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Abstract: In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing
subject of study for their complex structural characteristics, their finely regulated biosynthetic
machinery, and the wide range of functions they perform in living organisms from development
to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have
emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for
cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as
inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of
HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in
their structure and functions as a result of the altered activity of their biosynthetic or remodeling
enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through
the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation
of HS chains, affecting HSPG function with significant impact on the molecular interactions between
cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural
and functional features of HSPGs and their signaling in the tumor environment which contributes to
tumorigenesis and cancer progression.

Keywords: tumor microenvironment; extracellular matrix; heparan sulfate proteoglycans;
remodeling; signaling

1. Introduction

The tumor microenvironment consists of a heterogeneous population of cells such as proliferating
tumor cells and infiltrating inflammatory cells, the tumor stroma, blood vessels, secreted factors,
and extracellular matrix (ECM) components, all together contributing to cancer development
and progression. Complex and dynamic interactions between tumor cells and their microenvironment,
involving cell-cell and cell-ECM contacts and the activity of soluble factors that enable these contacts,
are essential to promote tumor growth, invasion, and metastasis [1–3]. Hence, due to the compelling role
of tumor microenvironment in carcinogenesis, therapeutic strategies targeting tumor microenvironment
components that interfere with the complex crosstalk between tumor cells, host cells, and their
surrounding ECM are being explored [4–6].

The ECM constituents form a highly dynamic network that plays both structural and functional
roles of key importance for development and tissue homeostasis. The composition of ECM may
differ among tissues and continuously undergo remodeling both in physiological and pathological
conditions [7–9]. The main ECM components include fibrillar proteins such as collagen, elastin,
fibronectin, and laminins, glycosaminoglycans (GAGs), proteoglycans (PGs), and other glycoproteins.
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The interaction between ECM components and cell surface receptors and/or matrix effectors activates
signal transduction cascades underlying cell differentiation, proliferation, survival, adhesion, migration,
and other biological processes relevant to cancer biology [8].

Among ECM components, heparan sulfate (HS) proteoglycans (HSPGs) emerged as critical
determinants in ECM assembly and functions both in health and disease [10,11]. The ubiquitously
expressed HSPGs comprise diverse families of HS chains bearing protein cores that include
syndecans, glypicans, perlecan, agrin, and collagen type XVIII. While perlecan, agrin, and collagen
type XVIII are directly secreted in the ECM once synthesized, the transmembrane syndecans
and glycosylphosphatidylinositol-anchored (GPI)-anchored glypicans are cell surface-bound HSGPs,
but they can be cleaved by proteinases or heparanases, and their truncated forms can be distributed
in the ECM. The sulfated moieties enable HSPGs to interact with other ECM components and a
variety of ligands such as morphogens, growth factors, enzymes, cytokines, chemokines, etc. [12–15].
However, not only the sulfated pattern of HS chains dictates the binding specificity of HSPGs, but their
protein core can also bind ligands, and the ECM secreted HSPG types contain functionally independent
ligand-binding domains [11–13,16]. The HSPG binding ability is essential for regulating the distribution,
availability, and signaling activity of the ligands.

The main activity attributed to HSPGs is to serve as co-receptors for morphogens/growth factors,
thus enhancing signaling activation of their respective receptor, however, HSPGs can act as receptors
themselves and can transactivate receptors in adjacent cells [10–13,15,17]. In addition, HSPGs are
involved in endocytosis and vesicular trafficking [18]. By acting as intermediaries between ECM
and intracellular signaling pathways, HSPGs regulate a variety of physiological and pathological
processes including tissue development, morphogenesis, cell proliferation, apoptosis, adhesion,
motility, wound healing, inflammation, and tumorigenesis [10,11,17,19–28].

Altered expression and structural variability of HSPGs have been associated with an extensive
remodeling of tumor microenvironment where HSPGs not only contribute to the formation of a
structural framework for tumor growth but are also involved in the regulation of cell-matrix and cell-cell
interactions, and cell signaling [29–35]. They are able to modulate cancer cell phenotype, the development
of drug resistance, and tumor stroma angiogenesis [36–41]. Differential expression and structure/activity
modifications of HSPGs have been found in several cancers and may correlate with either inhibitory or
tumor-promoting activity. This review focuses on the structural and functional alterations of HSPGs in
tumor microenvironment that have a significant impact on tumor growth and progression. We also
discuss the advancements in the development of cancer therapies targeting HSPGs.

2. Structural Features, Biosynthesis, and Enzymatic Modification of HSPGs Regulating Cancer
Promotion and Progression

The HSPGs are glycosylated proteins characterized by a core protein carrying covalently attached
HS chains (Table 1). Thirteen genes encode HSPG core proteins. They include the genes encoding
for cell surface-tethered 4 syndecan (SDC1-4) and 6 glypican (GPC1-6) isoforms, and 3 encoding for
the basement membrane- and -ECM localized perlecan, agrin, and collagen type VIII [11]. Syndecan
isoforms are transmembrane glycoproteins with the extracellular domain harboring HS chains
and chondroitin sulfate chains, and highly conserved transmembrane and cytoplasmic domains which
mediate multimerization and interactions with intracellular proteins, respectively. Glypicans are
proteins anchored to the cell membrane by GPI, and with HS chains attached near the juxtamembrane
region. Perlecan, agrin, and collagen type XVIII are localized in the ECM, including the basement
membrane zone [11,16,42].

In HSPGs, the HS chains are constituted by a long unbranched backbone of disaccharide units
of D-glucosamine and uronic acid (D-glucuronic and L-uronic acids) carrying negatively charged
carboxylated or N- and O-sulfated groups generated through tightly regulated post-translational
reactions in the Golgi apparatus upon the arrival of the core protein from the endoplasmic reticulum [17].
The HSPG biosynthetic process starts with the attachment of a specific serine residue of the core protein
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to a tetrasaccharide linker (glucuronic acid-galactose-galactose-xylose) bearing HS chains; this reaction
is catalyzed by xylosyltransferase (XTLY). Exostosin (EXT) enzymes catalyze the elongation of HS chains
through the alternate addition of glucuronic acid and N-acetylglucosamine. Then, the HS backbone
undergoes modifications involving N-deacetylation and N-sulfation of glucosamine, C-5 epimerization
of glucuronic acid to iduronic acid, 2-O-sulfation and 3-O-sulfation of uronic acid and glucosamine,
respectively, and 6-O-sulfation of N-acetylated or N-sulfated glucosamine residues. Additional
modifications occur at the cell surface or ECM through the action of 6-O-endo-sulfatases and/or
the endoglycosidase heparanase. The controlled biosynthesis and post-synthetic modifications of HS
chains provide an enormous potential of heterogeneity and structural variability of HS chains which
accounts for a wide variety of HSPG interactions with regulatory proteins and, in turn, for their biological
activities [12–15,43]. Several studies have demonstrated that there are cell and tissue-specific changes
in the HS chain synthetic pathway in cancer cells and tissues in vitro and in vivo, thus suggesting a
close involvement of HS chain biosynthetic machinery in carcinogenesis [30,44,45]. These changes
may concern either the expression and/or activity of HS synthetic and modifying enzymes, or changes
in the HSPGs protein core.

Table 1. Heparan sulfate proteoglycan (HSPG) nomenclature, human genes, schematic structure,
cellular localization.

HSPG Encoding Gene Schematic Structure Cellular Localization

Syndecan-1 SDC1
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The genetic loss of NDST4, a member of the N-deacetylase/N-sulfotransferase (NDST) family,
correlates with an advanced pathological stage and poor survival in colorectal carcinomas [46].
Interestingly, depending on the metastatic nature of the tumor and its localization, differential
expression in the transcription of genes involved in the epimerization and sulfation of uronic acid,
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and glucosamine sulfation were detected in left- and right-sided colorectal cancers [31]. Defective
HS-3-O-sulfation due to methylation-associated repression of HS glucosamine 3-O-sulfotransferase gene
(3-OST) results in being associated with chondrosarcoma progression [47], whereas hypermethylation
of the 3-OST gene is associated with poor survival in non-small cell lung cancer [48]. In addition,
HS-2-O-sulfotransferase (2-OST) results in being essential for the proliferation and invasion of prostate
cancer cells [49]. Overexpression of HS glucosamine 6-O-sulfotransferase-2 (6-OST) has been reported
in colorectal cancer and gastric cancer, while it results in being downregulated in glioma [50–52].

Mutations in EXT1 or EXT2, members of the EXT family of glycosyltransferases are responsible
for hereditary multiple osteochondromas that may degenerate into chondro- or osteo-sarcomas [53].
Furthermore, mutations in EXT2 have been detected in breast tumor patients, and thyroid cancer [54–56].
Epigenetic inactivation of EXT1 by promoter hyper-methylation preventing HS chain synthesis is
observed in leukemia and non-melanoma skin cancer [57,58]. An antiproliferative effect of D-glucuronyl
C5-epimerase (GLCE) has been ascertained in breast and small lung cancer cells [59–61], whereas
increased GLCE expression has been associated with advanced stages of prostate tumors [62,63].
Although many other examples of the dysregulation of HS biosynthetic and post-synthetic modifying
enzymes in carcinogenesis have been reported (Table 2), the complex changes of their expression in
different cancers remains still to be explored.

Table 2. HS biosynthetic and modifying enzymes involved in cancer development and progression.

Enzyme Gene Type(s) of Cancer Reference(s)

Xylosyltransferase1/2
(XYLT1/2) XYLT1-2 Breast cancer/bone metastasis

Salivary gland tumors
[64]
[65]

β-1,4-Galactosyltransferase
(b4Gal-T1-7) B4GALT1-7

Breast cancer
Colon cancer
Liver cancer

Leukemia
Lung cancer

Neuroblastoma
Renal carcinoma

[66]
[67]
[68]
[69]
[70]
[71]
[72]

β-1,3-Glucuronyltransferase3
(GlcAT-I) B3GAT3 Liver cancer [73]

Exostosin like glycosyltransferase
(EXTL1-3) EXTL1-3 Breast cancer

Hepatocarcinoma
[55]
[74]

Exostosin1/2
(EXT1/2) EXT1-2

Breast cancer
Chondrosarcoma
Osteochondroma
Hepatocarcinoma

Glioma
Leukemia

Thyroid tumor

[54,55]
[75,76]

[53,75,76]
[77]
[52]

[57,58]
[56]

N-deacetylase/N-sulfotransferase (1-4)
(NDST1-4) NDST1-4 Colorectal cancer

Melanoma
[31,46]

[78]

Glucuronyl C5-epimerase
(GLCE) GLCE

Breast cancer
Lung cancer

Prostate cancer

[59,60]
[61]

[62,63]

Hexuronyl 2-O-sulfotransferase
(2-OST) HS2ST

Breast cancer
Multiple myeloma

Prostate cancer

[79]
[30]
[49]

Glucosaminyl 6-O-sulfotransferase
(6-OST) HS6ST

Colorectal cancer
Gastric cancer

Glioma
Ovarian cancer

Pancreatic cancer

[50]
[51]
[52]

[80,81]
[82]
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Table 2. Cont.

Enzyme Gene Type(s) of Cancer Reference(s)

Glucosaminyl 3-O-sulfotransferase
(3-OST) HS3ST

Breast cancer
Chondrosarcoma
Colorectal cancer

Leukemia
Lung cancer

Pancreatic cancer

[83]
[47,83]

[84]
[85]
[48]
[86]

Endo-6-O-sulfatase1/2
(SULF1/2) SULF1-2

Breast cancer
Cervical cancer
Liver tumors

Ovarian cancer
Other cancers

[87]
[88]
[89]
[87]

[90,91]

Heparanase
(HPSE1/2) HPSE1-2

Bladder cancer
Brain tumors
Breast cancer
Gastric cancer

Head and neck cancers
Hepatocarcinoma

Mesothelioma
Myeloma

Ovarian cancer
Pancreatic cancer

Sarcoma

[92]
[93]

[94,95]
[96]
[97]
[98]
[99]

[100,101]
[102]
[103]
[104]

In addition to the differential expression and/or activity of the enzymes involved in the biosynthesis
or post-synthetic modification of HS chains, HSPG core proteins may also affect cancer development
and progression, either by preventing or promoting these processes [10,11,36,39,40]. The alterations in
the expression levels of HSPGs depend on their location and may represent a hallmark of the metastatic
or non-metastatic nature of the tumor. For example, while SDC1 results in being overexpressed
in left-sided colorectal tumors independently from the presence of metastasis, it results in being
upregulated only in metastatic right-sided colorectal cancers [31,105]. However, a significant reduction
of cell surface tethered SDC1 and an increase of shed SDC1 in the ECM has been observed as a
function of tumor progression and aggressiveness, suggesting the involvement of post-transcriptional
mechanisms in SDC1 expression in this type of tumor. Differential regulation of SDC1 expression
as well as of the other SDC isoforms, GPCs, and the other HSPGs has been found in several tumors
(Table 3) [105–153].

Table 3. Differential expression of individual HSPGs in cancer.

HSPG Changes in Expression Levels Type(s) of Cancer Reference(s)

SDC1

Increased
Bladder cancer, breast cancer, colorectal cancer, multiple

myeloma, ovarian cancer, pancreatic ductal
adenocarcinoma, squamous cell carcinoma

[29,31,35,105,108,109]

Reduced
Cancer stem cell, colorectal cancer, endometrial cancer,

hepatocellular carcinoma, mesothelioma, non-small-cell
lung cancer, prostate cancer, sarcoma

[35,108,110,111]

SDC2
Increased Bladder cancer, breast cancer, colorectal cancer, glioma,

lung cancer, melanoma, prostate cancer [112,113]

Reduced Osteosarcoma [114]

SDC3
Increased Bladder cancer, ovarian cancer, renal cell carcinoma [115–117]

Reduced Neuroblastoma [35]

SDC4
Increased Ovarian cancer, papillary thyroid carcinoma [115,118]

Reduced Neuroblastoma [35]

GPC1
Increased Breast cancer, esophageal squamous cell carcinoma,

glioma, pancreatic cancer [119–123]

Reduced Colorectal cancer, neuroblastoma [35,105]

GPC2 Increased Neuroblastoma, medulloblastoma, retinoblastoma [124,125]
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Table 3. Cont.

HSPG Changes in Expression Levels Type(s) of Cancer Reference(s)

GPC3

Increased
Liver cancer, lung squamous cell carcinoma,

neuroblastoma, ovarian cancer, testicular germ cell
tumor, thyroid cancer, yolk sac tumor

[125–129]

Reduced
Breast cancer, colorectal cancer, mesothelioma,

non-small-cell lung cancer, neuroblastoma,
renal cell carcinoma

[35,105,125,130]

GPC4
Increased Colorectal cancer, pancreatic cancer [31,131]

Reduced Breast cancer, ovarian carcinoma [125,132,133]

GPC5

Increased Rhabdomyosarcoma [35,134,135]

Reduced Breast cancer, glioma, hepatocellular carcinoma, lung
cancer, pancreatic cancer, prostate cancer [136–138]

GPC6
Increased Gastric cancer, melanoma [139,140]

Reduced Colorectal cancer, ovarian cancer, retinoblastoma [105,141,142]

Perlecan

Increased Hepatocellular carcinoma, melanoma, pancreatic cancer,
prostate cancer [35,38,143–146]

Reduced Breast cancer, colorectal cancer, lung cancer, ovarian
cancer, fibrosarcoma [35,38,105,143,144,147]

Agrin Increased Cholangiocarcinoma, glioma, hepatocellular carcinoma,
lung cancer, oral squamous cell carcinoma, rectal cancer [38,148–152]

Collagen type VIII
Increased Breast cancer, lung cancer, melanoma, ovary, pancreatic

cancer, prostate cancer [35,38,153]

Reduced Colorectal cancer [105]

High levels of SDC1 have been detected in squamous cell carcinomas such as those from cervix
uteri and esophagus, in invasive urothelial cancer, and lung cancer [108]. Overexpression of SDC1
correlates with tumor aggressiveness and poor survival in triple-negative breast carcinoma [109].
Both SDC1 and SDC4 are overexpressed in papillary thyroid carcinoma [118]. Conversely, reduced
expression of SDC1 has been found in mesothelioma, non-small-cell lung cancer, prostate cancer,
and sarcoma [35,108,110,111]. SDC2 expression is upregulated in breast, colon, and pancreatic cancers,
and melanomas, whereas high levels of SDC2 in neuroendocrine tumors correlate with a better survival
of patients [112,113]. On the contrary, a tumor-suppressor function for SDC2 correlated to apoptosis
dysregulation in osteosarcoma has been suggested [114]. Elevated expression levels of SDC3 have
been reported in bladder and ovarian cancer, and renal cell carcinoma [115–117], whereas low levels of
SDC3, SDC4, GPC1, and GPC3 are expressed in neuroblastoma [35].

Overexpression of GPC1 is a hallmark of breast cancer, esophageal squamous cell carcinoma,
and gliomas [119–121]. The upregulation of GPC1 and GPC4 is found in pancreatic cancer [122,123].
High expression of GPC2 has been detected in neuroblastoma and other pediatric cancers such as
medulloblastoma and retinoblastoma [124,125]. While CPG3 results in being overexpressed in liver
cancer, lung squamous cell carcinoma, neuroblastoma, ovarian cancer, testicular germ cell tumor,
thyroid cancer, yolk sac tumor and other cancers, reduced levels of GPC3 have been found in breast
cancer, colorectal cancer, mesothelioma, non-small-cell lung cancer, neuroblastoma, and renal cell
carcinoma [35,105,125–130]. Overexpression of GPC4 mRNA has been detected in metastatic colorectal cancer,
where GPC1, GPC3 and GPC6, perlecan, and collagen type VIII result in being downregulated [31,35,105].
While GPC5 expression is downregulated in breast cancer, glioma, hepatocellular carcinoma, lung cancer,
pancreatic cancer, prostate cancer, it results in being upregulated in rhabdomyosarcoma [35,134–138].
Overexpression of GPC6 is associated with gastric adenocarcinoma and metastatic progression of cutaneous
melanoma [140]. Increased expression levels of perlecan have been found in hepatocellular carcinoma,
melanoma, pancreatic and prostate cancer, whereas the upregulation of the expression of agrin has
been demonstrated in oral squamous cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma,
lung carcinoma, oral squamous cell carcinoma, and rectal cancer [35,38,144–146,148–152]. Reduced levels
of perlecan correlate with the progression of breast cancer, colorectal cancer, lung cancer, ovarian cancer,
and fibrosarcoma [35,38,105,143,144,147]. Finally, type VIII collagen results in being elevated in melanoma,
lung, breast, ovary, prostate, and pancreatic cancers [35,38,153].



Int. J. Mol. Sci. 2020, 21, 6588 7 of 29

Noticeably, in some cases, the HS chain and the protein core of an HSPG may have a distinct impact
on the same tumor. For example, in Lewis lung carcinoma, clones with a low metastatic potential
contain high levels of SDC2, whereas, in highly metastatic clones, SDC2 overexpression reduces
the invasive potential of cells due to the binding of HS chains to the fibronectin [112]. The expression
patterns of HSPGs in tumor cells and microenvironment in some cases correlate with those of ligands
that require HSPGs to elicit their cellular responses. [33–36,38–41,106,107]. The aberrant expression of
specific HSPGs in the various types of cancers significantly affects HSPG-ligand binding and subsequent
signaling, thus determining the malignancy of the tumor phenotype. Therefore, HSPGs can serve as
cancer-type-specific biomarkers, prognostic factors, and therapeutic targets.

It has been well established that cell surface and ECM secreted HSPGs may undergo a cleavage
process known as “shedding” which regulates the amount of HSPGs tethered to the cell surface
and that present in the pericellular microenvironment [10–14]. The enzymes involved in the HSPG
shedding depend on the type of HSPG and include the endoglycosidase heparanase and endosulfatases
that modify the structure of HS chains; matrix metalloproteinases (MMPs) and ADAMs, composed
of a disintegrin and MMP proteases, for SDCs shedding; the extracellular lipase Notum that
cleaves the GPI anchor of GPCs; and other proteases that cleave the core proteins of ECM secreted
HSPGs [33,34,37,39,42,154,155]. The cleaved HSPG products released in the tumor microenvironment may
have a significant impact on cancer cell behavior [91]. The proteolysis of the SDC juxtamembrane region
releases their whole ectodomains in the ECM [29]. Soluble SDC1 promotes the growth of myeloma tumors
in vivo, while shed SDC2 enhances colon, lung, and breast cancer progression [11,91,100,101,156,157].
SDC-1 shedding is associated with increased mitogenic activity and invasive potential of pancreatic cancer
cells, whereas shedding of SDC4 in human endothelial cells promotes wound healing, angiogenesis,
and inflammation [156,157]. Furthermore, SDC1 shedding has been shown to trigger a switch from a
proliferative to an invasive phenotype of breast cancer cells [158]. The cleavage of GPC1 by ADAM17
plays a role in the adhesion, proliferation and migration of oral squamous cell carcinoma cells [159].
At the basement membrane of the cells, perlecan can undergo shedding through heparanase, MMPs,
and other proteases [145]. The C-terminal fragment of perlecan, known as endorepellin, resulting
from the proteolytic cleavage of perlecan, may undergo further proteolysis that leads to the release of
the C-terminal endorepellin fragment LG3 whose levels are reduced in breast cancer [160]. LG3 and other
endorepellin fragments have been found in the secretome of colon and pancreatic cancers [161,162].
On the other hand, the proteases cathepsin L and elastase cleave the N-terminal hinge domain of collagen
type VIII, releasing the 22-kDa fragment endostatin which is known to inhibit the progression of several
types of malignant tumors, including melanomas, fibrosarcomas, and hemangioendothelioma [163,164].
Both MMPs and the serine protease cleave the HSPG agrin giving rise to 100-, 90-, and 22-kDa fragments
which are involved in cancer growth [38].

The above reported are only few examples of the broad impact of HSPG structural features in
cancer development and progression. Interestingly, the complexity of structural properties of HSPGs
translates in a variety of biological activities that may either positively or negatively regulate tumor
initiation and progression.

3. Functional Properties of HSPGs in Tumor Microenvironment

The sulfated HS side chains bearing multiple negative charges, but also protein cores, allow HSPGs
to bind and interact with a broad variety of signaling effectors in the tumor microenvironment [165].
These HSPG-ligand interactions serve multiple functions including the modulation of ligand distribution
and function, the restriction of ligand range of action on target cells, the prevention of ligand degradation,
the generation of morphogen gradients, the proper presentation of growth factors to their cognate receptors,
the transactivation of receptors in adjacent cells, the promotion of endocytosis and vesicular trafficking,
etc. [7,8,10–15,17,18]. In addition to a well-established role in development [20,23,26,104,165–167],
HSPG-ligand interactions play major roles in tumor stroma and tumor microenvironment by regulating
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cellular proliferation, differentiation, adhesion, migration, apoptosis, angiogenesis, inflammation, invasion,
and metastasis [3,22,24,25,28,33–40,107,143,165,168] (Figure 1).
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Figure 1. Schematic representation of the main HSPG functions relevant to cancer cell biology.
(A,D) HSPGs serve as a signaling co-receptor for growth factor activity, allowing a proper presentation
of them to their cognate receptors, on the same or adjacent cells. In panel D, transcellular transport
of a ligand (i.e., chemokine) bound to HS chains and its presentation at the cell surface is also
shown. (B,D) HGPGs bind integrins modulating their downstream signaling that regulates cytoskeleton
organization as well as cell adhesion, spreading and sensing mechanical stress. (C) HSPGs act as endocytic
receptors and undergo constitutive as well as ligand-induced endocytosis: exosomes, cell-penetrating
peptides, polycation–nucleic acid complexes, lipoproteins, growth factors, and morphogens enter cells
through this mechanism. Internalized cargo can be sorted for lysosomal degradation, escape into
the cytosol, or recycle back to the plasma membrane. (E) HSPGs are critical determinants of extracellular
matrix (ECM) assembly and remodeling. If the HSPGs perlecan, agrin, and collagen type XVIII are
directly secreted in the ECM, cell surface-tethered HSPGs (syndecans and glypicans) undergo proteolytic
cleavage of their ectodomains or to cleavage of HS chains by heparanases and their truncated forms can
be distributed in the ECM. Here, HSPGs act as a reservoir of growth factors and supply them to target
cells when needed. Otherwise, they may act as a barrier for growth factors, by preventing their passive
diffusion over longer distances, instead of confining them to the vicinity of producing cells. Overall,
HSPGs control fundamental cellular processes (i.e., cell adhesion, migration, etc.) whose dysregulation
underlies tumor development and progression.
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3.1. HSPG-Regulated Mechanisms in Cell-Matrix and Cell-Cell Interactions

One of the most studied molecular mechanisms of ligand-receptor complex formation and signaling
activation mediated by HSPGs is related to the action of fibroblast growth factor (FGF) family members
and their tyrosine kinase receptors (FGFR) [10–15,169]. The HS chain of HSPGs binds the FGF ligand
and receptor forming a ternary complex that promotes FGFR dimerization, and in turn activates
signaling. Depending on the tumor type, HSPG-regulated FGF binding and receptor dimerization
triggers the activation of four main signaling pathways, including mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase
B (AKT), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and protein kinase
C (PKC) pathways [15,35,125,170]. However, other HSPG-mediated FGF/FGFR downstream signaling,
such as Jun N-terminal kinase (JNK), ribosomal protein S6 kinase 2 (RSK2), and Rho GTPase pathways,
have been described to play a role in some cancers [35,125,171–173].

Commonly, the MAPK/ERK signaling cascade activated by FGFs is implicated in cell growth
and differentiation, the PI3K/AKT signaling cascade in cell survival and cell fate determination, and PKC
in cell polarity [174]. For example, these pathways are involved in SDC1 activation of FGF2-FGFR1
complex formation and downstream signaling leading to malignant transformation in lymphomas,
breast, and prostate cancer [16,106,107,175,176]. However, in breast cancer, while membrane-bound
SDC1 promotes cell proliferation and inhibits invasion through FGF2 mediated MAPK signaling,
soluble SDC1 deriving from proteolytic cleavage of membrane-bound SDC1 may trigger a switch
from a proliferative to an invasive phenotype through Rho GTPase pathways [159]. The shedding
of SDC1 serves an important role in the regulation of FGF2 signaling activation of the PI3K/Akt
pathway that promotes epithelial-mesenchymal transition, invasion, and metastasis of pancreatic
cancer cells [177]. In gliomas, GPC1 contributes to enhance mitogenic signaling via forming a ternary
complex with FGF2 and the FGFR and activating both MAPK/ERK and PI3K/AKT pathways [178,179].
In rhabdomyosarcomas, GPC5 enhances FGF2 signaling that leads to mesodermal cell proliferation
without inducing myogenic differentiation [134]. Furthermore, GPC5 regulates lung cancer development
through a complex pathway network, including FGF-mediated activation of MAPK, PI3K, and STAT
pathways [180]. The HS chains of perlecan are known to bind FGF2 promoting receptor activation,
and mitogenic and pro-angiogenic signaling in different tumors, whereas the protein core of perlecan is
implicated in FGF7 binding and activation of its receptor and downstream MAPK signaling leading to
human colon carcinoma cell growth [38,146,181].

In addition to FGF, HSPGs bind several other growth factors such as hepatocyte growth
factor (HGF), epidermal growth factor (EGF), heparin-binding epidermal growth factor-like growth
factor (HB-EGF), transforming growth factor (TGF) beta, vascular endothelial growth factor (VEGF),
and insulin-like growth factor-1 receptor (IGF1R), and modulate their signaling in a context-dependent
fashion [13,15] (Figure 2).

The HSPG-mediated signaling activation of HGF released in the tumor microenvironment and of its
receptor c-MET promotes ECM remodeling, inflammation, migration, angiogenesis, and invasion [182–184].
For example, in myeloma, shed SDC1 promotes HGF paracrine signaling that involves MAPK
and PI3K cascade activation resulting in enhanced cell proliferation and survival [176,185,186].
In pancreatic cancer, HSPG-mediated activation of HGF/c-MET signaling induces proliferation
and migration of tumor cells through the activation of ERK1/2 but not the AKT pathway [187].
Dysregulation of HSPG-regulated HGF/c-MET signaling in tumor microenvironment plays a key role
in hepatocarcinoma [188]. Strong evidence demonstrates a role for loss of HB-EGF in the tumor
microenvironment in neuroblastoma pathogenesis [189]. Indeed, HSPG-mediated binding of soluble
HB-EGF with EGF receptor activates ERK1/2 and STAT3 signaling pathways, resulting in neuroblast
differentiation and decreased proliferation [189]. Both SDC4 and GPC1 play a role in the EGF receptor
signaling activation involving PI3K/AKT, MAPK/ERK, and JAK/STAT pathways that affect the proliferative,
invasive, and migratory abilities of colon cancer cells [190]. Furthermore, SDC1 affects AKT and STAT3
signaling pathways activated by the EGF receptor in breast cancer stem cells from triple-negative breast
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cancer [191]. On the other hand, the HS chains of shed SCD1 bind HB-EGF, and thereby activate
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The shedding of HS chains from SDC1 in hepatocarcinoma cells facilitates lymphatic endothelial
cell proliferation through VEGF-C induced ERK signaling pathway [98]. In myeloma, SDC1-mediated
activation of the VEGF receptor on adjacent endothelial cells promotes AKT and ERK signaling
and stimulates tumor angiogenesis [192]. Similar VEGF activation by SDC1 occurs in melanoma
and ovarian carcinoma [193]. In pathologic lymphangiogenesis, association between SDC4, VEGF-C,
and VEGF receptor-3 triggers activation of ERK and AKT pathways leading to mitogenic and survival
responses [194]. The binding of shed perlecan to VEGF promotes activation of VEGF2 receptor signaling
thus sustaining cell survival via the AKT pathway and tumor angiogenesis in hepatoblastoma [195].

In pancreatic cancer cells, GPC1 interaction with TGF-β1 promotes SMAD pathway activation resulting
in cell growth inhibition [196,197]. However, TGF-β signaling may play a dual role in both pro-tumorigenic
and tumor-suppressive of pancreatic cancer, depending on tumor stage and microenvironment [198]. Indeed,
besides SMAD activation, TGF-β signaling can also be transduced through the non-canonical pathways
that include PI3K/AKT, JNK, MAPK, and Rho GTPase pathways [199]. In glioblastoma, the stem-like
population glioma-initiating cells rely on TGF-β for self-renewal, through activation of the JAK-STAT
pathway [199]. In hepatocellular carcinoma, GPC3 regulates TGF-β2 signaling that involves both SMAD
and MAPK/ERK pathways [200]. In fibrosarcoma, SDC2 mediates TGFβ2 transcriptional regulation via
Smad signaling that affects cell adhesion [112,201]. In the same type of cancer, SDC2 also mediates
IGF-I-induced activation of the ERK pathway facilitating cell migration [202]. A significant role of SDC4
on IGF-I receptor activation, together with the involvement of integrins and estrogen receptors, leading
to MAPK, PI3K/AKT, and/or PKC signaling pathways, in the breast cancer cell aggressiveness has been
established [203]. Furthermore, HSPG-mediated association of IGF-I with β1 integrin modulates adhesion
and migration of human multiples of myeloma cells via phosphorylation of FAK and paxillin, and activation
of ERK and PI3K/AKT signaling [204].
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In addition to acting as co-receptors for growth factors, HSGPs provide a unique functional activity to
the processes of cell-matrix and cell-cell adhesion relevant to cancer initiation and progression [40]. Indeed,
HSPGs are able to bind matrix proteins such as fibronectin, laminin, thrombospondin, and collagens,
and to modulate integrin activation either by direct binding or exposing the binding sites of matrix
proteins for integrin engagement, thus affecting focal adhesion assembly/disassembly and intracellular
signaling that regulates cell adhesion, spreading, and sensing mechanical stress [7,8,10–13,165,205–207].
The ectodomain and HS chains of SDC1, through αvβ3 integrin, induce ECM fiber alignment that
promotes the directional migration and invasion of breast carcinoma cells [208]. A ternary complex
formed by SDC1 ectodomain, IGF1 receptor, and αvβ3 integrin transduces angiogenic signals [209].
The interaction of the extracellular domain of SDC1 with αvβ3 and αvβ5 integrins regulates angiogenesis
and tumorigenesis in human mammary carcinoma cells, and myeloma [192,210]. On the other hand,
the interaction of the SDC1 cytoplasmic domain with the laminin receptor α6β4 integrin regulates ErbB2
tyrosine kinase activation leading to human squamous carcinoma cell spreading [211]. The protein core of
SDC1 supports α2β1 integrin-mediated cell adhesion to collagen, thus negatively regulating carcinoma
cell migration and invasion [111,212].

In addition to SDC1, also SDC2 acts as a co-receptor of α2β1 integrin, thus playing an important
role in regulating actin cytoskeleton organization and focal adhesion kinase signaling [16,213].
Such cooperation between SDC2 and α2β1 integrin represents a possible mechanism underlying
the tumorigenic activity of colon cancer cells [214]. This property correlates with the induction of
differentiation toward a migratory mesenchymal phenotype of colorectal cancer-derived HT-29 M6
epithelial cells [214]. In malignant breast cancer cells, SDC2 interaction with β1 integrin promotes
the invasive capacity of the cells by regulating the Rho GTPase activity [215]. SDC2 also cooperates with
α5β1 integrin for regulation of actin-cytoskeletal organization in cell adhesion to fibronectin in Lewis lung
carcinoma-derived metastatic cells, thus affecting their invasive capacity [216]. The integrin-dependent
focal adhesion kinase (FAK) regulates SDC2 induced tumorigenic activity of HT1080 fibrosarcoma
and melanoma cells [217,218]. Furthermore, SDC2 enhances FAK phosphorylation and the downstream
extracellular signal-regulated kinase (ERK) activity in colon cancer cells [219]. The involvement of
SDC4 interaction with β1 integrin in the development and metastasis of renal carcinomas has been
demonstrated [186]. While SDC4 interaction with α6β4 integrin mediates mammary carcinoma cell
migration [175], downregulation of SDC4 by FGF2-dependent dephosphorylation of FAK promotes
the migration of melanoma cells [220,221]. Activation of FAK by SDC4 in epithelial tumor cells resulting
in the transmission of mechano-transduction signals is important for cell spreading, actin cytoskeleton
assembly, and cell contractility [222]. A ternary complex formed by SDC4, α5β1 integrin, and endothelial
surface glycoprotein Thy-1 supporting cell-cell adhesion modulates mechano-signaling in melanoma
cells [223]. Finally, it has been shown that α-dystroglycan and β1 integrin act as receptors for perlecan
in oral precancerous lesions prior to the invasion, and the perlecan-induced signals to these receptors
trigger cell differentiation and proliferation of oral carcinoma cells [224]. On the other hand, endorepellin,
the C-terminal domain of perlecan, by simultaneously engaging α2β1 integrin and VEGF receptor 2
inhibits tumor angiogenesis [225]. The basal lamina and ECM localized HSPG agrin interact with αvβ1
integrin activating mechanotransduction signaling which promotes human liver cancer [149].

3.2. HSPG-Regulated Mechanisms in Tumor Microenvironment Remodeling

Multiple evidence demonstrates that HSPGs require proteolytic enzymes for ECM remodeling
and for modulating cell signaling in tumor microenvironment. Such an interplay between proteolytic
enzymes and HSPGs greatly contributes to the cancer pathogenesis [8,33,37,42,226]. In particular,
the metalloproteinases MMPs, ADAMSs, ADAMS with thrombospondin motifs (ADAMTSs),
and cathepsins are among the proteinases that cooperate with HSPGs in all the stages of cancer
development and progression, although in a cell- and tissue-specific manner. In addition to the role of
metalloproteinases in shedding which releases the ectodomain of cell surface-tethered HSPGs into
the extracellular milieu with the already described impact on tumor cells, HSPGs contain docking sites
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for these proteases which allow the formation of complexes and their allosteric activation. Indeed,
SDC2 acts as a docking receptor for pro-MMP-7 in colon cancer cells, promoting pro-MMP-7 processing
into the active MMP-7, and subsequent cleavage of MMP-7 substrate E-cadherin, which, in turn,
results in enhanced cell migration [219,227]. Similarly, GPCs associate with secreted MMP-9 to
mediate motility of colon adenocarcinoma cells [228]. The binding of SDC4 to ADAMTSs promotes
their activation, and subsequent tumorigenic signaling [229]. Furthermore, HS chains of HSPGs
can simultaneously interact with an active MMP and a substrate, forming a trimeric complex [230].
For example, the binding of SDC1 to ADAMTS-4 and MMP-17 triggers the activation of ADAMTS-4 [231].
HSPGs also interact with the cathepsin family of proteases that play key roles in several human
diseases, including inflammation and cancer [232–237]. In tumor microenvironment, the interaction
between HS side chains of HSPGs and secreted cathepsins regulates the stability and activity of these
proteases, by protecting them from alkaline pH-induced de-activation, facilitating their autocatalytic
activation, and promoting conformational changes in their structure that enhance their affinity for
substrates [234,236,237]. The HSPGs perlecan and collagen XVIII serve as substrates for specific
cathepsins resulting in the generation of endorepellin and endostatin, respectively, whose activity in
tumor microenvironment remodeling and cancer progression has been well established [163,164].

Finally, in tumor microenvironment, HSPGs are involved in compartment exchanges between cells
through extracellular vesicles (EVs), thus regulating communication between malignant and stromal
cells in tumor development [168]. It has been proposed that EV-associated HSPGs may function as
a dynamic reservoir of signaling molecules with potential implications in the exchange of ligands
between EVs and tumor target cells [238]. The release of EV within the tumor microenvironment
represents a mechanism by which cell-to-cell transfer of bioactive molecules occurs with a broad impact
on tumor growth, angiogenesis, and invasion [239].

In conclusion, HSPGs may regulate tumor microenvironment and cancer cell behavior through
either binding growth factors or their interaction with other effectors, resulting in different types of
downstream intracellular signaling that contribute to tumor promotion and progression.

4. Heparan Sulfate Proteoglycans as Therapeutic Targets for Cancer

Since already few years, HSPGs have been explored as potential targets for the treatment of cancers.
However, due to the polyhedric nature of these molecules in terms of both structure and functions,
different strategies have been developed to target HSPGs for cancer therapy. Specific domains of
proteoglycan core and/or HS chains as well as HSPG synthetizing and remodeling enzymes represent
potential therapeutic targets [205]. Among the explored approaches, there is the use of high-affinity
antibodies recognizing functional epitopes of HSPGs, HS mimetic compounds, cationic proteins which
interact with the highly anionic sulfate and carboxylate moieties of HS chains, natural and synthetic
peptides, small organic molecules that may affect either HSPG-protein interactions and subsequent
signaling or the HSPG biosynthetic machinery [4–6,29,32,37,155,156,165,239–243]. Some examples of
HSPG targeting-based therapeutics for cancer treatment are reported in Table 4.

Table 4. Selected examples of HSPG targeting-based therapeutics for cancers.

Type of Drug Target Type(s) of Cancer Reference(s)

Anti-GPC1 monoclonal antibody Glypican-1 Esophageal squamous
cell carcinoma [244]

Monoclonal antibody HS20 Glypican-3
HS chain

Hepatocellular
carcinoma [245,246]

Human single-domain antibody specific
for GPC2 Glypican-2 Neuroblastoma [247]

Human recombinant antibody OC-46F2 Syndecan-1 ectodomain Melanoma
Ovarian carcinoma

[193]
[248]
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Table 4. Cont.

Type of Drug Target Type(s) of Cancer Reference(s)

Antibody-pyrrolobenzodiazepine
conjugate Glypican-2 Neuroblastoma [249]

Antibody-auristatin F conjugate Glypican-1 Uterine cervical
squamous cell carcinoma [250]

HS mimetics G2.2 HSPG induced MAPK activation Colon cancer stem cells [251,252]

HS mimetics OTR4120 and OTR4131 HSPGs-mediated RANTES signaling Hepatocellular
carcinoma [253]

Peptidic HS mimetics
Synstatin

Syndecan-1/integrin/IGF1
complex formation

Mammary tumors
Hepatocellular

carcinoma

[210,226]
[254]

Xylosides HSPG biosynthesis Glioma
Lung cancer

[165,255,256]
[257]

HS mimetics RK-682 Heparanase Bladder cancer [92,258,259]

HS mimetics PG545 (Pixatimod) Heparanase
Mesothelioma

Lymphoma
Breast cancer

[260]
[261]
[262]

HS mimetics SST0001 (Roneparstat) Heparanase Sarcoma
Myeloma

[263,264]
[101]

HS mimetics M402 (Necuparanib) Heparanase Pancreatic cancer [251,263,265]

HS mimetics PI-88 (Mupafostat) Heparanase and Endoglucosamine
6-sulfatase

Hepatocellular
carcinoma [251,263]

Monoclonal antibodies 9E8 and H1023 Heparanase Lymphoma
Myeloma

[266]
[266]

Triazolo-thiadiazoles Heparanase
Hepatocellular

carcinoma
Lung cancer

[267]
[267]

Phenyl sulfonyl compound OKN-007 Sulfatase 2
Hepatocellular

carcinoma
Glioblastoma

[268]
[269]

Proteasome inhibitor (Bortezomib) Sulfatase 2 Breast cancer [270]

Several antibodies targeting distinct HSPG domains have been developed to date. An anti-GPC1
monoclonal antibody has shown potent antitumor activity in esophageal squamous cell carcinoma [244],
whereas a human monoclonal antibody against GPC3, HS20, destroying Wnt3a and GPC3 interaction
and subsequent signaling, exhibits elevated antitumor activity in liver cancer [245,246]. Two forms
of antibody therapeutics targeting GPC2 have been successfully developed for neuroblastoma
treatment [247]. The human antibody OC-46F2, specific for the ectodomain domain of SDC1, has proved
to inhibit tumor growth in experimental human models of melanoma and ovarian carcinoma by
blocking angiogenesis [193,248]. In some cases, antibody-drug-conjugates (ADC) consisting of a highly
cytotoxic small-molecule covalently linked to a monoclonal antibody that recognizes a cell surface
antigen have been developed. Indeed, a GPC2-targeted ADC obtained by conjugating a GPC2 directed
antibody with pyrrolobenzodiazepine dimers resulted in being effective in neuroblastoma [249].
Furthermore, an ADC composed of an anti-GPC1 antibody conjugated with auristatin F, an anti-tubulin
compound that inhibits cell division, has shown to be effective in uterine cervical squamous cell
carcinoma [250].

Both saccharidic and non-saccharidic HS mimetics have shown to affect tumor cells and components
of tumor microenvironment through different mechanisms, including the inhibition of cell surface-tethered
HSPG signaling and HSPG-mediated cell adhesion, spreading, and angiogenesis [165,251]. Small HS
mimetics molecules result in being effective in various types of cancers either administered alone or in
combination regimens and are characterized by good safety and tolerability profiles [242]. A sulfated
non-saccharide mimetics of heparin hexasaccharide, G2.2, inhibits colon cancer stem cells [252]. The HS
mimetics OTR4120 and OTR4131 exhibit anti-tumoral effects in human hepatocellular carcinoma by
interfering with HSPGs-mediated RANTES signaling [253]. Synstatin, a short peptide mimicking
the SDC1 ectodomain responsible for αvβ3 or αvβ5 integrin/IGF1 complex formation and receptor
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activation, has been proved to be effective in mammary tumors and hepatocellular carcinoma [210,226,254].
Another approach in cancer therapy uses HS mimetics in conjunction with inhibitors of the exosites
of proteases (i.e., cathepsins), thus interfering with HS/proteinase binding and proteinase catalytic
activities [254].

Inaddition, targeting HSPGbiosyntheticandpost-translationalmodifying enzymessuchasendosulfatases
and heparanase represents an effective therapeutic intervention for cancer treatment [266–270]. An approach is
represented by the manipulation of HSPG synthesis using xylosides that, competing with core proteins for HS
binding, promote the secretion of xyloside-primed HS chains and core proteins with reduced, or completely
lacking, HS chains [165]. The reduced glycosylation of cell surface proteoglycans affects HSPG-dependent
growth factor and chemokine signaling, thus inhibiting angiogenesis, tumor growth, and invasion. Treatment
with xylosides also attenuates EV-mediated intercellular transfer of signaling molecules regulated by HSPGs,
resulting in a reduction of cancer cell migration and invasion [238,239]. On the other hand, different
modalities for targeting EV-mediated intercellular communications have been proved to represent a useful
strategy to prevent tumor progression and metastasis [271]. In addition, HS mimetics as well as antibodies,
and other modulators have been developed to target heparanase and sulfatases involved in the regulation
of HSPGs in tumor microenvironment [92,101,165,251,260–270]. Indeed, the HS mimetics PI-88, PG545,
and M402 have been shown to exert anti-angiogenic and antimetastatic effects by inhibiting heparanase in
several types of cancers [89,224–230]. Furthermore, heparanase neutralizing monoclonal antibodies attenuate
myeloma and lymphoma tumor growth and dissemination [155,251,261,262,265,266]. Recently, a novel class
of triazole-thiadiazole small molecules with heparanase inhibitory activity has shown the ability to reduce
the metastatic potential of hepatocellular carcinoma [267]. In addition to heparanase, sulfatases that remove
the O-sulfate group from HS chains have been explored as targets for cancer therapy [91]. The human
sulfatase 2 (SULF2) inhibitor 2,4-disulfophenyl-N-tert-butylnitrone (OKN-007) exhibits antitumoral activity
in hepatocellular carcinoma and glioblastoma by affecting TGFbeta1/SMAD signaling, and cell proliferation
and angiogenesis, respectively [268,269]. On the other hand, proteasomal inhibitors such as MG132, Lactacystin,
and Bortezomib treatment abolish SULF2 expression in multiple breast cancer cell lines [270]. Inhibition of
human sulfatase 1 (SULF1) inhibits the malignant phenotype of gallbladder carcinoma cells by hindering
the cell response to growth factors [272]. Thus, the modulation of tumor microenvironment by affecting
the structure and/or activity of HSPGs represents an effective therapeutic strategy for preventing tumor growth
and progression.

5. Concluding Remarks

A huge amount of data demonstrates that HSPGs are key players in tumor growth, invasion,
and metastasis, due to their capability to influence tumor microenvironment and, in turn, tumor cell
fate. Indeed, these multifunctional molecules by interacting with matrix effectors, cell surface receptors,
and enzymes are involved in the complex network of cell-cell and cell-matrix interactions that dictate
tumor cell behavior. The extensive remodeling of tumor microenvironment during cancer development
and progression is associated with changes in the expression levels of HSPGs as well as in structural
and functional alterations of HSPGs that affect cancer cell phenotype. Advances in understanding
the molecular mechanisms underlying HSPG structural and functional variability in malignancy has
provided promising HSPG-based therapeutic approaches for cancer treatment. HSPG targeting-based
tumor treatment may involve the use of: (i) antibodies targeting selected HSPG epitopes or synthetic
molecules that interfere with the functional binding of HSPGs with ligands such as growth factors
or integrins and other receptors, thus affecting the downstream signaling and the related cellular
processes such as adhesion, proliferation, migration, and invasion; (ii) small molecules that interfere
with EV-mediated intercellular transfer of signaling molecules regulated by HSPGs; (iii) specific
inhibitors or proteinase inhibitors that prevent HSPG shedding; (iv) drugs that regulate the expression
levels of HSPGs in tumor microenvironment. However, as the knowledge on the multifaceted roles
of HSPGs in tumor microenvironment progresses, innovative HSPG structure/function targeting
strategies are explored to fight cancer.
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NDST N-deacetylase/N-sulfotransferase
OST heparan sulfate-O-sulfotransferase
PI3K phosphatidylinositol 3-kinase
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