH)D3 and 1,25(OH)2D3 insufficiency reverses cachexia and may
improve quality of life by restoring muscle function in an animal model of infantile nephropathic cystinosis. Mechanistically, vitamin
D repletion attenuates adipose tissue browning andmuscle wasting in Ctns�/�mice via multiple cellular andmolecular mechanisms.
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Introduction

Cystinosis is caused by mutations of the CTNS gene (17p13)
and is inherited as an autosomal recessive disease.1,2 It is a
multisystem genetic disorder characterized by the accumu-
lation of cystine in different tissues and organs. Infantile
nephropathic cystinosis (INC) is the most common and se-
vere form of cystinosis.3 Patients suffering from INC exhibit
signs and symptoms of renal Fanconi syndrome and chronic
kidney disease in early childhood.4 Metabolic abnormalities
are common complications in patients with INC, which are
associated with poor quality of life and mortality and for
which there is no current therapy.3,4 In order to elucidate
disease mechanisms, we previously characterized the meta-
bolic phenotype in Ctns�/� mice, a mouse model of INC.
We showed that Ctns�/� mice exhibited cachexia charac-
terized by hypermetabolism, profound adipose tissue brow-
ning, and muscle wasting.5 Serum concentrations of 25(OH)
D3 and 1,25(OH)2D3 were significantly lower in patients
with INC relative to normal subjects.6–8 In addition to its
classic function of maintaining calcium and phosphate ho-
meostasis, vitamin D plays a very extensive role as a cell
differentiating and anti-proliferative factor with actions in
a variety of tissues, including renal, cardiovascular, immune
systems, adipose tissue, and muscles.9,10 Vitamin D insuffi-
ciency has been implicated in a wide range of metabolic
disorders.11,12 Vitamin D plays a significant role in adipo-
genesis and inflammation.13 Furthermore, vitamin D has
been proposed to modulate muscle growth and muscle
function.14,15 Vitamin D deficiency is associated with de-
creased muscle size and strength, reduced physical func-
tion, and increased falls in the elderly.14–16 These deficits
in muscle function can be improved by vitamin D supple-
mentation.16 Serum 25(OH)D3 may exert both paracrine
and autocrine effects via 1α hydroxylase and vitamin D re-
ceptor (VDR).14 Low serum 25(OH)D3 values are associated
with muscle weakness and increased risk of falls in patients
on dialysis, independent of 1,25(OH)2D3 values.16 Concen-
tration of serum 25(OH)D3 exhibited significant seasonal
variation, and deficiency of 25(OH)D3 is common in patients
with chronic kidney disease and is associated with poor
outcomes such as progression to end-stage kidney disease,
infections, fracture rates, hospitalizations, and all-cause
mortality.17,18 Apart from the classical VDR signalling path-
way, other cytosol receptors such as annexin II and
membrane-associated rapid response steroid-binding pro-
teins could induce rapid effects of vitamin D in muscle.19,20

In this study, we investigated the effects of vitamin D re-
pletion in a mouse model of INC-associated cachexia, with
particular focus on adipose tissue browning and muscle
wasting.

Materials and methods

Study design

C57BL/6 Ctns�/� mice were kindly provided by Professor
Corinne Antignac.21 Wild-type (WT) C57BL/6 control mice
were acquired from Jackson Lab. Only male mice were used
for this study. Mice were treated with 25(OH)D3 (Sigma,
Catalogue 739650-1ML), 1,25(OH)2D3 (Sigma, Catalogue
740578-1ML), or ethylene glycol as a vehicle control using
subcutaneous osmotic Alzet 2006 pump. The study period
was 6 weeks. Mice were fed with LabDiet 5015 Diet (3.83
kcal/g, 3.3 IU/g vitamin D3). Ctns�/� mice and WT mice
were treated with 25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/
day and 60 ng/kg/day, respectively) or vehicle. Two sets
of experiments were performed. In the first set, all animals
were fed ad libitum. In the second set, the food intake was
all kept the same (pair feeding) (details were provided in
the Results section). Whole-body fat and lean mass of mice
were determined by quantitative magnetic resonance anal-
ysis (EchoMRI-100TM, Echo Medical System). A grip strength
meter (Model 47106, UGO Basile) and AccuRotor Rota
Rod (model RRF/SP, AccuScan Instrument) were used to
quantify forelimb grip strength and motor coordination in
mice, respectively. Oxygen consumption (VO2) and energy
expenditure were measured in mice using Oxymax calorim-
etry (Columbus Instrument).5 The study protocol was in
compliance with institutional guidelines for the care and
use of laboratory animals and approved by the Institutional
Animal Care and Use Committee at the University of
California, San Diego.

Serum and blood chemistry

Serum concentration of bicarbonate, Ca, Pi, and blood urea
nitrogen was assessed using VetScan2 VS2 Comprehensive
Diagnostic Profile (Abaxis, Catalogue 500-0038). Concentra-
tions of serum creatinine were analysed by liquid
chromatography with tandem mass spectrometry method.22

Concentration of serum 25(OH)D3, 1,25(OH)2D3 and parathy-
roid hormone were also analysed (Supporting Information,
Table S1).

Protein assay for adipose and muscle tissue

Adipose and muscle tissue was prepared in a homogenizer
tube (USA Scientific, Catalogue 1420-9600) containing
ceramic beads (Omni International, Catalogue 19-646) using
a Bead Mill Homogenizer (Omni International). Protein
concentration of tissue homogenate was assayed using Pierce
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BAC Protein Assay Kit (Thermo Scientific, Catalogue 23227).
Uncoupling protein (UCP) protein content as well as adeno-
sine triphosphate (ATP) concentration in adipose tissue and
muscle homogenates were assayed. Protein concentration
of CD137, Tmem26, Tbx-1, Cox2, Pgf2α, NF-κB phosphory-
lated Ser337 p50 and total NF-κB p50, NF-κB phosphorylated
Ser536 p65 and total NF-κB p65, and Iκκα phosphorylated
Thr23, toll-like receptor 2 (Tlr2), myeloid differentiation pri-
mary response 88 (MyD88), and TNF receptor-associated fac-
tor 6 (Traf6) in adipose tissue homogenates and protein
concentration of IL-1β, IL-6, TNF-α, and collagen content in
muscle homogenates were assayed (Supporting Information,
Table S1).

Muscle fibre size and muscle collagen content

Fibre cross-sectional area of soleus muscles was measured.
Excised soleus muscles were snap frozen in isopentane
cooled by liquid nitrogen and stored at �80 °C for subse-
quent analysis. Muscle cross sections (10 μm thick) were
taken from muscle midbelly. Sections were first treated with
1% bovine serum albumin and normal goat and mouse serum
as blocking agents. Sections were incubated overnight with a
polyclonal anti-laminin antibody (Sigma, dilution 1:1000) and
then with the secondary antibody, Alexa Fluor 594 goat anti-
rabbit immunoglobulin G (Invitrogen, dilution 1:200). The
laminin antibody was used to label the fibre perimeter and fa-
cilitate semiautomated fibre area quantification.23 Sections
were imaged with a microscope (Leica CTR 6500, Buffalo
Grove) fit with a fluorescent camera (Leica DFC365 FX) set
for 594 emission fluorescence using a 10× objective. Fibre
cross-sectional areas were measured using a custom-written
macro in ImageJ (National Institutes of Health). Filtering
criteria were applied to ensure measurement of actual mus-
cle fibres. These criteria rejected regions with areas below
50 μm2 and above 5000 μm2 to eliminate neurovascular
structures and ‘optically fused’ fibres, respectively. Excised
soleus muscles were hydrolyzed, and hydroxyproline content
was calculated using a colorimetric assay.24

Quantitative real-time PCR

Total adipose and muscle RNA was isolated using TRIzol (Life
Technology) and further purified with Direct-zol RNA MiniPre
Kit (Zymo Research). cDNA was synthesized using SuperScript
III Reverse Transcriptase and oligo (dT)12-18 primer
(Invitrogen). The PCR reaction based on SYBR (KAPA
Biosystems, SYBR FAST Universal qPCR kit, Catalogue
KK4602) was performed with a 7300 Real-Time PCR System
(ABI Applied Biosystems) using the reaction procedure as fol-
lows: 95 °C for 1 min followed by 40 cycles of 95 °C for 10 s
and 60 °C for 30 s. Appropriate primers for target genes are
listed (Supporting Information, Table S2). The comparative

2�ΔΔCt method was used to determine the relative quantity
of each target gene. Final results were expressed in arbitrary
units, with one unit being the mean mRNA level in WT control
mice.

Muscle RNAseq analysis

Total gastrocnemius muscle RNA was isolated in the experi-
mental mice (three mice in each group) using TRIzol (Life
Technology) followed by RNeasy mini kit (Qiagen) for further
purification. The extracted muscle RNA samples were
analysed using Agilent 2100 Bioanalyzer (Agilent RNA 6000
Nano Kit) with RNA integrity number >8.5 and rRNA
28S/18S >1.0. Samples were used to construct cDNA libraries
(Illumina) and sequenced through an Illumina HiSeq2000 plat-
form at BGI Hong Kong (www.bgi.com). Approximately 5.88
GB of raw reads was generated for each of the samples.
The raw RNAseq data were filtered into clean reads, followed
by mapping to the mouse reference genome using HISAT. On
average, 93.45% reads were mapped, and the uniformity of
the mapping results for each sample suggested that the sam-
ples were comparable. The gene expression level for each
sample was analysed using RSEM quantification tool. Based
on the gene expression level, differentially expressed genes
(DEG) between experimental groups were identified using
DESeq2 algorithms. Biological function analysis of the DGE
was enriched by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes pathway. To identify pathways re-
lated to phenotypic differences of the muscle between
Ctns�/� and WT control mice, DEG between these two
groups of mice were analysed using the Ingenuity Pathway
Analysis software (Ingenuity Systems, http://www.ingenuity.
com).

Results

Vitamin D supplementation normalizes serum
vitamin D concentrations in Ctns�/� mice

Ctns�/� mice, at the age of 12 months, were both 25(OH)D3

and 1,25(OH)2D3 insufficient (Table 1). We show that 25(OH)
D3 (75 μg/kg/day for 6 weeks) or 1,25(OH)2D3 (60 ng/kg/day
for 6 weeks) alone did not normalize serum 25(OH)D3

and1,25(OH)2D3 concentrations in Ctns�/� mice (Supporting
Information, Table S3). However, supplementation of
25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/day and 60 ng/kg/day,
respectively, for 6 weeks) normalized serum vitamin D con-
centrations in Ctns�/� mice (Table 1). Vitamin D repletion
normalized serum concentration of calcium and phosphorus
in Ctns�/� mice. Vitamin D repletion in Ctns�/� mice signifi-
cantly decrease but did not completely normalize serum
parathyroid hormone levels.
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Vitamin D repletion improves the cachexia
phenotype in Ctns�/� mice

Cachexia is defined by weight loss in adults.25 However, it is
characterized by lack of adequate weight gain in growing chil-
dren and mice.26,27 Similar to our previous published studies,
Ctns�/� mice exhibited the cachexia phenotype consisting of
anorexia, reduced weight gain, abnormal body mass (mani-
fested as reduced gain of lean and fat mass), and hyperme-
tabolism (manifested as elevated energy expenditure).5 We
studied the impact of vitamin D repletion on the cachexia
phenotype. First, we fed all four groups of mice ad libitum.
The food intake of Ctns�/� mice supplemented with 25(OH)
D3 and 1,25(OH)2D3 was significantly increased compared
with Ctns�/� mice and was not different from WT controls
with or without 25(OH)D3 and 1,25(OH)2D3. The weight gain
in the Ctns�/� mice with 25(OH)D3 and 1,25(OH)2D3 was also
increased compared with Ctns�/� mice control but still
less than the WT mice with or without 25(OH)D3 and
1,25(OH)2D3 (Supporting Information, Figure S1). We then re-
peated the experiments using a pair-feeding strategy. Ctns�/�

mice treated with vehicle were given an ad libitum amount of
food, and detailed daily intake was recorded. Subsequently,
the other three groups of mice were given an equivalent
amount of food as vehicle treated Ctns�/� mice (Figure 1).
With equal food intake in all groups, supplementation of
25(OH)D3 and 1,25(OH)2D3 normalized weight gain as well as
lean and fat mass gains in the Ctns�/� mice. Muscle function
(grip strength and rotarod activity), muscle fibre size (cross-
sectional area), and collagen content were decreased in
Ctns�/� mice and were normalized following 25(OH)D3 and
1,25(OH)2D3 supplementation. Light-phase and dark-phase
volume of oxygen consumption (VO2) as well as respective en-
ergy expenditure were significantly elevated in Ctns�/� mice

relative to WT mice and were normalized with 25(OH)D3

and 1,25(OH)2D3. Taken together, these results show that
vitamin D supplementation corrects the cachexia phenotype
in Ctns�/� mice.

Vitamin D repletion normalized uncoupling protein
content and adenosine triphosphate in Ctns�/�

mice

We measured adipose and muscle protein contents of UCPs
and ATP in Ctns�/� mice. Protein content of UCPs in adipose
tissue [inguinal white adipose tissue (WAT) and intercapsular
brown adipose tissue] and gastrocnemius muscle was ele-
vated in Ctns�/� mice relative to control mice (Figure 2). In
contrast, ATP content in adipose tissue and muscle was signif-
icantly decreased in Ctns�/� mice relative to control mice.
Repletion of 25(OH)D3 and 1,25(OH)2D3 normalized UCPs
and ATP content in adipose tissue and muscle in Ctns�/�

mice relative to control mice.

Vitamin D repletion attenuates adipose tissue
browning in Ctns�/� mice

The mRNA and protein content of beige adipose cell surface
markers (CD137, Tmem26, and Tbx1) were elevated in ingui-
nal WAT in Ctns�/� mice compared with control mice (Figure
3), and this is consistent with increased UCP-1 in WAT shown
in Figure 2, which is a marker for beige adipocyte, and usually
undetected in WAT. Collectively, our results demonstrate the
presence of beige adipocytes in Ctns�/� mice. Repletion of
25(OH)D3 and 1,25(OH)2D3 attenuated browning of beige
adipocytes in Ctns�/� mice. Protein content of UCP-1 and

Table 1 Serum and blood chemistry of mice

WT + vehicle WT + 25(OH)D3 + 1,25(OH)2D3 Ctns�/� + vehicle Ctns�/� + 25(OH)D3 + 1,25(OH)2D3

n = 8 n = 8 n = 8 n = 8

BUN (mg/dL) 32.4 ± 5.5 32.5 ± 3.8 79.6 ± 14.6a 80.2 ± 9.8a

Ca (mg/dL) 11.2 ± 0.6 11.3 ± 0.8 9.1 ± 0.5b 10.6 ± 0.4
Creatinine (mg/dL) <0.2 ± 1.1 0.3 ± 0.2 0.7 ± 0.2a 0.8 ± 0.2a

Bicarbonate (mmol/L) 27.8 ± 0.5 27.6 ± 1.7 26.8 ± 1.1 26.7 ± 2.4
Pi (mg/dL) 7.5 ± 0.5 7.6 ± 0.3 9.8 ± 0.4a 8.2 ± 0.5c

PTH (pg/mL) 108.4 ± 9.4 118.6 ± 18.4 364.1 ± 21.4a 227.3 ± 17.5a,c

25(OH)D3 (ng/mL) 113.2 ± 12.3 103.7 ± 23.4 43.5 ± 15.4b 117.8 ± 15.3c

1,25(OH)2D3 (pg/mL) 298.4 ± 23.4 278.4 ± 26.9 105.6 ± 24.8b 302.4 ± 37.8c

BUN, blood urea nitrogen; PTH, parathyroid hormone; WT, wild-type.
Twelve-month-old, male, WT, and Ctns�/� mice were treated with 25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/day and 60 ng/kg/day, respec-
tively) or ethylene glycol as vehicle for 6 weeks. Four groups of mice were included: WT + vehicle, WT + 25(OH)D3 + 1,25(OH)2D3,
Ctns�/� + vehicle, and Ctns�/� + 25(OH)D3 + 1,25(OH)2D3. Ctns

�/� + vehicle mice were fed ad libitum, while other groups of mice were
fed the same food intake as that of Ctns�/� + vehicle mice. Data are expressed as mean ± standard error of the mean.
aP < 0.05, significantly higher in Ctns�/� + vehicle and Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice vs. WT + vehicle and WT + 25(OH)D3 +
1,25(OH)2D3 mice, respectively.
bP < 0.05, significantly lower in Ctns�/� + vehicle and Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice vs. WT + vehicle and WT + 25(OH)D3 +
1,25(OH)2D3 mice, respectively.
cP < 0.05, significantly different between Ctns�/� + vehicle vs. Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice.
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mRNA and protein content of CD137, Tmem26, and Tbx1
were normalized in Ctns�/� mice treated with 25(OH)D3

and 1,25(OH)2D3 relative to control mice (Figures 2 and 3).
In addition, repletion of 25(OH)D3 and 1,25(OH)2D3 amelio-
rated aberrant levels of key molecules implicated in adipose
tissue browning in Ctns�/� mice. Inguinal WAT of Ctns�/�

mice displayed higher inguinal WAT mRNA expression and
protein content of Cox2 and Pgf2α than that of controls (Fig-
ure 4). Inflammation has been implicated in the pathogenesis
of adipose tissue browning. One of the most important in-
flammatory pathways in mammalian cells is that of the NF-κ
B pathway, and therefore, we studied expression of transcrip-
tion factors involved in pro-inflammatory pathways in Ctns�/

� mice. Inguinal WAT NF-κB p50 (phosphorylated Ser337)/to-
tal NF-κκB p50 ratio, NF-κB p65 (phosphorylated S536)/total
NF-κB p65 ratio, protein content of Iκκ-α (phosphorylated
Thr23), mRNA expression, and protein content of Tlr2,
MyD88, and Traf6 were up-regulated in Ctns�/� mice relative

to control mice. Repletion of 25(OH)D3 and 1,25(OH)2D3 par-
tially or fully normalized mRNA expression and protein con-
tent of the entire Tlr/NF-κB pathway in Ctns�/� mice
relative to control mice (Figure 4).

Vitamin D repletion attenuates aberrant muscle
mass signalling pathway in Ctns�/� mice

Muscle catabolic signalling (muscle lysate protein levels of in-
flammatory cytokines IL-1β, IL-6, and TNF-α and expression of
muscle proteolytic genes, Murf-1, atrogin-1, and myostatin)
was significantly increased in Ctns�/� mice than that in con-
trols (Figure 5). In contrast, gene expression for myogenesis
and skeletal muscle regeneration (Igf1, Pax7, and MyoD)
was decreased in gastrocnemius muscle of Ctns�/� mice rel-
ative to controls. Repletion of 25(OH)D3 and 1,25(OH)2D3

Figure 1 Repletion of vitamin D attenuates cachexia in Ctns
�/�

mice. Twelve-month-old wild-type (WT) and Ctns
�/�

mice were treated with 25(OH)D3

and 1,25(OH)2D3 (75 μg/kg/day and 60 ng/kg/day, respectively) or ethylene glycol as vehicle for 6 weeks. Four groups of mice were included: WT +
vehicle (n = 8), WT + 25(OH)D3 + 1,25(OH)2D3 (n = 8), Ctns�/� + vehicle (n = 8), and Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 (n = 8). Ctns�/� + vehicle mice
were fed ad libitum, whereas other groups of mice were fed the same amount of food intake as that of Ctns

�/�
+ vehicle mice. Data are expressed as

mean ± standard error of the mean. #P < 0.05, significantly different in Ctns�/� + vehicle and Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice vs. WT + vehicle
and WT + 25(OH)D3 + 1,25(OH)2D3 mice, respectively. Results of Ctns

�/�
+ vehicle mice were also compared with Ctns

�/�
+ 25(OH)D3 + 1,25(OH)2D3

mice.
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normalized aberrant levels of key molecules implicated in
muscle wasting pathways in Ctns�/� mice.

Differentially expressed genes in muscle from
Ctns�/� mice

To characterize muscle transcriptome changes associated
with vitamin D repletion in Ctns�/� mice, we performed
RNAseq analysis on the gastrocnemius muscle. We identified
~17 000 genes in all experimental groups of mice. We com-
pared DEG in muscle between Ctns�/� mice and WT mice.
We identified 214 genes up-regulated and 76 genes down-
regulated in Ctns�/� mice relative to WT mice (Figure 6).
Completed information for those DEG were listed (Supporting
Information, Table S4). These DEG are displayed in the
heatmap by hierarchical clustering to illustrate the high de-
gree of reproducibility in individual samples of the same ex-
perimental groups of mice. The DEG data were further
analysed using the GO pathway through Kyoto Encyclopedia
of Genes and Genomes. Detailed GO of biological process

and molecular function in Ctns�/� mice vs. WT mice revealed
significant differential expression of genes implicated in cellu-
lar processes, biological regulation and processes, and meta-
bolic processes. Similarly, we also identified gastrocnemius
muscle DEG in Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice vs.
WT + 25(OH)D3 + 1,25(OH)2D3 mice as well as Ctns�/� +
25(OH)D3 + 1,25(OH)2D3 mice vs. Ctns�/� + vehicle mice. Re-
sults are shown (Figure 6). Completed information for those
DEG were listed (Supporting Information, Tables S5 and S6).

Canonical signalling pathways analysis in muscle
from Ctns�/� mice

We performed Ingenuity Pathway Analysis enrichment tests
for DEG in muscle from Ctns�/� mice vs. WT mice. We partic-
ularly focused on pathways related to energy metabolism,
skeletal and muscular system development and function,
and organismal injury and abnormalities. Results are shown
in Figure 7. Up-regulated genes include ANKRD2, CSRP3,
CYFIP2, FHL1, LY6A, MUP1, MYL2, MYL3, PDK4, SELL, SLN,

Figure 2 Vitamin D repletion ameliorates uncoupling protein content and adenosine triphosphate in Ctns
�/�

mice. UCP and ATP content in inguinal
white adipose tissue, brown adipose tissue, and gastrocnemius muscle were measured. Results are analysed and expressed as in Figure 1. BAT, brown
adipose tissue; WAT, white adipose tissue; WT, wild-type.
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SPP1, TNNC1, TNNI1, and TPM3, whereas down-regulated
genes are ATF3, CIDEA, FOS, SNCG,s and TBC1D1 in Ctns�/�

mice relative to WT control mice. Functional significance of
those DEG is listed (Table 2). Taken together, gene expression
associated with regeneration of muscle and neurons is com-
promised in Ctns�/� mice. Furthermore, expression of genes
related to enhanced muscle thermogenesis and fibrosis is in-
creased in Ctns�/� mice. Importantly, repletion of 25(OH)D3

and 1,25(OH)2D3 normalized the top 20 DEG as listed in Table
2 in Ctns�/� mice.

Discussion

We previously described cachexia characterized by adipose
tissue browning and muscle wasting in Ctns�/� mice, an
established mouse model of INC, but the aetiology was not
clear. This study showed that Ctns�/� mice, at 12 months
of age, were both 25(OH)D3 and 1,25(OH)2D3 insufficient.
We show that vitamin D supplementation corrects the ca-
chexia phenotype in Ctns�/� mice. Importantly, vitamin D re-
pletion attenuates adipose tissue browning and skeletal
muscle wasting in Ctns�/� mice. These findings are novel.

Muscle wasting is a life-threatening complication in pa-
tients with cystinosis. Muscle wasting is prevalent in patients

with INC and may be associated with significant morbidity
and mortality. In post-transplant cystinotic patients who did
not receive long-term cystine-depleting therapy, cystinotic
myopathy have been associated with swallowing myopathy
and, as a result, aspiration pneumonia, which constitutes a
severe and potentially lethal complication.28,29 Vitamin D in-
sufficiency has been associated with muscle wasting and im-
paired muscle strength,30,31 and low vitamin D suppresses
skeletal muscle tropism and contraction.14 Therefore, we
studied the effect of vitamin D repletion on muscle fibre
histomorphometry in Ctns�/� mice. We showed that
25(OH)D3 and 1,25(OH)2D3 repletion normalized mean soleus
muscle cross-sectional area in Ctns�/� mice (Figure 1).

Skeletal muscle fibrosis, a major pathological hallmark of
myopathies, is evident in Ctns�/� mice. Repletion of vitamin
D normalized soleus collagen content in Ctns�/� mice. Our
results were consistent with a recent report in which vita-
min D treatment significantly increased cross-sectional size
of cultured mouse myoblast C2C12 cells.32 Vitamin D re-
duced the expression of collagen (collagen I, III, and other
collagen informs) and key profibrotic factors (TGF-β1 and
plasminogen activator inhibitor) in mesenchymal
multipotent cells.33

Adipose tissues and muscle are important in energy me-
tabolism. UCP1 contributes to adaptive thermogenesis, while
UCP2 and UCP3 are involved in the resting metabolic rate.34

Figure 3 Vitamin D repletion attenuates adipose tissue browning in Ctns
�/�

mice. Gene expression and protein content of beige adipocyte markers
(CD137, Tmen 26, and Tbx-1) in inguinal white adipose tissue were measured. Results are analysed and expressed as in Figure 1. WT, wild-type.
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We, and others, have previously described the increased
thermogenesis and up-regulation of UCPs in adipose tissues
and muscle in rodent models of cachexia.35–39 Up-regulation
of UCP expression promotes protein leak and reduces ATP
production in exchange for the generation of heat.34,38 Pro-
tein contents of UCPs were increased in adipose tissues and
muscle of Ctns�/� mice compared with controls (Figure 2).
In contrast, ATP contents in adipose tissues and muscle were
decreased in Ctns�/� mice relative to controls. Vitamin D

insufficiency exacerbates adipose tissue and muscle metabo-
lism. 25(OH)D3 and 1,25(OH)2D3 repletion attenuated pertur-
bations of UCPs and ATP contents in adipose tissues and
muscle in Ctns�/� mice. 1,25(OH)2D3 suppresses UCPs ex-
pression in primary brown adipocyte and suppresses differen-
tiation and mitochondrial respiration of brown adipocyte39,40

1,25(OH)2D3/VDR by binding to the promoter region of the
UCP3 gene and modulating UCP3 gene transcription and sub-
sequent energy metabolism in muscle.41

Figure 4 Vitamin D repletion modulates expression of key molecules implicated in adipose tissue browning in Ctns
�/�

mice. Gene expression and pro-
tein content of Cox2 signalling pathway (Cox2 and Pgf2α) and Tlr/NF-κB pathway (Tlr2, MyD88, and Traf6 as well as relative NF-κB phosphorylated
Ser337 p50/total p50 ratio, relative NF-κB phosphorylated Ser536 p65/total p65 ratio, and Iκκ-α phosphorylated Thr23) in inguinal white adipose tissue
were measured. For relative NF-κB phosphorylated Ser337 p50/total p50 ratio and relative NF-κB phosphorylated Ser536 p65/total p65 ratio in mice,
value was normalized with respect to wild-type (WT) control mice. Final results were expressed in arbitrary units, with one unit being the mean level in
WT control mice. Results are analysed and expressed as in Figure 1.
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Adipose tissue browning is an important cause of hyper-
metabolism in patients with chronic cachectic disorders.42,43

Recent studies revealed the detrimental effects of adipose
tissue browning in the context of cachexia. Adipose tissue
browning and its associated increases in energy expenditure
precedes skeletal muscle atrophy and is important for the de-
velopment and progression of cachexia.44,45 We demon-
strated the presence of brown adipose tissue marker UCP1
protein as well as an increased mRNA expression and protein
content of unique beige adipose cell markers (CD137,
Tmem26, and Tbx1) in inguinal WAT of Ctns�/� mice (Figures
2 and 3). Importantly, repletion of 25(OH)D3 and 1,25(OH)2D3

attenuated expression of beige adipose cell markers in inguinal
WAT of Ctns�/� mice. Several mechanisms are important for
biogenesis of WAT browning, including Cox2 signalling pathway
and chronic inflammation. Activation of Cox2, a downstream
effector of β-adrenergic signalling, is crucial for the induction
of beige cells in WAT depots.46 Cox2 produces prostaglandins
that enhance mitochondrial biogenesis and increase the
uncoupling capacity when activated with adrenergics.47 We

showed that 25(OH)D3 and 1,25(OH)2D3 repletion normalized
elevated inguinal WAT gene expression and protein content of
Cox2 and Pgf2α in Ctns�/� mice (Figure 4). In addition, in-
creased expression of key molecules implicated in the pro-
inflammatory pathways in inguinal WAT (NF-κB p50 and p65,
Iκκ-α, Tlr2, MyD88, and Traf6) was normalized in Ctns�/� mice
treatedwith25(OH)D3 and 1,25(OH)2D3 relative to controlmice.

We investigated the effect of vitamin D repletion on mus-
cle mass regulatory signalling pathways in Ctns�/� mice. Re-
pletion of 25(OH)D3 and 1,25(OH)2D3 normalized molecular
signatures of processes associated with muscle wasting, in-
cluding increased expression of pro-inflammatory muscle cy-
tokines (IL-1β, IL-6, and TNF-α) and muscle proteolysis
(Murf-1, atrogin-1, and myostatin) as well as decreased gene
expression associated with myogenesis and skeletal muscle
regeneration (Igf1, Pax7, and MyoD) in skeletal muscle of
Ctns�/� mice relative to controls (Figure 5). Elevation of
pro-inflammatory cytokines has been implicated in many
forms of muscle wasting including chronic kidney disease
and age-related sarcopenia. We acknowledge that increased

Figure 5 Vitamin D repletion corrects aberrant muscle mass signalling pathways in Ctns
�/�

mice. Protein concentrations of inflammatory cytokine (IL-
1β, IL-6, and TNF-α) and mRNA levels of key molecules associated with myogenesis (Murf-1, atrogin-1, and myostatin) and skeletal muscle regeneration
(IGF-1, Pax7, and MyoD) in gastrocnemius muscle were shown. Results are analysed and expressed as in Figure 1. WT, wild-type.
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pro-inflammatory cytokines may not be casually related to
muscle wasting in Ctns�/� mice. Vitamin D administration
has been associated with reduced concentration of serum
TNF-α in renal patients.48 Epidemiological studies suggest an
inverse association between serum 25(OH)D3 and inflamma-
tory markers, including C-reactive protein and IL-6.49 Supple-
mental vitamin D decreased levels of inflammatory
biomarkers.48,50,51 Vitamin D inhibited lipopolysaccharide-in-
duced IL-6 and TNF-α production in a dose-dependent man-
ner in monocytes by inhibiting the activation of NF-κB.52

Vitamin D also inhibits T-lymphocyte proliferation and the
production of pro-inflammatory cytokines.53 Interestingly, T-
cell cytokines modulate vitamin D metabolism in macro-
phages. IFN-γ, a Th1 cytokine, activates the macrophage
CYP27B1, leading to the enhanced conversion of 25(OH)D3

to 1,25(OH)2D3. In contrast, the Th2 cytokine IL-4 induces ca-
tabolism of 25(OH)D3 to the inactive metabolite

24,25(OH)2D3, suggesting a potential mechanism by which vi-
tamin D metabolism links the cell-mediated immune re-
sponses to the immune responses.54

Vitamin D deficiency decreased muscle Pax7 expression
while increased the expression of MuRF-1 and atrogin-1 in
the gastrocnemius muscle of diabetic mice.55 Combined treat-
ment of vitamin D and low-intensity aerobic exercise attenu-
ated osteopenia and muscle atrophy by enhancing muscle
anabolic markers (Pax7, MyoD, and myogenin) and decreasing
expression of catabolic markers (atrogin-1, MuRF-1, and
REDD1) in diabetic rats.56 1,25(OH)2D3 promotes cultured skel-
etal muscle differentiation by promoting the expression of
myogenic markers and myotube formation. Myostatin is a
TGF-β family member that acts as a negative regulator of skel-
etal muscle mass. Follistatin, a myostatin-binding protein, in-
hibits myostatin activity and promotes muscle growth.57

1,25(OH)2D3 promotes myogenic differentiation by increasing

Figure 6 RNAseq analysis of gastrocnemius muscle. Summary of the number of up-regulated and down-regulated genes in individual-group compar-
ison. Wild-type (WT) + vehicle mice vs. Ctns�/� + vehicle mice, WT + 25(OH)D3 + 1,25(OH)2D3 mice vs. Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice, and
Ctns�/� + vehicle mice vs. Ctns�/� + 25(OH)D3 + 1,25(OH)2D3 mice. Hierarchical clustering heatmap of differentially expressed genes in individual-
group comparisons. Gene Ontology enrichment analysis in individual-group comparisons based on the fold changes of differentially expression of
genes. All significantly up-regulated and down-regulated genes are used for gene ontology enrichment analysis.
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follistatin expression and decreasing the expression of
myostatin in C2C12 skeletal muscle cells.58 Results of a recent
investigation showed that skeletal muscle-derived satellite
cells from C57BL/6J mice expressed VDR and its expression,
and nuclear translocation was induced upon incubating the
cells with 1,25(OH)2D3. Furthermore, incubation of
1,25(OH)2D3 enhanced myogenic differentiation in satellite
cells by promoting the expression of myogenic markers
(MYH1, TNNI1, TNNI3, andMMP9), marker of myotube forma-
tion (BMP4), and marker of myogenic cell migration and en-
graftment (MMP9) and by modulating myogenic growth
factors (IGF-1, IGF-2, FGF2, and FGF2). Additional pro-
myogenic effects of vitamin D on satellite cells were further
demonstrated by the increased expression of myogenic
markers including MyoD, myogenin, and follistatin while
inhibiting the expression of myostatin.59 Vitamin D deficiency
has been associated with muscle wasting in diabetic mice.

We performed RNAseq analysis on muscle in Ctns�/� mice.
Our data demonstrate clear differentiation in muscle tran-
scriptomics in Ctns�/� mice relative to control WT mice (Fig-
ures 6 and 7 and Supporting Information, Table S3). We
identified muscle DEG associated with reduced regeneration
of muscle and neurons as well as elevated energy metabolism
and fibrosis in Ctns�/� mice (Table 2). Elevated muscle
ANKRD2, CSRP3, MYL2, SPP1, TNNC1, and TNNI1 and de-
creased FOS expression are associated with reduced regen-
eration of muscle, while decreased expression of ATF3 has
been implicated in reduced regeneration of neurons.60–67

Increased muscle MUP1 and SLN and decreased CIDEA
and SNCG expression has been associated with elevation
of muscle energy metabolism.68–71 Increased muscle LY6A
and CYFIP expression promotes fibrosis and apoptosis, re-
spectively.72,73 Down-regulation of TBC1D1 reduces glucose
transport in skeletal muscle.74 Increased expression of SELL

Figure 7 Functional annotation network. Ingenuity Pathway Analysis of alternations in energy metabolism, skeletal and muscular system development
and function, and organismal injury and abnormalities in Ctns�/� mice relative to wild-type mice. The coloured genes in the networks are differentially
expressed between Ctns�/� mice relative to wild-type mice. Node colour represents the expression status. Red: up-regulated in Ctns�/� mice relative
to wild-type mice; green: down-regulated in Ctns

�/�
mice relative to wild-type mice. Increased expression of genes are ANKRD2, CSRP3, CYFIP2, FHL1,

LY6A, MUP1, MYL2, MYL3, PDK4, SELL, SLN, SPP1, TNNC1, TNNI1, and TPM3, and decreased expression of genes are ATF3, CIDEA, FOS, SNCG, and
TBC1D1.
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has been shown to promote cancer cachexia.75 Up-
regulation of PDK4 expression is a biomarker for muscle en-
ergy deprivation.76 Increased expression of MYL3 has been
used as a biomarker for muscle injury.77 In addition, in-
creased expression of muscle FHL1 and TPM3 promotes
muscle atrophy and muscle weakness.78,79 Importantly, re-
pletion of 25(OH)D3 and 1,25(OH)2D3 normalized the top
20 DEG as listed in Table 2 in Ctns�/� mice.

Conclusion

We report the novel findings that correction of 25(OH)D3 and
1,25(OH)2D3 insufficiency reverses cachexia and may improve
quality of life by restoring muscle function in an animal model
of INC. Mechanistically, vitamin D repletion attenuates adi-
pose tissue browning and muscle wasting in Ctns�/� mice
via multiple cellular and molecular mechanisms.
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Table S2. PCR primer information.
Table S3. Serum and blood chemistry of mice. Twelve-month-
old, male, wild type (WT) and Ctns-/- mice were treated with
25(OH)D3 (75 μg/kg per day) or 1,25(OH)2D3 (60 ng/kg per
day) versus ethylene glycol as vehicle for 6 weeks. Six groups

Table 2 Muscle ingenuity analysis of canonical signalling pathways in Ctns�/� mice

Up-regulated gene Functional significance and reference
ANKRD2 Induced by skeletal muscle denervation and muscle injury60

CSRP3 Inhibition of myotube differentiation61

CYFIP2 Promotes apoptosis73

FHL1 Activates myostatin signalling and promotes atrophy in skeletal muscle78

LY6A Associated with increased fibrosis in aged skeletal muscle72

MUP1 Increases energy expenditure in skeletal muscle68

MYL2 Associated with cardiac cycling kinetics62

MYL3 Biomarker for skeletal muscle toxicity77

PDK4 Associated with skeletal muscle energy deprivation via a FOXO1-dependent pathway76

SELL Promotes progression of cancer cachexia75

SLN Interacts with ATPase and promotes muscle non-shivering thermogenesis69

SPP1 Shares molecular network with myostatin and inhibits muscle regeneration63

TNNC1 Biomarker for muscle depolarization64

TNNI1 Controls striated muscle contraction and relaxation and disease marker for aged skeletal muscle65

TPM3 Promotes slow myofiber hypotrophy and associated with generalized muscle weakness79

Down-regulated gene Functional significance and reference
ATF3 Marker of neural injury and reduces the regeneration of neurons67

CIDEA Increases metabolic rates, lipolysis in brown adipose tissue, and higher core temperature70

FOS Associated with decreased skeletal muscle regeneration66

SNCG Increases energy expenditure, particularly in BAT and WAT71

TBC1D1 Impaired glucose transport in skeletal muscle74

BAT, brown adipose tissue; WAT, white adipose tissue.
We focus on pathways related to energy metabolism, skeletal and muscular system development and function, nervous system develop-
ment and function, and organismal injury and abnormalities. Muscle differentially expressed genes in Ctns�/� mice relative to WT mice as
well as functional significance and relevant references for those differentially expressed genes are listed.
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of mice were included: WT + Vehicle, WT + 25(OH)D3, WT+
+1,25(OH)2D3, Ctns-/- + Vehicle, Ctns-/- + 25(OH)D3, Ctns-/-
+ 1,25(OH)2D3. All mice were fed ad libitum. Data are
expressed as mean SEM. Ap < 0.05, significantly higher in
Ctns-/- + Vehicle, Ctns-/- + 25(OH)D3 or Ctns-/-
+1,25(OH)2D3 versus WT + Vehicle, WT + 25(OH)D3 or WT
+ 1,25(OH)2D3, respectively. Bp < 0.05, significantly lower
in Ctns-/- + Vehicle, Ctns-/- + 25(OH)D3 or Ctns-/- +
1,25(OH)2D3 versus WT + Vehicle, WT + 25(OH)D3 or WT +
1,25(OH)2D3, respectively. cp < 0.05, significantly difference
between Ctns-/- + 25(OH)D3 versus Ctns-/- + Vehicle or
Ctns-/- + 1,25(OH)2D3 versus Ctns-/- + Vehicle.
Table S4. List of differential expressed genes in gastrocne-

mius muscle from Ctns-/- + Vehicle versus WT + Vehicle mice
Table S5. List of differential expressed genes in gastrocne-
mius muscle from Ctns-/- + 25(OH)D3 + 1,25(OH)2D3 versus
WT + 25(OH)D3 + 1,25(OH)2D3 mice
Table S6. List of differential expressed genes in gastrocne-
mius muscle from Ctns-/- + 25(OH)D3+ 1,25(OH)2D3 versus
Ctns-/- + Vehicle mice
Figure S1. Ad libitum food intake and weight gain in Ctns-/-
mice.
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