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A B S T R A C T   

Background: Clear cell renal cell carcinoma (ccRCC) is a common urinary cancer. Although 
diagnostic and therapeutic approaches for ccRCC have been improved, the survival outcomes of 
patients with advanced ccRCC remain unsatisfactory. Fatty acid metabolism (FAM) has been 
increasingly recognized as a critical modulator of cancer development. However, the significance 
of the FAM in ccRCC remains unclear. Herein, we explored the function of a FAM-related risk 
score in the stratification and prediction of treatment responses in patients with ccRCC. 
Methods: First, we applied an unsupervised clustering method to categorize patients from The 
Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets into 
subtypes and retrieved FAM-related genes from the MSigDB database. We discern differentially 
expressed genes (DEGs) among different subtypes. Then, we applied univariate Cox regression 
analysis followed by least absolute shrinkage and selection operator (LASSO) linear regression 
based on DEGs expression to establish a FAM-related risk score for ccRCC. 
Results: We stratified the three ccRCC subtypes based on FAM-related genes with distinct overall 
survival (OS), clinical features, immune infiltration patterns, and treatment sensitivities. We 
screened nine genes from the FAM-related DEGs in the three subtypes to establish a risk pre-
diction model for ccRCC. Nine FAM-related genes were differentially expressed in the ccRCC cell 
line ACHN compared to the normal kidney cell line HK2. High-risk patients had worse OS, higher 
genomic heterogeneity, a more complex tumor microenvironment (TME), and elevated expres-
sion of immune checkpoints. This phenomenon was validated in the ICGC cohort. 
Conclusion: We constructed a FAM-related risk score that predicts the prognosis and therapeutic 
response of ccRCC. The close association between FAM and ccRCC progression lays a foundation 
for further exploring FAM-related functions in ccRCC.  
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1. Introduction 

Clear cell renal cell carcinoma (ccRCC) accounts for approximately 70–80% of all renal malignancies and is one of the most 
prevalent urinary tumors [1–4]. More than 30% of ccRCC patients have disease metastases at diagnosis, and the 5-year survival rate of 
metastatic ccRCC is only 10–20% [5–7]. Although targeted therapies focused on the vascular epithelial growth factor (VEGF) pathway, 
such as sunitinib, axitinib, and pazopanib, have improved the survival of patients with ccRCC, acquired resistance and side effects 
remain a challenge during ccRCC treatment [8–11]. Recent studies have shown that immune checkpoint inhibitor therapies, including 
pembrolizumab, ipilimumab, and nivolumab, significantly prolong the overall survival (OS) and disease-free survival (DFS) in patients 
with localized ccRCC [12–14]. However, high recurrence rates after immunotherapy and the lack of reliable biomarkers to predict 
therapeutic effects still hinder the development of ccRCC treatments [12]. Therefore, building a powerful model to precisely predict 
ccRCC characteristics, patient clinical stage, and drug response is essential for formulating personalized treatment regimens and 
improving overall patient survival. 

Although cancer types and underlying etiologies greatly differ, dysregulation of cellular metabolism is a common feature of 
tumorigenesis [15–17]. Aerobic glycolysis is a classic example of a metabolic perturbation, altering glucose metabolism to aerobic 
glycolysis, called the Warburg effect [18–20]. Abnormal glucose metabolism satisfies the metabolic necessities for cell growth and 
supports high levels of glycolytic intermediates for various biosynthetic pathways in cancer progression [21,22]. Additionally, aerobic 
glycolysis establishes a suppressive immune microenvironment that triggers immunosuppression in the tumor microenvironment 
(TME) [23–25]. Reprogramming fatty acid metabolism (FAM) is another characteristic of cancer. Multiple critical enzymes involved in 
FAM are dysregulated in several cancers [26–29]. Many studies have demonstrated that abnormally activated fatty acid (FA) oxidation 
and de novo FA synthesis provide metabolic energy, cell membranes, and signaling molecules for carcinogenesis [30–34]. Most un-
derstanding of FAM indicates that limiting the FA supply may be a therapeutic strategy for cancer [35–37]. 

FAs in the TME influence the role and infiltration of immune cells [38–42]. Metabolic reprogramming is intricately linked to 
antitumor immunity [43–46]. ccRCC cells are characterized by abundant glycogen and lipid accumulation [47,48] and exhibit diverse 
remodeling of cellular metabolism, including glucose, FA, and tricarboxylic acid cycle [49–52]. Tumor-specific metabolic changes in 
ccRCC, including FAM, are associated with poor patient outcomes [53,54]. Moreover, enhanced lipid import and droplet formation 
benefit ccRCC tumorigenesis [55]. Multiple FAM enzymes, including anabolic enzymes such as fatty acid synthase (FASN), and 
catabolic enzymes, such as carnitine palmitoyltransferase I (CPT1A), hydroxyacyl-CoA dehydrogenase trifunctional multienzyme 
complex subunit alpha (HADHA) and beta (HADHB), and acetyl-CoA acetyltransferase 1 (ACAT1), have been considered potential 
prognostic biomarkers for ccRCC [56–58]. The von Hippel–Lindau (VHL) inactivation, commonly present in ccRCC, stabilized the 
hypoxia-inducible factor (HIF)1α to further repress FAM by inhibiting CPT1A and inducing lipid deposition [59]. Mechanistic in-
vestigations showed that the metabolic vulnerabilities of key enzymes involved in FA metabolism are novel therapeutic targets for 
ccRCC [50]. Therefore, an in-depth exploration of FAM may uncover the mechanisms underlying ccRCC progression and new ther-
apeutic strategies. 

In this study, we explored the potential roles of key FAM-related genes in ccRCC and provided a theoretical foundation for future 
ccRCC research. We developed and validated a novel FAM-related risk score using The Cancer Genome Atlas (TCGA) and International 
Cancer Genome Consortium (ICGC) datasets. The FAM-related risk score predicted clinical features, TME characteristics, and thera-
peutic efficacy in patients with ccRCC. In summary, our results provide new insights into FAM-related mechanisms in ccRCC. The 
established FAM-related risk score is reliable for predicting OS and treatment response in patients with ccRCC. 

2. Materials and methods 

2.1. Data acquisition and preprocessing 

We retrieved RNA sequencing (RNA-Seq) profiles and clinical information from TCGA (https://tcga-data.nci.nih.gov/tcga/) and 
ICGC databases. TCGA-KIRC cohort with 513 samples was used as the training set, and the ICGC (RECA-EU) dataset with 91 patients 
was used as the validation set. Samples with incomplete expression profiles, clinical follow-up data, survival time, or statuses were 
excluded. OS is the period from the day of diagnosis to death from any cause or the last follow-up and expressed in years. We converted 
the ensemble gene symbols to gene symbols for subsequent analyses and used the mean as the gene expression value when several 
probes were matched to the same gene. We retrieved 309 FAM-related genes from three FAM single-sample gene set, including the 
hallmark, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome, from the molecular signature database (MSigDB) 
(http://www.broadinstitute.org/gsea/msigdb/). 

2.2. Enrichment analysis and correlations between FAM and clinicopathological features 

To explore whether FAM was involved in ccRCC pathogenesis, we performed sample gene set enrichment analysis (ssGSEA) using 
the “GSVA” and “clusterProfiler” R packages to compute FAM-related enrichment scores and enrichment levels of FAM pathways, 
respectively, between tumor and para-cancerous tissues in TCGA cohort. Furthermore, we analyzed the association between FAM and 
clinicopathological features of patients with ccRCC. 
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2.3. Molecular subtypes based on FAM-related genes 

We conducted the consensus clustering of TCGA cohort based on FAM levels using the “ConsensusClusterPlus” R package [60]. We 
varied the number of clusters k from 2 to 9 to determine the optimal k value for stratifying the appropriate subtypes based on the delta 
area, cumulative distribution function (CDF), and consensus matrix. We applied the Spearman’s rank correlation coefficient as the 
distance measurement and completed 500 repetitions to ensure cluster stability. We then performed principal component analysis 
(PCA) to demonstrate the typing effect. We constructed Kaplan–Meier (K–M) survival curves to assess the OS between molecular 
subtypes using the “survival” R package [61]. Finally, we evaluated the distribution of clinicopathological features and differences in 
FAM between the different subtypes. 

2.4. Gene mutational landscape of FAM-related subtypes 

Tumor mutation characteristics are closely related to tumor progression and immunotherapeutic efficacy. Therefore, we investi-
gated mutational characteristics, including genetic mutations and the mutant-allele tumor heterogeneity (MATH) score of FAM-related 
subtypes using the “maftools” R package. MATH is a tumor-specific score used to measure intratumoral genetic heterogeneity based on 
variations in the variant allele frequency of all mutations in the tumor. TCGA mutation data were retrieved from Genomic Data 
Commons (GDC) (https://portal.gdc.cancer.gov/). Furthermore, we estimated the association of our subtypes with six previously 
published immune subtypes (IFN-γ dominant, inflammatory, lymphocyte-depleted, immunologically quiet, wound healing, and TGF-β 
dominant) using a pan-cancer analysis [62]. 

2.5. Functional enrichment analysis of ccRCC FAM-related subtypes 

To identify the underlying characteristics of FAM-related subtypes in ccRCC development, we performed GSEA using KEGG gene 
signatures to explore the enriched pathways among different FAM-related subtypes. We then conducted the enrichment score of FAM 
genes of the hallmarks gene signatures to quantify the enrichment levels of different pathways among FAM-related subtypes. 

2.6. Immune features and pathway enrichment of FAM-related subtypes 

To investigate the immune microenvironment of FAM-related subtypes in ccRCC, we used the “ESTIMATE” R package to evaluate 
the immune status of patients with ccRCC [63]. The “CIBERSORT” R package was used to measure the infiltration of immune cells 
[64]. 

2.7. Therapeutic differences among FAM-related subtypes 

Based on the immune characteristics among different FAM-related subtypes, we explored the response of different molecular 
subtypes to conventional ccRCC chemotherapy agents by the IC50 value measurement using “pRRophetic” R package, including 
cisplatin, bortezomib, temsirolimus, axitinib, gefitinib, sunitinib, sorafenib, and vinblastine. As immune checkpoint inhibitors (ICIs) 
have revolutionized cancer immunotherapy, we used a heatmap to compare the distribution of the published 45 immune coinhibitory/ 
costimulatory genes among FAM-related subtypes [65]. 

2.8. Differentially expressed genes (DEGs) and relevant function analysis of FAM-related subtypes 

To classify key FAM genes, we conducted pairwise comparisons of DEGs among FAM-related subtypes using the “Limma” R package 
and exhibited the results in heatmaps [66]. Significant DEGs were determined by false discovery rate (FDR) < 0.05, and |log2 [Fold 
Change (FC)] | > 1. Subsequently, KEGG and Gene Ontology (GO) analyses were performed using the “webgestalt” R package to 
evaluate pathway differences for the key FAM genes identified [67]. 

2.9. Establishment of a prognostic FAM-related risk score 

We applied univariate Cox regression analysis to preliminarily screen crucial prognostic genes from the DEGs identified prelimi-
narily [68]. Then, we conducted LASSO analysis using the “glmnet” R package to select the crucial genes in TCGA cohort [69]. We used 
10-time cross-validation to estimate the confidence interval for each lambda and subsequently identified the optimal lambda with the 
lowest average error. In addition, we conducted multivariate Cox regression in a backward stepwise fashion to curtail the gene number 
and acquire the regression coefficient for every gene. We assumed that p-selected genes are input into a prognostic prediction model, 
denoted as (x1, …,xp). The risk score was a weighted sum of genes whose weights reflect the degree of association and defined as 
Risk score = β1 × x1 + … + βp × xp [70]. Then, patients were divided into high- and low-risk groups based on the cutoff value 
determined by the “survminer” R package (http://www.sthda.com/english/rpkgs/survminer). Survival curves were constructed using 
the K–M to compare OS between the different risk groups. The ICGC cohort was used for the external validation to verify the robustness 
of the established prediction model. Finally, we examined the relationships between risk scores and clinical characteristics to elucidate 
their potential for clinical application. We also evaluated the differences in risk scores among subtypes. 
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2.10. Immune status between different risk groups 

We performed GSEA to compare the differences in enrichment scores of FAM pathways between groups using genes selected from 
MSigDB, hallmark, KEGG, and Reactome. We then applied the ESTIMATE R package to explore the TME features between groups. We 
used CIBERSORT to analyze the relative abundance of tumor-infiltrating immune cells between the two groups. Thereafter, we 
collected 29 functional gene expression signatures (FGES) previously published associated with the TME in different risk groups [71]. 
Additionally, we obtained previously published gene signatures from 15 pathways characterized by immune, stromal, DNA repair, and 
oncogenic signatures to investigate the heterogeneity of the immune microenvironment between different risk groups [72]. We also 
assessed the correlation of the risk score with the FAM pathways, 29 gene expression signatures, and gene signatures from 15 pathways 
using Pearson’s correlation. 

2.11. The predictive performance of the risk score on ccRCC therapy 

First, we evaluated drug sensitivity using IC50 for common chemotherapy agents in TCGA risk groups. We then analyzed whether 
immunotherapy sensitivity varied between risk groups. We analyzed the differences in MATH scores using the Wilcoxon test to 
investigate genomic heterogeneity between groups. Given the close relationship between tumor immune regulation and immune 
checkpoint-related genes (ICGs), we explored the relationship between the risk score and ICGs and the expression profiles of ICGs 
between groups. 

2.12. Expression validation of the selected genes in FAM-related prognostic model 

To further explore the FAM-related genes selected from the constructed prognostic model at the mRNA level in ccRCC and normal 
renal cells, we performed cell culture and real-time quantitative PCR (RT–qPCR) [73]. Human renal tubular epithelial HK2 and ccRCC 
ACHN cells were cultured in Dulbecco’s modified eagle medium (DMEM, Gibco, Invitrogen, Carlsbad, CA, USA). Total RNA was 
extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA), following the standard protocol. cDNA was synthesized using a 
PrimeScript™ RT reagent kit (Takara, Shiga, Japan). RT–qPCR was conducted using an ABI7300 real-time PCR system (Applied 
Biosystems) to validate the expression of the selected FAM-related genes from the constructed prognostic model, following the 
manufacturer’s instructions. The amplification conditions for qRT-PCR were 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s, and 60 ◦C for 30 s. 
The primers used are listed in Supplementary Table 1. Each mRNA expression was normalized to GAPDH expression according to the 
2− ΔΔCt method, and all reactions were performed thrice in triplicate to calculate the average cycle threshold (Ct). 

2.13. Statistical analysis 

Statistical analyses were conducted using R (version 3.4.3) and GraphPad Prism (version 8.4.2) software. To compare clinical 
features between different groups, we applied the Wilcoxon test to evaluate two independent non-parametric samples and the 
Kruskal–Wallis test to compare three or more samples. Continuous variables with a normal distribution are presented as means ±
standard deviation. Pearson’s or Spearman’s rank correlation coefficients were used to explore the correlations between variables. 
Multivariate Cox regression analysis was performed to explore the independence of the constructed FAM-related model for prognostic 
performance. p-value < 0.05 indicated statistical significance [74]. 

Fig. 1. Consensus clustering of FAMGs of ccRCC in TCGA cohort. (A) PCA plot of the three FAM-related subtypes. (B) Kaplan–Meier survival curves 
for OS of the S1, S2, and S3 subtypes. (C) Comparison of FAM of the S1, S2, and S3 subtypes. Abbreviations: ccRCC, clear cell renal cell carcinoma; 
CDF, cumulative distribution function; FAMGs, fatty acid metabolism genes; KEGG, the Kyoto Encyclopedia of Genes and Genomes; OS, overall 
survival; PCA, principal component analysis; ssGSEA, sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas. 
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3. Results 

3.1. Influence of FAM in ccRCC 

To elucidate the mechanisms of FAM in ccRCC progression, we found that the enrichment scores of the genes in FAM pathways in 
TCGA cohort were higher in para-cancer tissues than in ccRCC tissues (p < 0.05) (Fig. S1A). We comprehensively assessed the as-
sociation between FAM and clinicopathological features. As expected, higher clinical stages resulted in lower FAM scores, and women 
had more active FAM than men (p < 0.05) (Fig. S1B). 

3.2. Identification of ccRCC subtypes associated with FAMGs 

To explore the carcinogenic mechanisms of FAMGs in ccRCC, we performed a consensus cluster analysis based on the expression of 
FAMGs in TCGA cohort. Based on the relative CDF and delta area changes, k = 3 (the number of clusters) achieved the flattest middle 
portion of the CDF curve and a definitive boundary for the consensus matrix (Figs. S2A–C). Therefore, we classified patients in TCGA 
cohort into subtypes: subtype 1, subtype 2, and subtype 3, named S1, S2, and S3, respectively. Furthermore, PCA analysis also proved 
the typing results with distinct differences among the three subtypes (p < 0.05) (Fig. 1A). K–M survival curves showed that ccRCC 
patients in S1 had shorter OS than those in S2 and S3 in both TCGA and ICGC cohorts (p < 0.05) (Fig. 1B). Additionally, we found clear 
differences in the enrichment levels of FAM among the S1, S2, and S3 subtypes, with the highest FAM scores in S3 and the lowest in S1 
(p < 0.05) (Fig. 1C). Next, we evaluated the differences in clinicopathological features between the S1, S2, and S3 subtypes in TCGA 
cohort and found that S1 patients with poorer prognoses had higher TNM and clinical stages and grades (p < 0.05) (Fig. S3). 

3.3. Characteristics of gene mutations among FAMG-related subtypes 

First, we found that VHL, PBRM1, TTN, SETD2, and BAP1 mutations were commonly found in TCGA cohort and were associated 
with FAMG-related subtypes (Fig. S4A). To understand the influence of FAM-related gene mutations in ccRCC, we observed that the S1, 
S2, and S3 subtypes exhibited substantial differences in tumor heterogeneity, and S3 had the lowest MATH scores (p < 0.05) (Fig. S4B). 

Fig. 2. Pathway enrichment analysis among three subtypes in TCGA cohort. (A) S1, (B) S2, and (C) S3. (D) Heatmap of differential pathway 
enrichment among the three subtypes. Abbreviations: KEGG, the Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas. 
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Finally, we found that S3 patients were mostly matched to the widely recognized immune subtype S3 (p < 0.05) (Fig. S4C). 

3.4. Enriched pathways among FAMG-related subtypes 

Furthermore, the GSEA results identified distinct enriched pathways in the three ccRCC subtypes. For example, S1 was largely 
enriched in pathways correlated to inflammation and immune response, including the “complement and coagulation cascades,” 
“primary immunodeficiency,” “systemic lupus erythematosus,” and “P53 signaling pathway” (Fig. 2A). Besides “FAM pathways,” other 
metabolism-related pathways such as “butanoate,” “propanoate,” and “pyruvate” were enriched in S2 (Fig. 2B). S3 was also enriched 
in several metabolism-related pathways, including “FAM,” “pentose and glucuronate interconversions,” and “ascorbate and aldarate 
metabolism” (Fig. 2C). S1 was enriched in several pathways, including immune-, cell cycle-, and cancer-related pathways. S3 was 
enriched for some metabolism-related pathways such as “FAM,” “oxidative phosphorylation,” “xenobiotic metabolism,” and “bile acid 
metabolism” (Fig. 2D). 

3.5. Immune features of FAMG-related subtypes 

To evaluate the TME components among different FAMG-related subtypes, we used ESTIMATE to assess the immune cell status. We 
found that S1 had higher stromal, immune, and ESTIMATE scores than the other two subtypes and a lower tumor purity, suggesting 
that S1 had a high immune infiltration density and heterogeneity (p < 0.05) (Fig. 3A). We further used CIBERSORT to determine the 
abundance of 22 immune cells among the FAMG-related subtypes. S1 showed an increased proportion of M0 macrophages, regulatory 
T, and Treg cells (p < 0.05) (Fig. 3B). 

3.6. Differences in cancer therapy response among FAMG-related subtypes 

Next, we examined whether the FAMG-related subtypes significantly influenced cancer chemotherapy and immunotherapy. We 
analyzed the response of the subtypes to conventional chemotherapy agents and found that S1 was more sensitive to bortezomib and 
sunitinib, whereas S3 was more sensitive to axitinib in TCGA cohort (p < 0.05) (Fig. 4A). Given the promising applications of 
immunotherapy with checkpoint inhibitors, we also tested the levels of several representative immune checkpoints in the three FAMG- 
related subtypes. The results revealed that most immune checkpoint genes, characterized by “immune activation” and “immune in-
hibition, were highly expressed in the S1 stage (Fig. 4B). Furthermore, we identified 15 significantly differentially expressed ICGs 
among FAMG-related subtypes: KIR3DL1, ADORA2A, CD80, TNFSF18, TNFRSF18, CD28, TNFSF14, LAG3, CEACAM1, LAIR1, IDO1, 
PVR, CD200, CD276, and HAVCR1 (p < 0.05) (Fig. 4C). 

Fig. 3. Associations between the immune signatures of TME and FAM-related subtypes in TCGA cohort. (A) Comparison of ESTIMATE scores in the 
S1, S2, and S3 subtypes. (B) Comparison of the immune cell distribution in the S1, S2, and S3 subtypes. Abbreviations: CD4, cluster of differentiation 
4; CD8, cluster of differentiation 8; FAM, fatty acid metabolism; NK, natural killer; TCGA, The Cancer Genome Atlas; TME, tumor 
microenvironment. 
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3.7. Differential gene screening among FAMG-related subtypes 

After establishing three distinct FAMG subtypes in ccRCC, we compared their gene expression levels to determine the co-expressed 
differential genes. We found 321 DEGs between the S1 and S2 subtypes, 146 upregulated and 175 downregulated genes in S1, 973 
DEGs between the S1 and S3 subtypes, 305 upregulated and 668 downregulated genes in S1, 151 DEGs between the S2 and S3 
subtypes, and 29 upregulated and 122 downregulated genes in S2 (p < 0.05) (Figs. S5A–B). We found that 86 DEGs overlapped among 
the three FAMG-related subtypes: SLC27A2, CYP4A11, FMO1, CYP4A22, HAO2, CYP2J2, HMGCC2, and CA4 (Fig. S5C). Moreover, we 
performed a functional enrichment analysis of 305 DEGs between S1 and S3 and found that these DEGs were mainly mapped to stroma- 
related signaling pathways (Figs. S5D–G). 

3.8. Construction of a FAMG-related risk prediction model 

To evaluate the relationship between FAMGs and the prognosis of ccRCC patients, we used univariate Cox regression analysis and 
verified 852 DEGs with prognostic values; 214 were risk genes and 638 were protective genes (p < 0.05) (Fig. 5A). Next, we incor-
porated the 852 prognostic genes to establish a prognostic risk prediction model using LASSO regression. First, regression coefficients 
approached zero and gradually increased with an increase in lambda. The optimal lambda was set to 0.0531 based on a 10-time 
validation, and 22 genes were finally included in the risk score (Fig. 5B). Subsequently, multivariate stepwise linear regression 
analysis verified the final nine prognostic genes and determined the coefficient for each targeted gene (Fig. 5C). The following formula 
was established using the mRNA level of each risk gene and coefficients: Risk score = ( − 0.151 × ANK3)+ (0.158 × GYG2)+
(0.157 × SYCE1L)+ (0.378 × SPAG5)+ ( − 0.108 × PLG)+ ( − 0.314 × SLC2A9)+ (0.165 × RNASE2)+ ( − 0.154 × CGN) + ( −

0.147 × SEMA3G). Moreover, we validated the expression of nine genes in the HK2 and ACHN cell lines. Compared to HK2 cells, the 

Fig. 4. Estimation of chemotherapy and immunotherapy response of the S1, S2, and S3 subtypes in TCGA cohort. (A) Estimated IC50 for commonly 
used chemotherapy drugs in the S1, S2, and S3 subtypes. (B) Expression of ICGs in the S1, S2, and S3 subtypes. (C) Expression of 15 differentially 
expressed ICGs in the S1, S2, and S3 subtypes. Abbreviations: ICGs, immune checkpoint-related genes; IC50, half maximal inhibitory concentration; 
TCGA, The Cancer Genome Atlas. 
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ccRCC cell line ACHN had higher SEMA3G and SYCE1L mRNA levels and lower CGN, GYG2, RNASE2, and SLC2A9 mRNA levels (p <
0.05) (Fig. 5D). With the cutoff value of − 0.199807 set by the “survminer” R package, we allocated patients to the high- and low-risk 
groups in TCGA cohort. We constructed K–M survival curves and found that high-risk patients had significantly poorer prognoses (p <
0.05) (Fig. 5E). To verify the robustness of risk scores, the same model was applied to the ICGC cohort for external validation. High-risk 
patients showed shorter OS than low-risk ones in the ICGC cohort (p < 0.05) (Fig. 5F). These results demonstrated that our risk score 
was predictive of OS in different cohorts, suggesting robust performance of the constructed nine-gene risk score. We also investigated 
the distribution of risk scores among clinical characteristics (i.e., cancer grade, stage, and TNM) and found that the more advanced the 
ccRCC clinical stage, the greater the risk score (p < 0.05). In addition, the distribution of risk scores exhibited significant differences 
among the three FAMG-related subtypes (p < 0.05) (Fig. S6). 

3.9. Associations between the risk score and immune characteristics 

We first evaluated the enrichment of FAM pathways between low- and high-risk groups using the Hallmark, KEGG, and Reactome 
databases. Low-risk patients had higher FAM enrichment scores than high-risk patients (p < 0.05) (Fig. 6A). To further illustrate the 
differences in the TME between the different risk groups, we used ESTIMATE to obtain tumor stroma and immune cell infiltration. The 
immune, stromal, and ESTIMATE scores were higher in the high-risk group than in the low-risk group. In contrast, the tumor purity 
was higher in the low-risk group than in the high-risk one (p < 0.05) (Fig. 6B). We also compared the levels of 22 immune cell types 
between the risk groups and found a remarkable difference in the proportion of 22 immune cell types between the groups (p < 0.05) 
(Fig. 6C). Moreover, the enrichment scores between the high- and low-risk groups differed significantly for 29 FGES. The FGES 
associated with tumor stroma and promotion accounted for most of the enrichment in the high-risk group (Fig. 6D). Compared to the 
low-risk group, several pathways correlated with DNA damage repair were differentially enriched in the high-risk group based on the 
15 pathway-related enrichment score distributions (Fig. 6E). Additionally, we explored the relationship between the risk score and the 

Fig. 5. Construction and validation of FAM-related risk score for ccRCC in TCGA and ICGC cohorts. (A) Univariate Cox regression analysis of DEGs 
identifying OS-related FAMGs. (B) Partial likelihood deviance of LASSO coefficient profiles. (C) Multivariate Cox regression analysis for nine 
selected FAMGs of the risk score. (D) The mRNA expression levels of the nine selected FAMGs by RT–qPCR. ROC curve of the FAM-related risk score 
in the ICGC cohort. (E) Kaplan–Meier curves of the FAM-related risk score in TCGA cohort. (F) Kaplan–Meier curves of the FAM-related risk score in 
the ICGC cohort. Abbreviations: ccRCC, clear cell renal cell carcinoma; DEGs, differentially expressed genes; FAM, fatty acid metabolism; FAMGs, 
fatty acid metabolism genes; ICGC, International Cancer Genome Consortium; LASSO, least absolute shrinkage and selection operator; ROC, receiver 
operating characteristic; RT–qPCR, real-time quantitative PCR; TCGA, The Cancer Genome Atlas. 
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FAM pathways, 29 FGES, and 15 pathways. The risk score exhibited a negative correlation with FAM, a positive correlation with FGES 
associated with tumor stroma and promotion, and pathways correlated with DNA damage repair (Fig. 6F). 

3.10. Comparisons of therapeutic responses between groups 

For drug sensitivity analysis, we compared the IC50 of several commonly used chemotherapeutic agents between the low- and high- 
risk groups, including bortezomib, axitinib, cisplatin, sorafenib, temsirolimus, sunitinib, gefitinib, and vinblastine. The high-risk group 
exhibited greater sensitivity to bortezomib, gefitinib, and temsirolimus than the low-risk group (p < 0.05) (Fig. 7A). Further corre-
lation analysis revealed that the risk score was significantly correlated with the expression of several ICGs, including CTLA4, IDO1, and 
ICOS (p < 0.05) (Fig. 7B). Many ICGs were significantly overexpressed in the high-risk group, including LAG3, IDO1, and CTLA4 (p <
0.05) (Fig. 7C). 

Fig. 6. Relationship between immune infiltration features and the risk score in TCGA cohort. (A) FAM enrichment scores in high- and low-risk 
groups. (B) Immune, stromal, estimate, and tumor purity scores in high- and low-risk groups. (C) Distribution of 22 immune cells in high- and 
low-risk groups. (D) TME-related 29 gene signatures in high- and low-risk groups. (E) Scores of 15 pathways in high- and low-risk groups. (F) 
Correlation of risk score with TME-related gene signatures and 15 pathways. Abbreviations: ssGSEA, sample gene set enrichment analysis; TCGA, 
The Cancer Genome Atlas; TME, tumor microenvironment. 
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4. Discussion 

Metabolic and epigenetic studies in the last decade have revealed a new relationship between metabolic alterations and cancer 
progression [75–78]. Metabolic modifications trigger oncogenic transformations and are hallmarks of cancer. For example, upregu-
lated glycolytic metabolism contributes to energy production and essential metabolic intermediates in most solid tumors [79–81]. The 
metabolic properties of tumors induce immunosuppression in the TME and constrain cancer immunotherapy [82–84]. Although most 
studies have focused on the influence of FAM on cell physiological functions and biological behaviors, the effects of FAM on ccRCC 
remain unclear [85–87]. FAM is dysregulated in ccRCC and correlated with a poor prognosis of patients. Various key enzymes related 
to FAM have been found to participate in the malignance of ccRCC. However, the pathogenic mechanism of FAM in ccRCC has not been 
elucidated [53]. In addition, the prognostic performance of the previously published FAM-related risk scores and gene signatures 
requires further clinical verification [88,89]. The immune features and therapeutic responses of FAM-related genes have also been 
inadequately illustrated in the constructed models. Therefore, we constructed a novel FAM-related risk score to explore the regulatory 
mechanisms of FAM in ccRCC progression and identify high-risk patients with poor prognoses to guide personalized treatment 
strategies. 

FAM reprogramming is a ubiquitous metabolic process in cancer [90–92]. Several key enzymes of the FAM play a critical role in 
cancer cell survival and progression and are currently attracting considerable attention as new therapeutic targets [93,94]. Emerging 
omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have shown that ccRCC char-
acteristically exhibits high lipid accumulation and abnormal FAM [53,55,95,96]. In this study, we found that the FAM scores differed 
between the primary tumor and para-tumorous normal tissues. We also found a correlation between the FAM and the 

Fig. 7. Risk score predictions for ccRCC treatment sensitivity in TCGA cohort. (A) Violin plots of the estimated IC50 for chemotherapy agents in 
high- and low-risk groups. (B) Association of risk score with ICGs. (C) Heatmap of differentially expressed ICGs in high- and low-risk groups. ccRCC, 
clear cell renal cell carcinoma; ICGs, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas. 
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clinicopathological features of patients with ccRCC. A higher clinical stage was associated with lower FAM scores. 
The three molecular subtypes S1, S2, and S3, categorized by FAM features using consensus cluster analysis, exhibited significant 

differences in prognosis, clinical grade, tumor genomic heterogeneity, biological pathways, TME, and response to common treatments. 
Thus, to better understand the functions of FAM-related genes in ccRCC, we constructed a predictive risk score to discern different 
degrees of risk in patients with ccRCC. We showed that the FAM-related risk score predicted OS efficiently in both TCGA and ICGC 
cohorts. Consistent with previous studies, high-risk patients had worse OS than low-risk patients and were susceptible to posterior 
clinical staging, suggesting that the FAM-related risk score can be used to identify high-risk patients and provide personalized 
treatment to improve outcomes [97–100]. 

Previous studies demonstrated that ccRCC is highly infiltrated by different immune cells and has high immune heterogeneity [98, 
101–103]. We found that high-risk patients had more plentiful immune and stromal components, lower tumor purity in the TME, and 
more abundant immunosuppressive cells. As expected, the high-risk group had elevated enrichment scores for cancer-associated fi-
broblasts (CAFs), tumor- and matrix-associated macrophages, and tumor proliferation rates. Additionally, pathways involved in 
oncogenesis, such as the DNA damage repair pathway, were identified in high-risk groups. 

Chemotherapy has remained the most effective treatment for advanced ccRCC for decades [104,105]. Herein, we found that 
high-risk patients were more sensitive to bortezomib, gefitinib, and temsirolimus than other treatments, indicating that they might 
benefit from chemotherapy. The significant genomic heterogeneity differences between the groups reflect features of tumor promotion 
and treatment resistance in the high-risk group, highlighting the importance of immunotherapy in ccRCC [106]. Therefore, we 
explored immunotherapy responses between the low- and high-risk groups and found that the characteristics reflecting the immu-
notherapy response were increased in the high-risk group compared to the low-risk group. Thus, high-risk patients may show an 
improved immunotherapy response. In summary, these results demonstrate that the constructed FAM-related risk score exhibits a 
promising prognostic performance for patients with ccRCC and provides insights into the function of FAMGs in ccRCC. 

This study has some limitations. First, we used multiple online databases and bioinformatics methods without prospective clinical 
validation. Thus, we will conduct an additional validation cohort study at our center to confirm the predictive values of the constructed 
nine-gene risk score for ccRCC. Moreover, we validated the mRNA levels of the nine genes in the risk prediction model. Therefore, 
future studies should investigate the underlying mechanisms of the nine FAMGs in ccRCC progression. 

In conclusion, we successfully developed and verified a robust risk score associated with the FAM in ccRCC that can be applied to 
predict the prognosis of patients with ccRCC. The FAM-related risk score described the clinicopathological features of the patients and 
predicted their susceptibility to chemotherapy and immunotherapy. The FAM-related risk score has contributed to research on 
promising ccRCC prognostic predictors and future individualized treatments for ccRCC. 
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