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Abstract: Mifepristone (RU-486), a synthetic steroid with potent antiprogestogen and anti-
glucocorticoid properties, has been widely used in clinical practice. Its effect on the endometrium,
ovary, and fallopian tube has been well reported in many human and animal studies. However, its
direct impact on post-implantation embryos remains underexplored. Additionally, some women
choose to keep their pregnancy after mifepristone treatment fails. Thus, the potential risk remains
controversial. Hence, this study investigated the direct effects of mifepristone on the development of
mice blastocysts in vitro in terms of implantation and post-implantation. We detected the level of
progesterone (P4) associated with ovulation in vivo. The presence of progesterone receptors (PRs)
in blastocysts and post-implantation embryos was also evaluated. Cultured embryos were treated
directly with mifepristone. We further examined embryonic implantation and post-implantation of
blastocysts in vitro to evaluate the direct effects of mifepristone on embryos by the assessment of
embryonic outgrowth and differential cell staining. In the oviduct lumen, the P4 level dramatically
increased at 48 h and slightly decreased at 72 and 96 h following ovulation. PR was expressed in
blastocysts not only in the preimplantation stage but also in the early post-implantation period. In
the evaluation of developmental stages, mifepristone significantly reduced the successful ratio of
developing into the late egg cylinder and the early somite stage. In addition, it further decreased the
cell number of the embryos’ inner cell mass and trophectoderm. We herein provide evidence that
mifepristone affects blastocyst viability directly and inhibits post-implantation embryo development
in vitro. Furthermore, our data reveal a potential risk of fetus fatality and developmental problems
when pregnancies are continued after mifepristone treatment fails.

Keywords: mifepristone; endometrium; embryo; development; progesterone; abortion

1. Introduction

Mifepristone (RU-486), a synthetic steroid with potent anti-progestogen and anti-
glucocorticoid properties, was synthesized by the French company Roussel-Ulcaf in 1980.
Since then, it has been widely used in clinical practice [1–3] for various applications, mainly
including contraception by affecting ovulation [4–9] and causing early termination of
pregnancy through interfering with embryo implantation [10,11]. However, mifepristone
treatment exhibits a limited therapeutic window that lasts <9 weeks of gestation; the
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incidence of abortion failure increases along the gestational course [12,13]. Furthermore,
some women may change their minds and choose to continue the pregnancy after abortion
failure [14,15]; however, the potential risks and underlying mechanisms of this are still
poorly understood.

The mechanisms underlying the clinical effects of mifepristone remain unclear. The
effects of mifepristone on the endometrium have been well reported [16–21]. In vivo,
it causes changes in the levels of IL-8 and TNF-α and leads to increased progesterone
receptor (PR) concentrations in the human fallopian tube [22,23], which may alter the
peri-implantation environment and influence fertilization. Animal studies have shown that
mifepristone-induced endometrial changes include changes in endometrial secretions and
luminal compartments, which adversely affect the growth and viability of pre-implantation
embryos [24–27]. Although previous data have shown that the embryos present with
PRs beginning at the blastocyst stage [28], few studies have evaluated the direct effects of
mifepristone on post-implantation embryos under conditions independent of the endome-
trial microenvironment [29].

By culturing blastocysts from superovulated mice, the present study examined the
direct effect of mifepristone on embryonic implantation, viability, proliferation, and matura-
tion. This approach has been previously used for analyzing the survival and development
of embryos [30–32]. This study aimed to assess the temporal and spatial level of P4 in
pregnant mice, determine the expression of PR during embryonic development, and to
evaluate the direct effect of mifepristone exposure during development in vitro.

2. Materials and Methods
2.1. Animal and Blastocyst Collection

All animal experiments were approved by the Institution of Animal Care and Use Com-
mittee of Kaohsiung Chang Gung Memorial Hospital (No. 2018120702, 10 September 2019)
and all animals were cared under humane animal rights according to the Guidelines
for Care and Use of Experimental Animals (Council of Agriculture Executive Yuan, Tai-
wan). ICR virgin albino mice, male mice and pregnant mice were maintained under a
12 h day/12 h night cycle, with food and water available ad libitum. ICR mice (6 ± 8 weeks
old) were super-ovulated by injecting 5 IU pregnant mare’s serum gonadotropin, followed
by an injection of 5 IU HCG 48 h later. Females were then mated overnight with a single
fertile male of the same strain. Pregnancy was confirmed by the presence of a vaginal plug
the following day. The next morning after mating, we moved apart the mice with vaginal
plugs. We collected the blastocysts by using EBSS medium (0.3% BSA, 1 mM pyruvate
sodium, 1 mM glutamine, 2% penicillin/streptomycin) to flush the fallopian tubes on
the day 4 morning after the plug was confirmed. We collected the blastocysts using an
uncoated 4-well dish and washed it at least three times for the following culture in vitro.

2.2. Blastocyst Culture and the Definition of Developmental Stages

The procedures for the acquirement of embryos followed a previous protocol [33,34].
Briefly, blastocysts were acquired by flushing the uterine horn on day 4. Expanded blasto-
cysts from different female mice were pooled and randomly distributed for experiments.
The embryos were cultured in Earle’s balanced salt solution (EBSS; Sigma St. Louis, MO,
USA) using 0.3% bovine serum albumin (Sigma) during the pre-implantation stage and
using CMRL 1066 medium (Sigma) during the post-implantation stage. These mediums
contained glutamine (1 mM), sodium pyruvate (1 mM), penicillin (50 IU/mL) (Gibco,
Grand Island, NY, USA), and streptomycin (50 mg/mL) (Gibco). CMRL 1066 was applied,
including 20% FBS (Gibco) in the culture. We evaluated the embryonic development in
a series of stages, including Witschi stages 6–15, following our previous reports [33]; ac-
cordingly, we defined embryos which reached stage 9 or 10 by day 4 as early egg cylinder
embryos; embryos which reached stage 11, 12 or 13 by day 6 of culture as late egg cylinder
embryos; and embryos which reached stage 14 or 15 by day 8 as early somite embryos.
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2.3. Detection of P4 Level from Serum, Oviduct, Uterus by Radioimmunoassay

To detect the P4 level in serum, venous blood sampling was conducted along the
time course following superovulation at 0, 24, 48, 72, and 96 h. To detect the P4 level in
the lumen of the oviduct and uterine cavity, respectively, the uterus and oviduct were
separated from the sacrificed mice. An equal volume of normal saline was used to flush
the lumen of the oviduct and uterine cavity for detecting the P4 level from the collected
buffer. Radioimmunoassay was used to detect the P4 level by a commercial assay kit from
MyBiosource (San Diego, CA, USA) under the direction of the manual.

2.4. Immunofluorescent Staining for PR Receptor

We collected embryos from different developmental stages and fixed the embryos
using 4% paraformaldehyde for 30 min at room temperature. We used PBS containing 0.5%
Triton X-100 and 1% bovine serum albumin (BSA) to permeabilize the embryos; embryos
were then washed three times using PBS containing 0.2% Triton X-100 and 0.3% BSA. We
used PBS containing 4% BSA and 0.2% Triton X-100 for blocking the samples at room
temperature for 1 h and subjected the sample to hybridization with a primary P4 receptor
antibody (Thermo Scientific, Waltham, MA, USA) using a titer of 1:100 overnight at 4 ◦C.
The fluorescein-labeled goat anti-rabbit IgG secondary antibody (31635) was purchased
from Thermo Scientific using a titer of 1:100 at room temperature for 1 h. Bisbenzimide
(BIS) was counter-stained for nuclear labeling.

2.5. Blastocyst Outgrowth Assays

After exposure in RU-486 or vehicle for 24 or 48 h, we collected samples for the
embryonic outgrowth assay. The culture medium was carefully removed and replaced
by 5% hypotonic sodium citrate (30 µL/well) at room temperature for 5 min [35]. This
solution was evaporated under partial vacuum (200 bar) at 50 ◦C for 60 min. The expanded
cells were fixed by FixDenat fixative at 50 ◦C for 60 min. The total number of nuclei in the
outgrowths was examined by a 4% Giemsa staining solution (Sigma) at room temperature
for 15 min.

2.6. Differential Staining in Blastocysts

After exposure in RU-486 or vehicle for 24 or 48 h, we collected the samples for differ-
ential staining [32]. Briefly, we removed the zona pellucida by EBSS medium containing
0.4% pronase and 0.1% BSA. We subjected the denuded blastocysts to exposure to 1 mM
of TNBS in a BSA-free M2 medium (M2) containing 0.1% PVP at 4 ◦C for 30 min. Next,
we treated the samples with 30 g/mL of anti-DNP-BSA complex antibody in M2-BSA at
37 ◦C for 30 min and incubated the samples in M2 supplemented with 10% whole guinea
pig serum (GPC, as a source of complement), 20 ug/mL bisbenzimide and 10 ug/mL
propidium iodide (PI) at 37 ◦C for 30 min. The recognition of ICM and TE cells was
dependent on the impermeability of the TE layer for propidium iodide (PI) staining. We
evaluated the proliferation of blastocysts by calculating the cell numbers from ICM and TE.
The proliferation of blastocysts was evaluated by counting the cell number of ICM and TE
identified following the procedure of differential staining [32].

2.7. Statistical Analysis

Data were further analyzed using one-way analysis of variance (ANOVA) and t-tests.
The results were presented as mean ± SEM. The p-values less than 0.05 were considered as
statistically significant.

3. Results
3.1. Progesterone Level Correlates with the Time Course of the Preimplantation Stage during
Embryonic Development in the Serum, Lumen of the Oviduct, and Uterine Cavity

While progesterone affects uterine function and embryo growth, little is known about
the P4 level in the uterine environment from a functional perspective during the period
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of ovulation and preimplantation. To uncover this issue, we induced superovulation in
8-week-old female mice. We evaluated the level of P4 from the serum, oviduct, and uterus
by an immunoradiometric assay at 0, 24, 48, 72, and 96 h after induction of superovulation.
To characterize the role of the P4 level in embryogenesis, we detected the P4 level in a
time course corresponding to ovulation. In the serum and uterine cavity, the P4 level
slowly increased and significantly increased at 96 h after induction of superovulation
(Figure 1A,C). In contrast, in the lumen of the oviduct, the P4 level dramatically increased
at 48 h after induction of superovulation and slightly decreased at 72 and 96 h (Figure 1B).
These data suggest that the P4 level is altered in response to ovulation, indicating the
essential role of P4 during the preimplantation stage of the blastocyst.
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Figure 1. Progesterone levels in the serum, oviduct and uterus correlated with the time course of
post-ovulation in female mice. Female mice P4 levels were detected in serum (A), the lumen of the
oviduct (B), and the uterine cavity (C) by radioimmunoassay at 0, 24, 48, 72, and 96 h following
hCG injection. 0 h n = 10, 24 h n = 17, 48 h n = 20, 72 h n = 20, 96 h n = 20. Data is represented in
mean ± SEM. * denotes p < 0.05 by one-way ANOVA.

3.2. Mouse Embryo Displays PR Protein Expression during the Progress of Blastocyst
Implantation and Early Post-Implantation Stage

Although the expression and function of P4 receptor (PR) in the ovary has been re-
ported [36], the expression of PR on embryos during embryogenesis remains controversial.
Having confirmed the involvement of P4 during blastocysts’ pre-implantation, we further
sought to verify the direct effect of P4 during embryonic development. By immunoflu-
orescent staining of PR, we examined the expression of PR in the peri-implantation and
post-implantation phases during embryo development. The data showed that the cultured
embryos only presented PR during the developmental stage of blastocysts, but not in the
one-, two-, and four-cell and morula stages (Figure S1). By using confocal microscopy, we
identified that PR was expressed on blastocysts during the pre-implantation stage and
in the early egg cylinder phase during the early post-implantation period (Figure 2A,B),
whereas the negative controls exhibited no immunoreactivity. These data suggest that PR
may modulate post-implantation embryo development from the initiation of implantation.
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3.3. Mifepristone Directly Influences the Blastocyst and Early Post-Implantation Stage In Vitro

Having the evidence of PR expressed during embryo development, we next asked
whether mifepristone could directly modulate embryonic development during the devel-
opmental stages in vitro. We collected and cultured blastocysts from female mice after hCG
injection for four days and observed the pattern of implantation and post-implantation
of blastocysts, implanted blastocysts, the early and late egg cylinder stage, and the early
somite stage in the presence or absence of mifepristone. First, we wondered whether the
PR level was affected by mifepristone, but the results were negative (Figure S2). We next
examined the direct effect of mifepristone in embryo implantation and maturation using
a neutralization approach by treatment with 0.002, 0.2, or 20 µM of mifepristone for 48 h
in vitro. The data showed that the implantation rate was not affected by mifepristone in
implanted blastocysts. However, in evaluating developmental stages, mifepristone signifi-
cantly reduced the success rate of development into the late egg cylinder and early somite
stages (Table 1). These data suggest that mifepristone directly affects post-implantation
embryo development independent of endometrial factors.

Table 1. In-vitro development of blastocysts following 48-h exposure of mifepristone.

Development
(Days In Vitro) Control Group

Mifepristone Group

2 × 10−9 M 2 × 10−7 M 2 × 10−5 M

Blastocysts 101 98 95 102
Hatched/implanted blastocysts (DIV 2) 99 (98.02%) 96 (97.96%) 94 (98.95%) 100 (98.04%)

Early egg cylinder stage (DIV 4) 87 (86.14%) 77 (78.57%) 82 (86.32%) 83 (81.37%)
Late egg cylinder stage (DIV 6) 57 (56.44%) 46 (46.94%) 52 (54.74%) 40 (39.22%) *

Early somite stage (DIV 8) 41 (40.59%) 34 (34.69%) 35 (36.84%) 25 (24.51%) *

* p < 0.05 by unpaired t-test.

3.4. Mifepristone Affects Cell Proliferation in the Blastocyst

Given that cells can differentiate into inner cell mass and trophectoderm (TE) cells
in the blastocyst stage, we thus investigated the effect of P4 on survival/cell proliferation
of the blastocysts. In addition, we conducted a time-dependent analysis to examine the
direct effect of exposure to 20 µM mifepristone for 24 h (Figure 3A) and 48 h (Figure 3B) on
the blastocysts. The data revealed that mifepristone significantly reduced the cell number
of blastocysts after exposure for 48 h, resulting in a decrease in the total cell number of
blastocysts (Figure 3B).

3.5. Mifepristone Affects Blastocyst Outgrowth in the Inner Cell Mass (ICM) and Trophectoderm
(TE) In Vitro

Having confirmed the direct modulation of P4 in implanted blastocysts during em-
bryo development, we further examined the effect of P4 in embryonic outgrowth by
observing cell proliferation in blastocysts in the ICM and TE. By differential staining, the
data indicated that blastocyst outgrowth was slightly decreased in ICM and significantly
reduced in TE at eight days in vitro after exposure to mifepristone for 48 h. This data
suggests that mifepristone can directly disrupt embryonic outgrowth during the stage of
post-implantation (Figure 4).
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by unpaired t-test. Bar: 100 µm.

4. Discussion

This study examined the interplay of P4 and P4 receptors in embryogenesis and
evaluated the independent effect of mifepristone in embryonic development. Our data con-
firmed the expression of PR from the pre-implantation stage to the early post-implantation
period. In addition, P4 was essential for embryonic development, typically during the
stages of implantation and post-implantation; mifepristone exposure resulted in abnormal
cell proliferation from the inner cell mass and trophectoderm and impaired blastocyst
outgrowth. To our knowledge, we are the first to characterize the direct role of embryonic
PR during embryogenesis in vitro. Our data further expand the understanding of P4 in
embryo development and medical abortion.

Our data determined that circulating P4 levels vary over the time course and regions
in the serum, oviduct, and uterus cavity after ovulation; the increase of P4 was correlated
with the time of fertilization and embryo implantation. Furthermore, P4 has been reported
to modulate ovulation and preparation of the endometrium for implantation. Thus, the
paralleled data from our study are considerable and further support P4 as an essential
regulator during preimplantation. In addition, PR can modulate uterus receptivity by
inhibiting estrogen-induced epithelial proliferation and activation of P4 target genes, e.g.,
Ihh and Areg, to accomplish embryo implantation at pregnancy days 2–3 [37]. Thus,
compared to these previous findings, our data further extend the knowledge about the
circulating P4 levels in the serum, oviduct, and uterus cavity during preparation for uterine
receptivity and preimplantation, supporting the fact that P4 is required in the practice of
uterine receptivity.

The contradictory results from several in vitro studies persist in whether P4 is ex-
pressed from embryos, as well as whether P4 directly affects embryo development [38,39].
This study herein characterized the expression period of P4 in embryo development. Com-
paring to previous controversial results from different mammalian species, we found that
PR was presented from blastocysts to the early somite stage in mouse embryos and uncov-
ered the direct effects of P4 on the survival and outgrowth of blastocysts. Our findings are
correlated to previous reports that the P4 level is critical before embryo implantation [40],
which may act directly as a survival factor or indirectly promote the production and
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secretion of cytokines that contribute to embryonic survival and development [41]. Fur-
thermore, data from in vivo experiments showed that P4 treatment exerts a higher survival
and implantation rate in pregnant mice [42], which can activate granulocyte-macrophage
colony-stimulating factor secretion from the embryo and endometrium to control embryo
survival [43]. Furthermore, this can also increase growth factors produced in the stromal
cells [44]. In addition, P4 increases the neural progenitor cell cycle and promotes cell
proliferation via progesterone receptor membrane protein 1 and 2 [45]; it is reminiscent of
a similar effect during embryo development. Together, comparing these findings from the
uterine microenvironment, our data further demonstrated the involvement of P4 in the
direct modulation of blastocysts’ survival and outgrowth.

In the present study, our data not only characterized the total cell number of blas-
tocysts affected by mifepristone treatment but also elucidated that TE lineage cells were
more vulnerable to mifepristone. TE lineage cells were more affected by mifepristone than
ICM cells. Indeed, the primary differentiation event during mammalian development
occurs at the blastocysts stage and leads to the delineation of the ICM and TE. Interest-
ingly, a previous study also indicated that TE cells were more sensitive to the octatonic
acid-induced impact on embryo growth [46], suggesting that TE is more sensitive to the
factors or the microenvironment. In addition, TE cells were more directly exposed in the
microenvironment due to their physical distribution in embryos, which may increase the
probability of exposure in responded factors. Notably, our data showed RU-486 exposure
selectively affected embryo development at the late egg cylinder stage and early somite
stage (Table 1). We proposed that the low developmental rate to advanced stages could
be explained by the reduced proliferation of the TE cells, which is required to support
embryonic development.

Regarding PR downstream signaling, the differentiation and survival of TE and ICM
cell lineages are controlled by several factors, including metabolic and signaling pathways,
which include WNT, MAPK, NOTCH, integrin-mediated cell adhesion, and PI3K [47].
For instance, PR modulated cell survival and proliferation through the activation of c-Src
and downstream MAPK signaling. Furthermore, activation of MAPK also triggers up-
regulation of cyclin D1 and entry into the S phase [48]. In addition, PR interacts with PI3K
through MAPK signaling [49], and PR can also activate MAPK through membrane PRa
and b proteins [50]. These findings are corresponded with our results, suggesting that P4
may independently modulate embryo survival and differentiation via PR or associated
proteins without endometrial factors.

In the present study, we found that the TE lineage was more sensitive to PR inhi-
bition than the ICM lineage. Specifically, TE formation was modulated by Ras-MAPK
signaling during embryonic development [51], which is also related to PR downstream
signaling. While MAPK intracellular signaling was repressed, blastocyst development
and TE outgrowth were also altered. Consequently, we speculate that reduced TE cell
numbers may result from inhibition of PR-mediated MAPK signaling [52]. On the other
hand, regarding ICM lineage formation and survival, Oct 4 is an essential factor in the
cell fate decision [53,54]. Furthermore, previous studies have shown that nuclear receptor
LRH-1 and COUP TF I/II regulate Oct4 expression [55,56], and both receptors are involved
in PR downstream signaling [57,58]. Consequently, we propose that mifepristone-induced
decreases in cell survival and embryo development may result from the PR and its earlier-
mentioned downstream signaling pathways; our findings further characterized the direct
effect of mifepristone in the survival and differentiation of TE and ICM cell lineage.

Our findings highlight the effects of P4 for basic research of mammalian embryonic de-
velopment and its implications for medical science and the practice of in vitro fertilization.
This study demonstrated that P4 levels are associated with the course of embryogenesis,
and embryos can present PR as blastocysts in vitro. Mifepristone can directly disrupt em-
bryogenesis in terms of cell proliferation and developmental maturation. Our data support
that keeping a pregnancy after abortion failure by mifepristone may have potential risk.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9110294/s1, Figure S1: The embryos presented progesterone receptor (PR) since the
developmental stage of blastocysts. (A) We collected and cultured the mouse embryos in vitro,
and performed immunofluorescent staining for PR at stages of 1- cell to blastocysts. (B) The mouse
embryos at developmental stages of stage 7–15 presented PR observed by immunofluorescent staining.
Bar: 25 µm, Figure S2: RU-486 treatment did not affect the level of progesterone receptor (PR) in
mouse blastocysts. We collected the samples for qPCR from cultured blastocysts following exposure
in 20 µM of RU-486 for 48 h and followed by culturing for 6 days. Control n = 5, RU-486 n = 5. Data
present in Mean ± SEM.
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