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Next-generation sequencing (NGS) methods lie at the heart of large parts of biological and medical

research. Their fundamental importance has created a continuously increasing demand for processing

and analysis methods of the data sets produced, addressing questions such as variant calling,

metagenomic classification and quantification, genomic feature detection, or downstream analysis in

larger biological or medical contexts. In addition to classical algorithmic approaches, machine-learning

(ML) techniques are often used for such tasks. In particular, deep learning (DL) methods that use

multilayered artificial neural networks (ANNs) for supervised, semisupervised, and unsupervised

learning have gained significant traction for such applications. Here, we highlight important network

architectures, application areas, and DL frameworks in a NGS context.
Introduction
Recent years have seen a tremendous increase in the volume of

data generated in the life sciences, propelled especially by the rapid

progress of high-throughput sequencing (HTS) technologies, such

as Illumina systems. Low sequencing cost per genome (www.

genome.gov/sequencingcosts) renders large projects feasible,

which increases the statistical power provided by larger data sets.

The abundance of generated genomic and transcriptomic se-

quencing data allows us to address a plethora of questions that

could not be answered previously, with numerous applications in

precision and personalized medicine as well as drug discovery.

Examples include more reliable transcriptomic studies, which can

detect disease-related expression patterns, or expression differ-

ences as the adverse effect of drug treatment [1,2]. Better variant

calling and genome-wide association studies (GWAS) can have

tremendous importance for personalized medicine [3]. Improved

metagenomics can yield crucial information about ecosystems,

such as the human gut microbiome, bacterial populations in

hospitals, or viral evolution in patients. NGS methods are also a

cornerstone of research into epigenetics associated with a variety

of diseases [4]. They also have a role in understanding the origins
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and epidemiology of severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV2) [5].

The enormous growth in data continuously shifts the life

sciences from a model-driven toward a data-driven science. As

in other fields of science, we now see an increasing adoption of

methods from statistical learning that are not ‘seeded’ with a

biological model in mind, but rather attempt to learn directly

from data. In particular, DL methods based on multilayered ANNs

have increased in popularity.

ANNs have a long history in ML, reaching back to Rosenblatt’s

biologically inspired Perceptron model [6] from 1958. Early ANNs

were severely restricted in their size (number of layers and number

of neurons per layer) and, consequently, were unable to compete

with other popular ML techniques on complex tasks. However,

groundbreaking improvements in parallel and vectorized comput-

er hardware, such as graphics processing units (GPUs), in neural

network design, and in algorithmic approaches to training of

ANNs led to the development of so-called ‘deep learning’ methods,

where ANNs typically contain large numbers of hidden layers.

Such deep networks have allowed revolutionary results in fields

such as computer vision, voice or text recognition.

We are already starting to see the adoption of several cutting-

edge DL techniques for the analysis of NGS data. They have shown

to be successful for a variety of important problems and, thus,
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could become pivotal as the application of NGS continues to

transcend from bench to bedside.

Deep learning
ML models attempt to solve specific tasks without being told

explicitly what to do in detail. Instead, ML methods make use

of available data related to the task at hand to build statistical

models. In supervised ML methods, model inference makes use of

labeled training data, where data points are annotated with the

‘true’ outcome. This allows for the inference of models for the

relationship between input and output on this training data set,

which then need to be validated on independent test and/or

validation data sets to prevent overfitting to the distribution of

the training data set. By contrast, unsupervised ML methods are

trained from unlabeled data samples. Important examples are

clustering and anomaly detection techniques.

The field of ML has generated numerous approaches for the

different kinds of learning task. Interestingly, Wolpert’s no free

lunch theorem for ML [7] states that every possible ML algorithm

has the same error rate on previously unobserved data points when

averaged over all data-generating distributions. Hence, if no addi-

tional assumptions on the data-generating process can be made,

no ML method can be assumed universally better or worse than

any other on previously unobserved data. In practice, however,

this is unrealistic, because prior knowledge about the problem

domain will typically render some data-generating distributions

more likely than others. Such assumptions can be formulated as

priors on the data-generating process. One prior that is common is

the smoothness or local constancy prior [8], stating that similar

input data points should feature similar output values. Although

this is obviously realistic in many application scenarios, relying

purely on smoothness requires the availability of large amounts of

training data to exploit it. Roughly speaking, if smoothness is all

we can rely on to infer values, we need training examples close to

each data point for which we want to perform inference. Thus, to

successfully build ML models requires knowledge about the

expected characteristics of the data-generating distribution on

the one hand, and the ability to encode such knowledge in the

model on the other.

DL models in general encode one particular additional prior on

the data-generating process: the idea that the relation of input to

output is expressed in terms of the hierarchical composition of

multiple simpler functions or building blocks. This admittedly

mild assumption already provides considerably more structure

than a simple local constancy prior. In addition, further assump-

tions about the prior can be encoded through the topology of the

deep neural networks.

The idea of learning relevant features as the (potentially multi-

level and hierarchical) composition of simpler features turns out to

be one of the most important reasons for the popularity of DL

methods. Although most learning approaches require sophisticat-

ed feature engineering [i.e., the identification and preparation of

informative input features that need to be optimized (mostly

manually) for each problem domain], deep networks often identi-

fy highly useful features themselves. Their hierarchical nature

further allows for the composition of more advanced or refined

features from simpler ones, such as building corners and contours

from edges, which are themselves identified from raw input pixels.
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Once a deep network has identified such hierarchical features

for a certain problem domain, it is often possible to transfer the

feature representation (i.e., several layers of the deep network) to

a new ML problem in the same domain. This has tremendous

impact on the practical use of deep networks: training such

networks from scratch not only places great demands on the

compute infrastructure, but also typically requires very large

training data sets. After all, modern deep networks easily have

tens of millions (or even billions) of parameters that need to be

determined [9]. However, a large percentage of those parameters

participate in the build-up of features of interest, transferring the

raw data into a representation more amenable to regression or

classification tasks.

Here, we briefly review the most important ANN architectures

(Fig. 1) in the context of NGS applications.

Artificial neurons
The basic building block of ANNs are artificial neurons (Fig. 1a),

which are simply scalar functions of n+1 input variables xi, 0�i�n.

These inputs are processed and fed into a nonlinear function

known as the activation or transfer function.

Most activation functions are applied to a weighted sum s :¼
Pn

i¼0 wixi ¼ w
t
x of the input vector x. Usually, x0 is kept fixed as

x0: = 1, such that w0 takes the role of a bias term in s. The sum s is

then fed into the activation function ’ðx; u
Þ
to yield the output of

the neuron: y :¼ ’ðwt
x
;u Þ. In this model, the weights w are treated

as additional parameters. Together, the weight vector w and the

parameters u of the activation function form the set of unknowns

of the neuron that are learned as part of the training process.

Three kinds of activation function are most frequent in practice.

The first are biologically inspired approximations of the action

potential. These functions are typically sigmoidal in nature, and

are usually modeled by a hyperbolic tangent as ’ xð Þ :¼ tanhðxÞ.
The second kind of activation function is either linear or almost

linear, such as the popular rectified linear units or ReLU [10],

which are defined as ’ xð Þ :¼ maxfx; 0g. The third kind of popular

activation function, the so-called softmax-function [11,12], is

neither scalar nor does it use a weighted sum of the input variables.

Instead, it models a probability distribution for k different out-

comes or classes according to the Boltzmann distribution

’ xð Þi :¼ exiPn

i¼1
exi
.

Historically, sigmoidal activation functions used to be the most

popular choice for all neurons in the network. Today, they are

usually only used in the final output layer. The main reason for this

choice is their behavior during gradient-based training, in that

sigmoidal activation functions tend to saturate easily into either

an on- or off-state where gradients vanish. Hence, training such

functions is challenging. As a result, the default activation func-

tion for inner layers of a deep network today is usually a variant of

ReLUs, whereas (truly) linear, sigmoidal, or softmax-functions

mostly occur in the output layer.

Deep network architectures
Deep networks are created by combining several artificial neurons

into a common topology. Conceptually, the neurons are orga-

nized into layers, where the output of one layer is fed into (at least)

one other layer. Layers below the final output layer are also known

as hidden layers.
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FIGURE 1

Overview of ANN architectures: (a) An artificial neuron maps an input vector xi, 0�i�n, to a scalar output y by applying a nonlinear activation function w to a
weighted sum s :¼ Pn

i¼0 wixi ¼ w
t
x. (b) A multilayer perceptron (MLP) comprising an input layer, a fully connected hidden layer, and an output layer. (c) A

single layer of a convolutional neural network (CNN), where matrix multiplication is replaced by a convolution with a small filter kernel matrix, the entries of
which are learned during training followed by a ReLu activation function and (max)pooling. (d) Recurrent neural networks (RNNs) feature feedback connections
to earlier layers and can be trained to learn time-dependent relations. (e) Autoencoders (AEs) are designed to identify useful data encodings in an unsupervised
setting. (f) Generative adversarial networks (GANs) train two networks simultaneously. The generator produces new data points, whereas the discriminator
classifies data points as either genuine or fake.
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Feed-forward networks
In the simplest kind of deep network architecture, the so-called

feed-forward networks or multilayer perceptrons (MLPs), informa-

tion only flows forward along the layer stack. Figure 1b shows an

MLP with a single hidden layer. In the context of NGS data, such

networks are typically not directly used on DNA/RNA sequence

data but on derived features or summaries in tabular form, such as

k-mer histograms. In addition, they are also often an essential part

of more complex networks, such as final layers of convolutional

neural networks (CNNs) or recurrent neural networks (RNNs).

Convolutional neural networks
In CNNs, the matrix multiplication in at least some of the layers is

replaced by a convolution with a (typically rather small) filter

kernel matrix the entries of which are learned during training.

Given that convolution allows for the replacement of values by
weighted averages over their spatial neighborhood, it enables the

encoding of information about spatial structures or patterns.

Convolution is often followed by an operation known as pooling,

which combines the results of several convolutions into a single

output. For example, max-pooling replaces a set of convolution

results by their maximum value. This allows for a certain degree of

invariance; for instance, in computer vision, max-pooling convo-

lution with the same filter kernel over several neighboring pixels

can yield translation invariance. Give that it is often useful to

compute the same convolutions at each input value (meaning that

the same spatial pattern is compared with each input point), CNNs

mostly use parameter sharing where several neurons are con-

strained to use the same filter kernel.

Figure 1c illustrates the design of a single convolutional layer of

a CNN. In the context of analyzing NGS data, CNNs are often

applied to pile-up images of multiple sequencing read alignments
www.drugdiscoverytoday.com 175
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TABLE 1

Summary of DL methods for the analysis of NGS data in the four selected application areas

Application area Method NN architecture Framework Refs

Variant calling Deep Variant CNN Nucleus and TF [14]
NeuSomatic CNN PyTorch [17]
Clairvoyante CNN TF [15]
Clair RNN TF [16]
DeepSC CNN TF [17]
CNNScoreVariants CNN TF [18]

Metagenomics DeepMicrobes LSTM TF [22]
seq2species CNN TF [23]
GeNet CNN TF [24]
Meta2 MIL – [25]

Transcriptomics AutoImpute AE TF [27]
DCA AE Keras and TF [28]
scScope AE TF [29]
scvis AE TF [30]
scDeepCluster AE Keras and TF [31]
DeepImpute MLP Keras and TF [32]
scIGain GAN PyTorch [33]

Epigenetics DeepCpG CNN & RNN Keras and Theano [34]
MRCNN CNN Keras and TF [35]
FunDMDeep-m6A CNN Keras and TF [36]
DeepSEA CNN Torch [38]
DeepBind CNN C++ and Python [39]
DanQ CNN & LSTM Keras and TF [40]
DeepHistone CNN PyTorch [41]
DeepLift CNN Keras and TF [52]

Review
s
�G

EN
E
TO

SC
R
EEN
to detect localized patterns for identifying mutations or sequence

motifs.

Recurrent neural networks
In contrast to feedforward networks, RNNs feature feedback con-

nections to earlier layers (Fig. 1d). These kinds of network can be

trained to learn not only single points, but also sequences, with

important applications in areas such as handwriting or voice

recognition. Networks aimed at such tasks need the ability to carry

information over to later parts of the sequence to identify nonlocal

relationships. General RNNs can in principle carry the information

infinitely far. However, this renders training challenging for rea-

sons of numerical stability. Long short-term memory (LSTM) net-

works solve this problem partially by organizing the network into

cells with input, output, and forget gates. Information flows into

these cells, is processed, and produces an output, but collected

information can be forgotten by exiting through the forget gate.

In the context of NGS, RNNs are often used for comparing

sequencing reads to entire genomes or genome collections (e.g.

for metagenomic read classification), but are also successfully used

by base callers for long-read sequencing technologies.

Autoencoders
Autoencoders. (AEs) are particular network architectures designed

to identify useful data encodings in an unsupervised setting. The

general idea involves simultaneously learning encoding and

decoding (Fig. 1e). Training attempts to yield as faithful a recon-

struction as possible while simultaneously respecting desirable

properties of the encoding, such as resistance to noise or sparsity.

AEs are frequently used for unsupervised learning tasks in the area

of (single-cell) RNA-seq, with examples including imputation of

missing data, cell clustering, and visualization.
176 www.drugdiscoverytoday.com
Generative adversarial networks
In addition to regression and classification tasks, deep networks

can be used to generate virtual or simulated data sets. A popular

architecture for this task are generative adversarial networks

(GANs), where two networks are trained simultaneously. The

first of these networks (the generator) produces new data points

whereas the second network (the discriminator) classifies data

points as either genuine or generated by the generator. During

training, the objective of the generator is to create data points

that the discriminator cannot distinguish from the input data

sample, whereas the discriminator is trained to recognize gener-

ator results. Figure 1f illustrates the architecture of a GAN. Using

GANs for NGS data analytics is still new but we are starting to see

the first applications in the area of single-cell RNA-seq data

imputation.

Applications
We identified four important application areas (variant calling,

metagenomics, single-cell transcriptomics, and epigenetics) where

the analysis of NGS data based on DL has already shown great

potential. The reviewed methods are summarized in Table 1 and

highlighted in the following sections.

Variant calling
Variant calling aims to detect genomic variants directly from NGS

data. The simplest type of variant are point mutations (single

nucleotide variants; SNVs). Typical SNV-calling applications in-

clude single nucleotide polymorphism (SNP) genotyping and

detecting somatic SNVs within an individual using multiple tissue

samples. The identification of more complex genetic variations,

such as long indels or copy number variations (CNVs), from NGS

data is also important but typically more difficult.
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The computational variant-calling process relies on the initial

alignment of NGS reads to a given reference genome sequence.

Traditional algorithms, such as the GATK [13], apply numerous

statistical models and hand-tuned heuristics to predict the likeli-

hood of variation at each position, for instance based on quality

scores and allele counts of aligned reads at that position. However,

sequencing errors typically depend on alignment positions and

the instrument types. This renders the task of designing accurate

statistical models to distinguish variants from sequencing errors or

alignment artifacts difficult. Using a supervised DL model for

variant calling can replace the need for handcrafted heuristics

by a system that has the ability to learn characteristic patterns

directly from data.

The basic idea is to transform aligned reads centered on the

location of interest (candidate variant) into images and apply

CNNs known from solving computer vision tasks. This choice is

motivated by the fact that inputs can be viewed as images of read

pileups and that the complex dependence of variants on neigh-

boring aligned reads could be modeled by convolutional kernels.

DeepVariant [14] pioneered this approach for calling SNPs and

small indels using the well-known Inception-v3 network architec-

ture, which outputs genotype likelihoods for the candidate loca-

tion (i.e., homozygous reference, heterozygous or homozygous

alternative). The authors showed that it outperformed a variety of

state-of-the-art classical methods for calling variants on an unseen

Ashkenazi male sample (NA24385 for the PrecisionFDA Truth

Challenge) when trained on another sample (Genome-in-a-Bottle,

NA12878). Furthermore, generalization of this approach to other

instruments and organisms (mouse) could be shown.

This idea paved the way for other architectures that are more

specifically optimized towards DNA data. Clairvoyante [15] uses a

multitask CNN for single-molecule sequencing data requiring

around one order-of-magnitude fewer parameters compared with

DeepVariant and achieves particularly good performance for long-

read technologies. Its successor, Clair [16], further improves accu-

racy by using an RNN comprising bidirectional LSTMs followed by

feedforward network layers and a softmax activation function that

outputs likelihoods of various types of indel and SNP.

Neusomatic [17] focuses on somatic variant calling from tumor

samples. Instead of using read pile-ups as images, this approach

uses features extracted from each alignment column as inputs to

the neural network. This leads to a simplified CNN architecture

with lower computational complexity for both training and infer-

ence, which can still outperform traditional somatic mutation

detection methods. CNNScoreVariants [18] proposes some further

optimizations of the network architecture and has already been

integrated in the new version of GATK. We expect to see more DL

methods being developed for the detection of complex structural

variations, as has already been proposed by DeepSV [19] for calling

long deletions.

Metagenomics
Metagenomics deals with sequencing data obtained from environ-

mental samples. An important processing step is taxonomic read

assignment. Classical approaches, such as Kraken [20] or Meta-

Cache [21], simply count exact k-mer matches to a reference

database to assign a read to a likely species of origin. This problem

can also be defined as a supervised learning task by considering
each species of interest as the output category and NGS reads as the

input. The size of reference genomes (which is significantly longer

compared with short reads) and the large number of classes

(typically many thousands for bacterial samples) make this classi-

fication problem complex and more suitable for RNN architec-

tures. DeepMicrobes [22] investigated the performance of several

supervised network models and found that a bidirectional LSTM

with self-attention mechanism using k-mer embedding surpassed

CNNs for this task because of its ability to model taxonomic

signatures. CNNs have been applied for the (simpler task of)

classification of 16S rRNA reads [23] and for representation learn-

ing from metagenomics long reads [24]. However, taxonomic

classification of (short) whole-genome shotgun sequencing reads

is more challenging because the ANN needs to learn many ge-

nome-wide patterns during training, whereas only information

from a short genomic fragment is used for inference. Recent work

has also extended this approach to the task of abundance estima-

tion from a metagenomics sample by formulating it as a multiple

instance-learning problem [25]. However, current DL approaches

are still significantly slower than classical k-mer counting proce-

dures. Furthermore, the size of their utilized reference genome

databases is usually limited. Thus, the design of fast yet highly

accurate methods for large-scale reference databases continues to

be of relevance in this area.

Single-cell transcriptomics
Single-cell RNA-seq (scRNA-seq) protocols are gaining increasing

attention because of their ability to profile the transcriptome of

thousands or even millions of cells in a single assay. The input to

corresponding analysis tasks is typically a gene expression matrix,

which can be computed by mapping reads to a reference tran-

scriptome resulting in an estimation of the expression of each gene

within each cell [26]. Clustering is of central importance to iden-

tify putative cell types. This is challenging because of large data set

sizes, high dimensionalities, and dropout events (because of lowly

expressed genes leading to many zero entries in the expression

matrix), which motivates the application of unsupervised ML

methods for clustering, imputation, and dimensionality reduc-

tion.

DL techniques in this area are currently dominated by various

types of AE because of their ability to efficiently learn inherent

distributions using dimension reduction in an unsupervised man-

ner. Several imputation methods (AutoImpute [27], DCA [28], and

scScope [29]) based on this approach have been proposed that can

outperform state-of-the-art classical approaches. scvis [30] and

scDeepCluster [31] provide generative models based on AEs to

compute low-dimensional embeddings while preserving global

structure of the high-dimensional measurements that are used

for clustering.

It would be interesting to apply other unsupervised methods

besides AEs, as has already been investigated in recent work.

DeepImpute [32] imputes genes in a divide-and-conquer approach

by constructing multiple sub-neural networks, whereas scIGAIN

[33] uses a GAN to build a generative model of the data.

Epigenetics
Quantitative detection of epigenetic signals, such as DNA/RNA

methylation or histone modification, from NGS data is an impor-
www.drugdiscoverytoday.com 177



REVIEWS Drug Discovery Today �Volume 26, Number 1 � January 2021

Review
s
�G

EN
E
TO

SC
R
EEN
tant technique for understanding many biological processes. For

example, methylation levels can be measured by using bisulfite

sequencing (BS-seq) data, whereas histone modifications are often

profiled based on chromatin immunoprecipitation followed by

sequencing (ChIP-seq) data.

DeepCpG [34] uses a joint DL module based on a CNN (DNA

module) and a bidirectional gated RNN (CpG module). CpG

methylation is predicted from both local DNA sequence windows

and observed neighboring methylation states determined from

read counts mapped to a reference genome. Whereas the DNA

module is designed to detect motifs, the CpG module compresses

patterns of CpG states into a feature vector. MRCNN [35] claims to

be more precise for this task by using a CNN. The detection of other

methylation signatures from specifically developed transcriptomic

sequencing protocols using ML techniques, such as m6A [36] or

m1A [37], is also becoming increasingly popular and we expect to

see more DL solutions in this area.

DeepSEA [38] and DeepBind [39] were the first to apply CNNs to

modeling the sequence specificity of protein binding from large-

scale chromatin-profiling data successfully. Instead of handcraft-

ing feature sets, this approach can learn informative sequence

features automatically and achieves superior performance to con-

ventional methods. Subsequently, a hybrid model named DanQ

[40] was designed for that task and combines a CNN with an LSTM.

More recently, DeepHistone [41] proposed a joint neural network

module similar to the DeepCpG approach

Deep learning frameworks
Early DL approaches for analyzing NGS data, such as DeepBind,

had to be built from scratch, which can be challenging. Fortunate-

ly, excellent frameworks for the implementation of deep networks

now exist that greatly facilitate the network development. The

right column of Table 1 shows the utilized frameworks for the

methods reviewed earlier.

Such frameworks provide common activation functions, handle

gradient computation, training, and usually feature optimized

implementations for different accelerator architectures, such as

GPUs or tensor processing units (TPUs). Tensorflow [42] (TF) has

been the most popular framework in the context of NGS and geno-

mics. Although TF is designed to be general and applicable to a

variety of computational tasks, it is mostly aimed at ML, in particular

at deep network architectures. Currently, TF is mostly seen as a low-

level framework. Thus, for many application scenarios that do not

require such low-level access, higher-level abstractions based on

user-friendly APIs, such as Keras [43], are used, as is the case for

many of the newer published DL methods for transcriptomics and

epigenetics. The PyTorch framework [44] offers similar functionality

but is less popular than TF in the area of NGS. Furthermore, several

other frameworks (rarely used in the context of NGS) are currently

available (e.g., CNTK [45], Theano [46], or Flux [47]).

Recently, large Cloud providers have also started to offer DL

platforms. This includes facilities for distributed computation of

TF- or PyTorch-jobs, but also offerings such as Google’s Cloud

AutoML or Amazon’s SageMaker, which promise mostly automat-

ed model training. In these packages, end-users can typically,

using an intuitive graphical user interface, upload the training

data, choose what kind of ML to perform, and highlight the

property that is to be inferred. The framework will then automati-
178 www.drugdiscoverytoday.com
cally build an appropriate ML model and train it on the provided

data. Although such automated models are currently rather re-

stricted compared with handcrafted approaches designed by a

specialist, they already serve as a means to commodify the gener-

ation of learning methods.

With the growing popularity of DL methods for analyzing

sequencing data, several software frameworks and packages spe-

cifically designed for bioinformatics data have been introduced

recently. Libraries, such as Nucleus [48] or Janggu [49], can be used

alongside Keras, TF, or PyTorch. They offer dedicated objects for

processing biological sequence data, which makes it easy to read,

write, analyze, and visualize data in common genomics file for-

mats, such as BAM, FASTA, bigWig, VCF, or BED.

Discussion, outlook, and concluding remarks
The success of DL in computer vision and speech/language proces-

sing has motivated the applications of these methods in bioinfor-

matics. Processing of NGS data is of particular importance because

corresponding methods lie at the heart of biomedical research,

with important applications to many areas, including drug dis-

covery. Consequently, researchers are actively designing and using

deep neural networks for corresponding tasks. CNNs, RNNs, and

LSTMs are already used in practice based on supervised learning,

such as variant calling, metagenomics, or epigenetics. Unsuper-

vised tasks (in particularly for RNA expression data) are currently

dominated by AEs, but we are beginning to see the application of

more recent architectures, such as GANs.

The intricate connections in deep networks lead to complex and

interwoven interactions between input features and eventual out-

comes. Often, the nets lead to hierarchical structures of interac-

tions. These are crucial, on the one hand, for the automated

learning of representations, and for the connected field of transfer

learning. On the other hand, they often render a straightforward

interpretation of the influence of input features on model out-

come, which is possible for many alternative ML approaches,

infeasible. For example, although, for linear approaches, the coef-

ficients of the trained model globally decide the importance of

input features on model outcome, deep networks require a more

involved analysis. Hence, feature importance scores in DL are

usually derived for each input separately and, thus, yield a local

answer about feature importance rather than a global one. One

way to generate such importance scores for a given input involves

perturbing it in a systematic manner (i.e., in the case of genomic

sequences, mutating nucleotides, introducing gaps, etc.). The

change in outcome then yields information about the importance

of the perturbed feature at this point in a high-dimensional input

space. Although this approach is very general, the number of

perturbations required to yield useful feature importance scores

grows rapidly. Alternatively, feature importance scores can be

derived directly from a backpropagation pass through the model

(e.g., [50]). Although this approach is considerably faster and more

scalable than input perturbation, many backpropagation-based

feature importance scores suffer from problems arising from neu-

ron saturation [51]. Some methods, such as DeepLIFT [50] try to

avoid this and related problems. A recent example in the context

of NGS is the design of an interpretation tool that learns predictive

motif representations for cooperative transcription factor binding

interactions from ChIP-nexus sequencing data using DeepLift [52].
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However, there is not yet a consensus on which feature importance

scoring methods work best in which scenarios.

As discussed in this review, DL for the analysis of NGS data has

great potential. So much potential, in fact, that it is sometimes

used as a hammer that makes all problems look like nails. Contrary

to this trend, we do not believe that DL will replace the need for

classical sequence algorithmic. Instead, ML approaches in general,

and DL in particular, will be most useful in scenarios where there is

insufficient knowledge to model the system or process of interest

accurately. Many classical ML approaches rely on an initial defini-

tion of suitable features that are informative of the output. This

feature engineering can be complex in practice, and often requires

a similar level of understanding of the problem domain as building

a non-ML model would. One of the main advantages of DL is that

suitable network architectures are often able to perform much of

the feature engineering themselves by learning suitable feature

representations from the raw data as part of their training. Fur-

thermore, such representations can often be transferred to other

ML tasks on the same input data, such that training a sequence-

based model for motif detection on a large data set, for example,

can help to train sequence-based models for other tasks for which

there are fewer data available. ML and classical modeling do not

have to exclude each other. Recently, the tight integration of

scientific models with ML machinery, sometimes called scientific

machine learning, has received considerable attention.

As NGS methods become increasingly important for drug dis-

covery [53,54], DL techniques for NGS data analysis can be

expected to have a similar impact as they have had in other fields.

In drug development pipelines, the target discovery and validation

stages as well as clinical trials and postapproval work are most

affected by NGS technologies. Important applications here include

targeted cancer sequencing to understand genomic variation [55],

RNA sequencing to study differential expression [56], multiplex

panels for companion diagnostics [57], or even drug development

against gene signatures, as in the case of pembrolizumab [58]. In all

these applications, properties of interest are predicted, using sta-

tistical means, from input features that include NGS data. Hence,

they are ideally suited to profit from DL methodology.
Although ML approaches and their combination with classical

modeling have many advantages, it is also important to be aware

of the significant risk of overfitting. DL approaches are often so

versatile and powerful that they can easily adapt to all input

distributions they are presented with, but this does not mean that

they generalize well to unseen data points. In the context of NGS,

this can be illustrated by the example of models trained with NGS

data derived from certain species, sequencing technologies, cov-

erage, and read length that do not maintain their accuracy across

data from different sequencing technologies, prep methods, and

species. Thus, model training needs to be tightly monitored and

controlled to avoid bias.

In summary, the application of ML shifts biomedical re-

search from model-driven towards data-driven science. Given

that sequencing data grow at an enormous rate, we expect to

see an increasing adoption of DL methods, which do not

require to be seeded with a biological model in mind, but

rather attempt to learn directly from the data. Furthermore,

progress in AI techniques continues to be dynamic. For exam-

ple, recent work demonstrated that training very large trans-

former models, such as Bidirectional Encoder Representations

from Transformers (BERT) or Megatron can significantly ad-

vance the state-of-the-art in language processing. We are al-

ready seeing initial applications of BERT for biomedical text

mining (BioBERT [59]). Thus, the availability of tools built on

top of frameworks such as TF that allow for the rapid design and

integration of (new) AI techniques into bioinformatics work-

flows will be vital for the life sciences as a whole, and for drug

discovery in particular.
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