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ABSTRACT
Background  Tumor-infiltrating CD8+ T cells and 
neoantigens are predictors of a favorable prognosis 
and response to immunotherapy with checkpoint 
inhibitors in many types of adult cancer, but little is 
known about their role in pediatric malignancies. Here, 
we analyzed the prognostic strength of T cell-inflamed 
gene expression and neoantigen load in high-risk 
neuroblastoma. We also compared transcriptional 
programs in T cell-inflamed and non-T cell-inflamed 
high-risk neuroblastomas to investigate possible 
mechanisms of immune exclusion.
Methods  A defined T cell-inflamed gene expression 
signature was used to categorize high-risk 
neuroblastomas in the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) 
program (n=123), and the Gabriella Miller Kids First 
(GMKF) program (n=48) into T cell-inflamed, non-T cell-
inflamed, and intermediate groups. Associations between 
the T cell-inflamed and non-T cell-inflamed group, 
MYCN amplification, and survival were analyzed by Cox 
proportional hazards models. Additional survival analysis 
was conducted after integrating neoantigen load predicted 
from somatic mutations. Pathways activated in non-T cell-
inflamed relative to T cell-inflamed tumors were analyzed 
using causal network analysis.
Results  Patients with T cell-inflamed high-risk tumors 
showed improved overall survival compared with those 
with non-T cell-inflamed tumors (p<0.05), independent 
of MYCN amplification status, in both TARGET and GMKF 
cohorts. Higher neoantigen load was also associated with 
better event-free and overall survival (p<0.005) and was 
independent of the T cell-inflamed signature. Activation 
of MYCN, ASCL1, SOX11, and KMT2A transcriptional 
programs was inversely correlated with the T cell-inflamed 
signature in both cohorts.
Conclusions  Our results indicate that tumors from 
children with high-risk neuroblastoma harboring a strong 
T cell-inflamed signature have a more favorable clinical 
outcome, and neoantigen load is a prognosis predictor, 
independent of T cell inflammation. Strategies to target 
SOX11 and other signaling pathways associated with 
non-T cell-inflamed tumors should be pursued as potential 
immune-potentiating interventions.

BACKGROUND
The presence of effector T cells in the tumor 
microenvironment has been associated with 
improved survival in adults with many types 
of cancer.1–3 Several studies of melanoma and 
other solid tumors have demonstrated that 
expression of dendritic cell (DC) and CD8+ 
T cell-associated genes, or a T cell-inflamed 
gene signature, is correlated with favorable 
prognosis and response to immunotherapy 
with checkpoint blockade therapy or tumor 
vaccines.4–8 T cell-inflamed tumors are charac-
terized by type I interferon (IFN) activation, 
immune potentiating chemokines, antigen 
presentation, cytotoxic effector molecules, 
and activated CD8+ T cells.9 The inflamed 
tumor microenvironment is additionally char-
acterized by IFN-induced inhibitory pathways 
such as programmed death-ligand 1 (PD-
L1) and indoleamine-2, 3 dioxygenase, and 
higher proportions of FOXP3+ regulatory T 
cells.9 Other known predictors of response to 
immunotherapy include, but are not limited 
to, a high tumor mutational burden (TMB)10 
and a high neoantigen load.11 While TMB 
and neoantigen load often highly correlate 
with each other,12 previous studies have 
demonstrated both markers have low correla-
tion with the presence of T cell inflamma-
tion,10 12 13 and TMB (or neoantigen load) and 
T cell-inflamed gene expression may repre-
sent non-redundant predictive biomarkers of 
immune checkpoint inhibitors efficacy.14

In contrast, resistance to immunotherapy 
has been correlated with tumors that lack the 
T cell-inflamed signature. There is increasing 
evidence that signaling pathways intrinsic 
to the neoplastic cells may impair the local 
immune response in tumors. Tumor cell-
intrinsic activation of the WNT/β-catenin 
pathway has been associated with a lack of T 
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cell infiltration in melanoma, bladder cancer, and more 
broadly across cancer.15–17 Activation of the phosphoinos-
itide 3-kinase (PI3K) signaling pathway through loss-of-
function mutations in phosphatase and tensin homolog 
(PTEN) can likewise mediate a non-T cell-inflamed 
tumor microenvironment in melanoma,18 and inactiva-
tion of LKB1 can have a similar effect in lung adenocar-
cinoma.19 Further, in lymphoma, diminished activation 
and recruitment of T cells have been reported with MYC 
activation, largely through inhibition of macrophage acti-
vation.20 MYC and several other activated transcriptional 
pathways have more broadly been associated with non-T 
cell-inflamed tumors across cancer types.21

In contrast to adult cancers, pediatric neoplasms have 
low mutational burden and most are non-T cell-inflamed, 
with scarce tumor-infiltrating lymphocytes (TILs) among 
anti-inflammatory M2 tumor-associated macrophages 
(TAMs).22 23 Although the response to immune check-
point inhibition is poor for many pediatric cancers,24 25 
post-consolidation immunotherapy with monoclonal anti-
bodies targeting the GD2 ganglioside combined with 
cytokines significantly improves survival for children 
with high-risk neuroblastoma.26 Further, high response 
rates were also reported in newly diagnosed patients in 
a single institutional study with induction chemotherapy 
combined with anti-GD2 antibody,27 and significant anti-
tumor immunity was observed in a Children’s Oncology 
Group (COG) clinical trial testing irinotecan and temo-
zolomide combined with anti-GD2 antibody and GM-CSF 
in patients with relapsed/refractory neuroblastoma.28 29

The immunobiology of the neuroblastoma microen-
vironment is an emerging field. To increase our under-
standing about how immunogenomic determinants 
influence neuroblastoma phenotype, we analyzed the 
correlation between patient survival and T cell-inflamed 
gene expression and neoantigen load in tumor. We 
demonstrate that both biomarkers are prognostic in 
children with high-risk neuroblastoma and identify 
tumor-intrinsic oncogenic signaling pathways activated 
in neuroblastomas with a non-T cell-inflamed phenotype. 
These findings enhance a framework, whereby T cell-
inflamed expression and neoantigen load can provide 
new prognostic information to inform treatment deci-
sions, and may also lead to the development of future 
immune therapeutic interventions.

METHODS
Study cohorts and datasets
Two neuroblastoma cohorts were analyzed. The discovery 
cohort included patients from Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) 
program (n=149; 123 high-risk) (dbGAP accession 
ID phs000218.v22.p8) (online supplemental table 1). 
RNAseq paired-end (PE) FastQ files, whole exome 
sequencing (WES) alignment BAM files, somatic muta-
tion MAF (Mutation Annotation Format) files, and clin-
ical data were downloaded from Genomic Data Commons 

(GDC)30 (https://​portal.​gdc.​cancer.​gov) (accessed 
07/2017). The validation cohort included patients with 
clinical information in the International Neuroblas-
toma Risk Group (INRG) Data Commons31 and tumor 
RNAseq data in the Gabriella Miller Kids First (GMKF) 
program (n=198; 48 high-risk) (online supplemental 
table 2). Universal system identification (USI) numbers 
were used to link the datasets. Access to RNAseq PE FastQ 
files in GMKF could not be obtained at the time of study, 
and therefore, preprocessed gene expression TSV files 
from the GMKF data portal (https://​kidsfirstdrc.​org/) 
(accessed 08/2020) were used for analysis. Of the 209 
patients identified, 11 were determined by USI number 
to also be included in the discovery cohort, hence were 
excluded from the validation cohort; 198 were kept for 
validation (online supplemental table 2).

RNAseq gene expression quantification
The quality of raw sequencing reads was assessed by 
FastQC32 (V.0.11.5) for the tumor samples in the discovery 
cohort. Read counts were quantified at transcript level 
using Kallisto33 (V.0.44.0) with human reference assembly 
GRCh38 and Gencode gene annotation (V.28), summa-
rized into gene level using tximport34 (V.1.4.0), normal-
ized by trimmed mean of M-values (TMM) method, and 
log2-transformed.

Identification of T cell-inflamed and non-T cell-inflamed 
tumor groups
Using a defined T cell-inflamed gene expression signa-
ture,13 21 the tumors in the discovery cohort were cate-
gorized into three groups (T cell-inflamed, non-T 
cell-inflamed, and intermediate) using consensus clus-
tering methods following previous protocols.13 In brief, 
an expression matrix consisting of the 160 genes from 
the T cell-inflamed signature21 was subset from the TMM-
normalized and log2-transformed RNAseq gene expres-
sion quantification matrix and was used to cluster tumors 
into 12 clusters by ConsensusClusterPlus (V.1.42.0) using 
hierarchical clustering with Euclidean distance and 
Ward.D2 linkage (2000 bootstraps and 80% usage of gene 
features). Tumors were then assigned with each of the 
three immune groups based on high, low, or intermediate 
expression of the T cell-inflamed signature. The number 
of clusters was determined using the elbow method.

Mapping of T cell-inflamed and non-T cell-inflamed tumor 
groups between discovery and validation cohorts
The assignment of tumor groups in the discovery cohort 
cannot be migrated directly to that of tumors in the vali-
dation cohort due to the relative nature of gene expres-
sion data without spike-in controls. To address this issue, 
we projected T cell-inflamed gene expression of the vali-
dation cohort to the space of the discovery cohort using 
11 patients that overlap between the two cohorts. First, 
we normalized and log2-transformed gene expression 
within each cohort. We calculated a T cell-inflamed score 
for each tumor, defined as the mean expression of all 
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genes from the signature.21 Then, we fit a linear regres-
sion model on the T cell-inflamed scores of the discovery 
cohort and validation cohort using tumors from the 11 
overlapping patients, ‍ScoreT = −0.7798 + 1.2418 × ScoreG ‍ 
(adjusted R2=0.967), where ‍ScoreT‍ represents T cell-
inflamed score of the discovery cohort (T as TARGET), 
and ‍ScoreG ‍ represents T cell-inflamed score of the vali-
dation cohort (G as GMKF). We used this model to 
convert all T cell-inflamed scores of tumors in the valida-
tion cohort (‍ScoreG ‍) to values comparable to that of the 
discovery cohort (‍ScoreT‍), then sorted all tumors by T cell-
inflamed scores lower to higher. Lastly, we assigned new 
tumor groups to the validation cohort based on existing 
tumor groups from the discovery cohort, employing the 
rules as follows: for all tumors harboring a score less than 
or equal to that of the last non-T cell-inflamed tumor 
on the sorted list, assign as non-T cell-inflamed; for all 
tumors harboring a score greater than or equal to that of 
the first T cell-inflamed tumor on the sorted list, assign as 
T cell-inflamed; otherwise, assign as intermediate.

Differential gene expression detection and pathway activation 
prediction
For the discovery cohort analysis, we focused on 19,883 
protein-coding genes defined in Gencode annotation 
(V.28) and followed the protocol established in our previous 
work.21 In brief, after removing genes with low expression 
(defined as CPM (counts per million of mapped reads) ≤3), 
15,580 genes with CPM>3 in at least 30 tumors were TMM-
normalized and log2-transformed. Differentially expressed 
genes (DEGs) comparing non-T cell-inflamed with T cell-
inflamed groups were identified using Linear Models for 
Microarray Data (limma) voom35 method with precision 
weights (V.3.36.2) and filtered by false discovery rate (FDR)-
adjusted p<0.05, and fold change ≥1.5 or ≤−1.5. Upstream 
transcriptional regulators and change of direction (activa-
tion or inhibition) as a result of target molecules (encoded 
by DEGs) were predicted using Ingenuity Pathway Analysis 
(IPA) (QIAGEN, Germany) causal network analysis36 with 
the curated Ingenuity Knowledge Base (accessed 12/2017). 
Transcriptional programs activated in non-T cell-inflamed 
relative to T cell-inflamed tumors were filtered at overlap 
p<0.05 (measuring the enrichment of target molecules 
in the dataset) and z-score ≥2.0 (measuring the predicted 
activation level of the pathways). For the validation cohort 
analyses, preprocessed RNAseq expression data down-
loaded from the GMKF data portal was quantified using 
Kallisto33 (V.0.44.0), and the per-tumor gene expression files 
were downloaded and aggregated into cohort level, TMM-
normalized, and log2-transformed for further analysis.

Somatic mutation detection, HLA genotyping, and neoantigen 
prediction
For the discovery cohort, the somatic mutations were 
harmonized using four somatic variant callers (MuTect2, 
VarScan2, SomaticSniper, and MuSE).30 After rigorous 
filtering following GDC’s guidelines (https://​docs.​gdc.​
cancer.​gov/​Data/​File_​Formats/​MAF_​Format), somatic 

variants that were detected by at least two callers and 
passed all the filters were selected for further analysis. 
Total TMB was defined as the total number of non-
synonymous somatic mutations (NSSMs), those that were 
predicted to alter protein sequence in tumor (inser-
tions/deletions, missense/nonsense/stopgain mutations, 
and those that modify splicing sites). Putative neoanti-
gens were predicted from NSSMs using netMHCpan37 
(V.4.0), filtered by gene expression from the RNAseq 
data described as follows. Patients’ major histocompati-
bility complex (MHC) class I haplotypes were predicted 
from WES of germline DNA using Optitype (V.1.3.1). 
Nine-mer peptides were generated from the mutated 
site through a sliding window approach using in-house 
python scripts. Our previous work had suggested that 
peptides of SYFPEITHI38 mutant score >25 or delta score 
(mutant – wildtype)>5 bind to MHC class I molecules.13 In 
this study, we used netMHCpan that covers more human 
leukocyte antigen (HLA) genotypes than SYFPEITHI. To 
select neoantigens that are likely to have strong binding 
affinity to HLA-A molecules and expressed in tumor, we 
filtered for 9-mer peptides of netMHCpan mutant score 
>0.638 (equivalent to IC 50 nmol, strong binding) or delta 
score >0.070 (correlated with SYFPEITHI delta score 5) 
and derived from genes upregulated compared with the 
median of its expression across all tumors.

T cell-inflamed gene expression and pathway score 
calculation
For each tumor, a T cell-inflamed score was computed 
as the mean expression of the 160 genes involved in the 
signature after scaling and centering across all tumor 
samples.21 A pathway activation score was calculated 
to each tumor following our published protocol,17 21 
requiring at least 50% of the pathway-specific target mole-
cules to be upregulated in a tumor sample (relative to 
its median expression across all tumor samples) in non-T 
cell-inflamed relative to T cell-inflamed group. For path-
ways in which less than 10 target molecules were present, 
5 or more molecules were required to be upregulated to 
classify the pathway as activated. For pathways in which 
less than 5 target molecules were present, only pathways 
with all molecules upregulated were classified as acti-
vated. In addition, for each pathway identified in this 
study (MYCN, ASCL1, SOX11, and KMT2A), the expres-
sion level of a pathway was defined by the mean expres-
sion of all target molecules from this pathway, which 
was then used to correlate with the T cell-inflamed gene 
expression across all tumors by Spearman’s correlation.

Survival analysis
Cox proportional hazards (PH) models were used to test 
the association between the tumor group (T cell-inflamed, 
non-T cell-inflamed, and intermediate) and the survival 
outcome (event-free survival (EFS); overall survival (OS)) 
in the discovery (n=118 high-risk patients diagnosed 
between 2000 and 2010) and validation cohorts (n=17 
high-risk patients with survival data available) using R 
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package survival (function coxph) (V.2.41.3). Univariable 
and multivariable Cox PH models were used to assess the 
significance of tumor group as a single predictor or after 
adjusting for covariates including age, MYCN status, and 
ploidy. In addition, Kaplan-Meier (KM) estimator with 
log-rank test was performed using R package survminer 
(V.0.4.2).

Immunohistochemistry immunofluorescence staining
Immunofluorescence (IF) staining on human neuroblas-
toma tumors was performed by the Human Immunologic 
Monitoring Core Facility at The University of Chicago 
using tissue from 17 intermediate or high-risk neuroblas-
tomas (5 MYCN-amplified and 12 MYCN-non-amplified). 
Briefly, slides were baked, cleared, and rehydrated. After 
heat-inducted epitope retrieval, the slides were placed 
in a humidity chamber, blocked by 10% donkey serum 
for 1 hour, incubated with anti-CD8 Ab (Dako, M7103) 
at 1:100 dilution for 1 hour, followed by Cy3 donkey 
anti-Mouse IgG (Jackson Immunological Research Lab, 
715-165-150) at 1:500 dilution for 1 hour. The slides then 
incubated with anti-Batf3 Ab (Novus, AF7437) at 1:40 
dilution for 1 hour, followed by Cy5 donkey anti-Rabbit 
IgG (Jackson Immunological Research Lab, 711-175-152) 
at 1:200 dilution for 1 hour. After thorough wash, slides 
were incubated in DAPI and mounted with Fluoromount 
(Sigma, F4680). Images of the slides were taken using 
a Leica SP8 laser scanning confocal microscope at Inte-
grated Light Microscopy Core Facility. A pathologist (PP) 
scored tumors for intensity and distribution of CD8+ cells 
and Batf3+ cells in a blinded fashion.

Statistical analysis
For analysis of contingency tables including compar-
ison of tumor sample frequency between groups, Fish-
er’s exact test was used. Differential gene expression 
analysis between groups were performed using empir-
ical Bayes regression models in limma voom with preci-
sion weights. For multiple comparisons, p-value was 
adjusted using Benjamini-Hochberg FDR correction for 
multiple testing.39 Spearman’s correlation ρ was used for 
measuring statistical dependence between normalized 
and log2-transformed expression level of different genes 
and between gene expression of the T cell-inflamed 
signature and pathways. p<0.05 was considered statisti-
cally significant. Statistical analysis was performed using 
R (V.3.5.2) and Bioconductor (release 3.8).

RESULTS
A T cell-inflamed gene expression signature defines three 
distinct groups in neuroblastoma
Using a defined T cell-inflamed gene expression signature, 
we categorized the 149 primary neuroblastoma tumors 
from the discovery cohort (TARGET) into three subsets 
(figure 1A). High expression of T cell signature genes (T 
cell-inflamed) was detected in 57 (38.3%) tumors, low or 
no expression (non-T cell-inflamed) was identified in 45 

(30.2%) tumors, and 47 (31.5%) had intermediate levels 
of expression (intermediate) (table 1). In the validation 
cohort (n=198, GMKF), 89 (44.9%) were categorized as 
T cell-inflamed; 55 (27.8%) were non-T cell-inflamed; 54 
(27.3%) were intermediate (figure  1B, table  2). In the 
discovery cohort, 123 of 149 patients were classified as 
high-risk, whereas 48 of 198 patients in validation cohort 
have high-risk neuroblastoma.40 In analyses restricted to 
high-risk patients, 53 (43.1%) and 23 (47.9%) were cate-
gorized as T cell-inflamed in the discovery and validation 
cohorts, respectively, and 33 (26.8%) and 18 (37.5%) 
were categorized as non-T cell-inflamed.

In the discovery cohort, MYCN amplification was signifi-
cantly more prevalent in the non-T cell-inflamed tumors 
(17/45, 37.8%) compared with the T cell-inflamed 
tumors (3/56, 5.4%) (p=0.000080, odds ratio [OR]=10.5, 
two-sided Fisher’s exact test). Additionally, patients 
diagnosed at age <18 months had tumors that were 
enriched in the non-T cell-inflamed tumor group (12/45, 
26.7% non-inflamed vs 6/57, 10.5% inflamed; p=0.040, 
OR=3.06). The enrichment of MYCN amplification in 
non-T cell-inflamed tumors was also observed in the vali-
dation cohort (14/54, 25.9% non-inflamed vs 4/89, 4.5% 
inflamed; p=0.00038, OR=7.33). In addition, patients <18 
months of age in the validation cohort had tumors that 
were enriched in the non-T cell-inflamed tumor group 
(40/54, 74.1% non-inflamed vs 44/89, 49.4% inflamed; 
p=0.0049, OR=2.90).

T cell-inflamed gene expression is prognostic of survival in 
high-risk neuroblastoma
We analyzed EFS and OS according to the level of expres-
sion of the T cell-inflamed signature in 118 high-risk 
patients diagnosed between 2000 and 2010 from the 
discovery cohort, which consists of 51 T cell-inflamed, 
33 non-T cell-inflamed, and 34 intermediate tumors. In 
Cox PH univariable models, patients with T cell-inflamed 
tumors had significantly better OS compared with those 
with non-T cell-inflamed tumors (p=0.043, hazard ratio 
[HR]=0.56) (table  3). A similar trend was observed in 
EFS but the results did not reach statistical significance 
(p=0.17, HR=0.69) (table  3). Similar to other high-risk 
cohorts,41 42 MYCN status was not statistically significantly 
associated with OS or EFS (OS: p=0.38; EFS: p=0.58) 
(table 3). However, OS, but not EFS, was better for high-
risk patients with hyperdiploid neuroblastoma compared 
with those with diploid tumors (OS: p=0.05; EFS: p=0.10) 
(table 3). In Cox PH multivariable models adjusting for 
age, MYCN status, and ploidy, the T cell-inflamed signa-
ture maintained independent statistical significance for 
OS (p=0.035, HR=0.48). Stage and histology were not 
included in the multivariable analysis because the high-
risk patients had predominantly stage 4 disease and 
unfavorable histology tumors (117/118, 99.1% as stage 
4; 107/110, 97.3% with unfavorable histology tumors, 8 
unknown).

In the discovery cohort, the T cell-inflamed and inter-
mediate groups showed similar probabilities of survival. 
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Therefore, we combined these two groups and compared 
probability of survival to patients with non-T cell-inflamed 
tumors (OS: p=0.0076, EFS: p=0.10, log-rank test) (KM 
estimator shown in figure  2A,B). Similar associations 
between T cell-inflamed/intermediate tumors and 
improved survival were observed in the 17 high-risk 

patients with available survival data from the validation 
cohort (OS: p=0.016, EFS: p=0.0098) (figure 2C,D). No 
significant association with survival outcome was detected 
for age, MYCN status, or ploidy. Patients were not selected 
by diagnosis year 2010 or earlier due to small sample size. 
However, EFS and OS were not significantly different 

Figure 1  Immunogenomic landscape of neuroblastoma tumor microenvironment. (A) Heatmap of the T cell-inflamed gene 
expression signature in the discovery cohort (TARGET). Genes are on the row and tumor samples are on the column. The 
non-T cell-inflamed (blue), intermediate (gray), and T cell-inflamed (red) tumor groups, consensus clusters C1 to C12, MYCN 
amplification status, clinical and demographic factors are shown above the heatmap. n=149 primary tumors shown, including 
123 high-risk. (B) Heatmap of the T cell-inflamed gene expression signature in the validation cohort (GMKF). Same annotation 
as in (A). n=198 primary tumors shown, including 48 high-risk. COG, Children’s Oncology Group; GMKF, Gabriella Miller Kids 
First; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.
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between the 13 patients diagnosed between 2008 and 
2010 and the four patients diagnosed between 2011 and 
2012 (OS: p=0.98, EFS: p=0.66), and hence these are 

unlikely to contribute to the significantly better survival 
outcome observed in T cell-inflamed group relative to 
non-T cell-inflamed group in the validation cohort.

Table 1  Characteristics of patients from T cell-inflamed, intermediate, and non-T cell-inflamed tumor groups in the discovery 
cohort (TARGET)

Characteristic
T cell-inflamed
N=57, no (%)

Intermediate
N=47, no (%)

Non-T cell-inflamed
N=45, no (%) P-value

Age 0.088

 � <18 months 6 (11) 11 (23) 12 (27)

 � ≥18 months 51 (89) 36 (77) 33 (73)

Sex 0.2

 � Female 26 (46) 22 (47) 14 (31)

 � Male 31 (54) 25 (53) 31 (69)

Race 0.7

 � Asian 1 (2) 0 (0) 0 (0)

 � Black or African American 8 (15) 9 (20) 9 (24)

 � Native Hawaiian or other
 � Pacific Islander

0 (0) 1 (2) 1 (3)

 � White 43 (83) 36 (78) 27 (73)

 � Unknown 5 1 8

Ethnicity 0.5

 � Hispanic or Latino 3 (6) 5 (12) 5 (12)

 � Not Hispanic or Latino 49 (94) 38 (88) 37 (88)

 � Unknown 5 4 3

INSS stage 0.008**

 � Stage 3 3 (5) 2 (4) 0 (0)

 � Stage 4 52 (91) 37 (79) 34 (76)

 � Stage 4S 2 (4) 8 (17) 11 (24)

MYCN status <0.001***

 � Amplified 3 (5) 11 (23) 17 (38)

 � Not amplified 53 (95) 36 (77) 28 (62)

 � Unknown 1 0 0

Histology 0.078

 � Favorable 6 (11) 12 (29) 10 (23)

 � Unfavorable 48 (89) 29 (71) 33 (77)

 � Unknown 3 6 2

Ploidy 0.4

 � Diploid 28 (50) 17 (36) 20 (44)

 � Hyperdiploid 28 (50) 30 (64) 25 (56)

 � Unknown 1 0 0

COG risk group 0.069

 � High risk 53 (92) 37 (79) 33 (73)

 � Intermediate risk 2 (4) 6 (13) 5 (11)

 � Low risk 2 (4) 4 (8) 7 (16)

P values were calculated using one-way analysis of variance, χ2 test, Fisher’s exact test.
*p<0.05, **p<0.01, ***p<0.001.
COG, Children’s Oncology Group; INSS, International Neuroblastoma Staging System; TARGET, Therapeutically Applicable Research to 
Generate Effective Treatments.
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Table 2  Characteristics of patients from T cell-inflamed, intermediate, and non-T cell-inflamed tumor groups in the validate 
cohort (GMKF)

Characteristic
T cell-inflamed
N=89, no (%)

Intermediate
N=54, no (%)

Non-T cell-inflamed
N=55, no (%) P-value

Age 0.003**

 � <18 months 44 (49) 39 (72) 40 (74)

 � ≥18 months 45 (51) 15 (28) 14 (26)

 � Unknown 0 0 1

Sex 0.5

 � Female 50 (56) 28 (52) 25 (45)

 � Male 39 (44) 26 (48) 30 (55)

Race 0.9

 � American Indian or Alaskan Native 1 (1) 0 (0) 0 (0)

 � Asian 2 (2) 2 (4) 3 (6)

 � Black or African American 4 (5) 4 (8) 3 (6)

 � White 78 (92) 43 (88) 47 (88)

 � Unknown 4 5 2

Ethnicity 0.2

 � Hispanic or Latino 2 (2) 5 (10) 3 (6)

 � Not Hispanic or Latino 84 (98) 47 (90) 50 (94)

 � Unknown 3 2 2

INSS stage NE

 � Stage 1 27 (30) 19 (35) 12 (22)

 � Stage 2A 6 (7) 3 (5) 1 (2)

 � Stage 2B 14 (16) 9 (17) 7 (13)

 � Stage 3 17 (19) 7 (13) 6 (11)

 � Stage 4 24 (27) 10 (19) 19 (34)

 � Stage 4S 1 (1) 6 (11) 10 (18)

MYCN status <0.001***

 � Amplified 4 (4) 2 (4) 14 (26)

 � Not amplified 85 (96) 52 (96) 40 (74)

 � Unknown 0 0 1

Histology 0.084

 � Favorable 55 (64) 40 (77) 30 (57)

 � Unfavorable 31 (36) 12 (23) 23 (43)

 � Unknown 3 2 2

Ploidy 0.053

 � Diploid/Hypodiploid 25 (28) 6 (11) 13 (24)

 � Hyperdiploid 63 (72) 48 (89) 41 (76)

 � Unknown 1 0 1

COG risk group 0.064

 � High risk 23 (26) 7 (13) 18 (33)

 � Intermediate risk 21 (24) 11 (20) 15 (27)

 � Low risk 45 (50) 36 (67) 22 (40)

P values were calculated using one-way analysis of variance, χ2 test, Fisher’s exact test.
*p<0.05, **p<0.01, ***p<0.001.
COG, Children’s Oncology Group; GMKF, Gabriella Miller Kids First; INSS, International Neuroblastoma Staging System; NE, Not Evaluable.
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Neoantigen load is a prognostic marker independent of the T 
cell-inflamed expression signature
Neoantigens are mutant antigens that are only expressed 
on tumor cells and not normal cells. Neoantigen-derived 

epitopes (neoepitopes) are recognized by antigen-
specific CD8+ T cells.43 To evaluate the neoantigen load 
in neuroblastoma tumors, WES data from 198 matched 
tumor/normal pairs of the discovery cohort carrying one 

Table 3  OS and EFS of high-risk neuroblastoma patients according to T cell inflammation group and other established 
prognostic markers

Characteristic Comparison

Overall survival Event-free survival

HR 95 CI low 95 CI high P-value HR 95 CI low 95 CI high P-value

T cell 
inflammation 
group

T cell-inflamed vs 
non-T cell-inflamed

0.558 0.317 0.982 0.043* 0.691 0.408 1.171 0.170

Intermediate vs 
non-T cell-inflamed

0.421 0.218 0.815 0.010* 0.635 0.353 1.143 0.130

MYCN status Amplified vs
not amplified

1.281 0.734 2.236 0.384 1.155 0.694 1.923 0.580

Ploidy Hyperdiploid vs
diploid

0.606 0.366 1.001 0.050 0.682 0.434 1.071 0.097

Age (months) Continuous variable 0.998 0.991 1.006 0.688 0.995 0.987 1.003 0.245

HR and p-values were calculated using Cox proportional hazards models.
*p<0.05, **p<0.01, ***p<0.001.
CI, confidence interval; EFS, event-free survival; HR, hazard ratio; OS, overall survival.

Figure 2  T cell-inflamed gene expression signature predicts overall survival in high-risk neuroblastoma patients. (A,B) Kaplan-
Meier estimator of the T cell-inflamed (red), intermediate (gray), and non-T cell-inflamed (blue) tumor groups from the discovery 
cohort (TARGET), with overall survival (OS) shown in (A) and event-free survival (EFS) shown in (B). Of 123 high-risk patients, 
n=118 diagnosed between year 2000 and 2010 are shown; all have survival data available. (C,D) Kaplan-Meier estimator of the T 
cell-inflamed (red), intermediate (gray), and non-T cell-inflamed (blue) tumor groups from the validation cohort (GMKF), with OS 
shown in (C) and EFS shown in (D). Of 48 high-risk patients, n=17 with survival data available shown. P-values were calculated 
by log-rank test in (A) to (D), comparing T cell-inflamed/intermediate tumors as one combined group to non-T cell-inflamed 
tumors. GMKF, Gabriella Miller Kids First; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.
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or more somatic single nucleotide variants (SNVs) were 
analyzed. After combining calls of four somatic callers 
and rigorous quality filtering, 4235 somatic SNVs were 
identified in 3369 genes. Each tumor harbors a median 
of 17 somatic SNVs (range, 1–168 SNVs), with 15 somatic 
SNVs predicted to alter protein sequences (range, 
1–162), which is consistent with the somatic mutation 
profile previously reported in high-risk neuroblastoma.44 
To investigate if neoantigen load was associated with 
outcome in high-risk patients, of 118 high-risk patients 
diagnosed between 2000 and 2010 in the discovery cohort, 
we analyzed tumors from 89 patients with both WES and 
RNAseq data available. The total number of neoantigens 
in tumor was determined by filtering for those predicted 
to bind to MHC class I molecule HLA-A. We focused on 
HLA-A molecule because the prediction algorithm for 
this allele is the most reliable.

A median of 4 (range 1–30) candidate neoantigens 
were identified in 78 of 89 tumors. Seventy-four patients 
diagnosed between year 2000 and 2010 were included in 
survival analysis. We found that the neoantigen load was 
significantly associated with OS (p=0.00022, log-rank test) 
(figure  3A) and EFS (p=0.0044) (figure  3B), although 
there was no significant difference in neoantigen load 
between non-T cell-inflamed and T cell-inflamed groups 
(p=0.22, two-sided Wilcoxon rank-sum test) (figure 3C). 
We defined four patient groups (hereafter referred as, 
quadrants (Q)) split by the threshold of T cell-inflamed 
(Tinfl) gene expression in non-T cell-inflamed tumors 
and median of neoantigen load (Neo) (Spearman’s 
correlation coefficient ρ=0.053, p=0.65) (figure  3D): 
Q1 (n=8), TinfllowNeohigh; Q2 (n=19), TinfllowNeolow; Q3 
(n=20), TinflhighNeolow; Q4 (n=27), TinflhighNeohigh. OS 
and EFS were significantly different according to quad-
rant assignment (OS: p=0.00083; EFS: p=0.0061, log-
rank test) (figure  3E,F). Patients in Q1 and Q4, who 
had tumors harboring high level of neoantigens, had 
superior outcome compared with those in Q2 and Q3 
(figure 3E,F).

Tumor-intrinsic oncogenic transcriptional programs 
associated with a non-T cell-inflamed phenotype
To investigate if tumor-intrinsic transcriptional programs 
may play a role in inhibiting T cell infiltration in non-T 
cell-inflamed neuroblastomas, we first analyzed tumors 
from the discovery cohort for signaling pathways intrinsic 
to the neoplastic cells that were previously reported to 
impair the local immune response in other tumor types. 
This includes somatic activation mutations in CTNNB1 or 
damaging mutations in repressors of the pathway (APC/
APC2/AXIN1/AXIN2),15 17 somatic copy number loss 
in PTEN or activation mutations in PIK3CA,18 activation 
mutations in VEGF-A,45 and loss of function mutations in 
B2M,46–48 STK11/LKB1,19 IDH1/2,49 and NRAS/KRAS/
HRAS.50 Only three tumors harbored a missense muta-
tion in AXIN2 (p.A113T), and two tumors had PIK3CA 
missense (p.K111N) or nonsense mutations (p.E888X), 
but none occurred at the known PIK3CA activation 

mutation positions (AA 345, 542, 545, 546, 1043, 1044, 
1047).

We next took an unbiased approach15–17 to identify 
transcriptional programs that are activated in non-T 
cell-inflamed tumors by comparing the whole transcrip-
tome RNAseq expression of 33 non-T cell-inflamed to 
53 T cell-inflamed tumors from the high-risk patients in 
the discovery cohort. A total of 1730 genes were iden-
tified that were significantly differentially expressed 
between the two tumor groups, with 230 upregulated 
in non-T cell-inflamed group and 1500 upregulated in 
the T cell-inflamed group (FDR-corrected p<0.05, fold 
change ≥1.5 or ≤−1.5). Causal network analysis36 with 
Ingenuity Knowledge Base (Qiagen) identified activa-
tion of MYCN signaling in non-T cell-inflamed tumors 
(activation z-score ≥2.0, p<0.05), consistent with our 
findings showing enrichment of MYCN amplification in 
non-T cell-inflamed tumors (figure  4A). Immunohisto-
chemistry (IHC) staining of a limited number of avail-
able intermediate or high-risk neuroblastoma tumors 
(n=17, 5 MYCN-amplified and 12 MYCN-non-amplified; 
images of all IHC slides are provided at https://​github.​
com/​riyuebao/​NBL-​TME-​Immunogenomics) demon-
strated lower infiltration with CD8+ T cell and Batf3+ 
DCs in MYCN-amplified tumors compared with MYCN-
non-amplified neuroblastomas (figure  4B), although 
the difference did not reach statistical significance in 
this small cohort (p=0.22, two-sided Fisher’s exact test). 
In both the discovery and validation cohorts, the DC 
genes are highly correlated with the T cell-inflamed gene 
expression (p<0.05, Spearman’s correlation) (online 
supplemental figure 1).

To determine if activation of transcriptional programs 
other than MYCN signaling is associated with the non-T 
cell-inflamed phenotype, we repeated the differential 
gene expression and causal network analyses using only 
MYCN non-amplified tumors (n=91). Genes significantly 
upregulated in 16 non-T cell-inflamed neuroblastomas 
compared with 49 T cell-inflamed tumors were used to 
predict upstream regulators. Three pathways (ASCL1, 
SOX11, and KMT2A) were identified to be activated in 
non-T cell-inflamed tumors without MYCN amplification 
(activation z-score ≥2.0, p<0.05) (figure  4C). We next 
calculated an activation score for each pathway using 
previously described methods.17 21 The results showed 
that the three pathways operate in a partially exclusive 
manner (online supplemental figure 2), with activation of 
SOX11, KMT2A, and ASCL1 signaling detected in 66%, 
30%, and 30% of non-T cell-inflamed tumors, respectively, 
compared with less than 5% of the T cell-inflamed tumors 
(figure 4D,E). Taking together, the activation of one or 
more pathways regulated by MYCN, ASCL1, SOX11, or 
KMT2A was found in 85% of the non-T cell-inflamed 
tumors. The inverse correlation between the expression 
of T cell-inflamed gene signature and the four pathways 
(MYCN, ASCL1, SOX11, KMT2A) was confirmed in the 
validation cohort (online supplemental figure 3A,B), 
providing strong evidence that the activation of the four 

https://github.com/riyuebao/NBL-TME-Immunogenomics
https://github.com/riyuebao/NBL-TME-Immunogenomics
https://dx.doi.org/10.1136/jitc-2021-002417
https://dx.doi.org/10.1136/jitc-2021-002417
https://dx.doi.org/10.1136/jitc-2021-002417
https://dx.doi.org/10.1136/jitc-2021-002417
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Figure 3  Neoantigen load predicts overall and event-free survival in high-risk neuroblastoma patients. (A,B) Kaplan-Meier 
estimator of the neoantigen load high and low tumor groups in association with overall survival (OS) shown in (A) and event-
free survival (EFS) shown in (B). (C) Neoantigen load between non-T cell-inflamed, intermediate, and T cell-inflamed groups. 
(D) Quadrants (Q1 to Q4) according to expression of T cell-inflamed gene signature (x-axis) and the neoantigen load (y-axis). 
Vertical line labels the separation of non-T cell-inflamed group versus intermediate or T cell-inflamed group, and horizontal line 
labels the median of neoantigen load across samples. (E,F) Kaplan-Meier estimator of the four groups from (D), with OS shown 
in (E) and EFS shown in (F). n=78 patients from the discovery cohort (TARGET) with both WES and RNAseq data available and 
having at least one candidate neoepitope detected are shown in (C). n=74 patients diagnosed between year 2000 and 2010 are 
shown in (A, B, D, E, and F). P-values were calculated by two-sided Wilcoxon rank-sum test in (C), Spearman’s correlation in 
(D), and log-rank test in (A, B, E, and F). TARGET, Therapeutically Applicable Research to Generate Effective Treatments; WES, 
whole-exome sequencing.
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transcriptional programs was significantly associated with 
a non-T cell-inflamed phenotype.

DISCUSSION
Although improved survival and response to immu-
notherapy have been observed in adults with cancers 
showing T cell infiltration, the immunobiology of neuro-
blastoma tumors and its association with outcome had 
been poorly understood. In this study, we categorized 
149 clinically annotated primary neuroblastoma tumors 
in the TARGET program as T cell-inflamed, non-T 
cell-inflamed, and intermediate using a defined T cell-
inflamed gene expression signature. The gene signature 
also identified the same three tumor groups in an inde-
pendent cohort comprised of publicly available tumor 
genomic data housed in the GMKF program linked to 
clinical information in the INRG Data Commons. In both 
cohorts, MYCN amplification was significantly more prev-
alent in the non-T cell-inflamed tumors compared with 
the T cell-inflamed tumors. Interestingly, we also found 
that patients in both cohorts diagnosed at age <18 months 

had tumors that were enriched in the non-T cell-inflamed 
tumor group.

In analyses restricted to high-risk patients in the 
TARGET cohort, OS was significantly better for those 
with T cell-inflamed tumors compared with those with 
non-T cell-inflamed tumors. A similar trend was observed 
for EFS, although statistical significance was not reached. 
Further, the T cell-inflamed signature maintained inde-
pendent statistical significance for OS in multivariable 
analysis adjusted for age, MYCN status, and ploidy. This 
association between T cell-inflamed tumors and superior 
outcome was validated in the clinically annotated GMKF 
cohort of tumors. Because neoantigens are recognized 
by the immune system and can be targeted to increase 
anti-tumor immunity,43 we also analyzed neoantigen 
load in the neuroblastoma tumors. Although no signifi-
cant difference in neoantigen load was detected among 
T cell-inflamed, non-T cell-inflamed, or intermediate 
groups, superior OS was seen in the cohort of patients 
with tumors harboring a high neoantigen load. Taken 
together, these results suggest that T cell-inflamed gene 
expression and high neoantigen load may independently 

Figure 4  Neuroblastoma-intrinsic oncogenic pathway activation correlates with the non-T cell-inflamed tumor 
microenvironment. (A) Activation of MYCN signaling network. Arrows indicate direction (from the upstream regulator to the 
downstream target molecules). Pink color indicates the gene is upregulated in non-T cell-inflamed tumors relative to inflamed. 
(B) Immunofluorescent IHC straining against CD8+ T cells and Batf3+ DCs in MYCN-amplified and non-amplified tumors. 
Scale bars, 20 µm. (C) Target molecule expression heatmap of ASCL1, SOX11, and KMT2A as upstream regulators in non-T 
cell-inflamed versus T cell-inflamed tumors. (D) The percentage of tumors harboring activation in MYCN, ASCL1, SOX11, and 
KMT2A transcriptional programs (defined as, pathway activation score >0.517) in non-T cell-inflamed and T cell-inflamed groups. 
An aggregation of the four pathways (MYCN, ASCL1, SOX11, and KMT2A) is shown on top. (E) Correlation between the T cell-
inflamed gene signature and activation of each pathway at a continuous scale. Tumor samples were sorted by T cell-inflamed 
gene expression (left to right: lower to higher).
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impact the clinical behavior of neuroblastoma tumors, 
resulting in improved survival.

The lack of correlation between the T cell-inflamed expres-
sion signature (also known as an IFN-γ-associated expression 
signature) and TMB, which is highly correlated with neoan-
tigen load,51 has been reported in many adult cancers, 
including melanoma,13 head and neck,7 and pan-cancer.52 
It is well established in the literature that TMB (or neoan-
tigen load) and T cell-inflamed expression are both prog-
nostic but seemly have little correlation.10 12–14 In particular, 
the pan-cancer study reports four groups of patients deter-
mined by high/low IFN-γ-associated expression signature 
and high/low TMB.52 Only patients possessing high levels of 
both signatures had the best response rate, and a significant 
number of patients only showed high levels of one of the 
signatures.52 The mechanism underlying the decoupling of T 
cell-inflamed expression signature and TMB and neoantigen 
load remains to be explored.

Others have evaluated inflammatory cell infiltrates in 
neuroblastoma tumors using different methodologies 
and markers. Asgharzadeh and colleagues53 assessed the 
relationship between TAMs and the clinical behavior of 
metastatic MYCN-non-amplified neuroblastoma. Using 
IHC, significantly greater numbers of infiltrating macro-
phages with CD163 staining, which identifies alternatively 
activated M2 macrophages, were observed in metastatic 
neuroblastomas compared with locoregional tumors. 
Thus, TAMs may promote aggressive growth in neuroblas-
toma, as reported in Hodgkin’s lymphoma54 and breast 
cancer.55 Further, expression studies using a TaqMan 
low-density array assay demonstrated higher levels of 
inflammation-related genes (CD14, CD33, FCGR3 
(CD16), interleukin-6 receptor, and interleukin-10) in 
tumors from patients diagnosed at ≥18 months compared 
with younger patients. These inflammatory genes are 
largely expressed in macrophages and can signify intra-
tumor macrophage polarization to the anti-inflammatory 
M2-like phenotype, suggesting that TAMs contribute to 
the aggressive clinical behavior of neuroblastomas asso-
ciated with older age. Age is an established prognostic 
marker in neuroblastoma, and more favorable outcome 
is associated with age <18 months, reflecting the unique 
biology of infant tumors.40 Although different inflamma-
tory cells were evaluated in our studies, we observed a 
higher prevalence of T cell-inflamed tumors in patients 
diagnosed ≥18 months compared with infants. While 
specific inflammatory cells differentially influence 
tumor growth, the age-dependent differences in expres-
sion of tumor-associated inflammatory cell genes may 
contribute to underlying favorable tumor phenotype that 
is commonly seen in infants with neuroblastoma.

More recently, Wei and colleagues56 analyzed gene 
expression signatures of TILs in neuroblastomas, immune 
cells that have previously been reported to be predictive 
of clinical outcomes for patients with cancers.57 Similar 
to our study, higher levels of cytotoxic TIL signature 
genes were observed in the MYCN-non-amplified tumors 
compared with tumors with amplification of MYCN. 

Further, these investigators also reported improved 
survival in a cohort of patients with MYCN-non-amplified 
tumors with increased signatures for activated NK cells, 
CD8+ T cells, cytolytic activity, clonal expansion of T cell 
receptors, and exhaustion markers.

The inverse correlation between MYCN amplification 
and T cell-inflamed tumors seen in our study and others53 56 
suggests that MYCN signaling inhibits T cell infiltration 
in neuroblastoma tumors. In support of MYCN’s role in 
mediating exclusion of T cells from the microenviron-
ment of neuroblastoma tumors, we identified activation 
of MYCN signaling in non-T cell-inflamed tumors (activa-
tion z-score ≥2.0, p<0.05) comparing expression profiles 
between non-T cell-inflamed and T cell-inflamed tumors. 
In addition, we identified three transcriptional programs, 
ASCL1, SOX11, and KMT2A, that were activated in non-T 
cell-inflamed tumors without MYCN amplification.

ASCL1 (alias hASH1 in human) is a known proneural 
transcription factor essential for neurogenesis. However, 
in neuroblastoma ASCL1 represses genes involved in 
neuron differentiation.58 Recent studies have demon-
strated that ASCL1 is a MYCN-dependent and LMO1-
dependent member of the adrenergic neuroblastoma 
core regulatory circuitry (CRC), an interconnected auto-
regulatory loop of transcription factors whose expres-
sion is driven by themselves and other members of the 
CRC.59 Interestingly, LMO1 and the CRC members bind 
to enhancer elements and directly upregulate the ASCL1 
gene, resulting in promotion of cell growth and repres-
sion of neuronal differentiation.59 Activation of ASCL1 
signaling is also predictive of poor prognosis in neuroen-
docrine lung cancers.60 In glioblastoma, ASCL1 is critical 
to the maintenance of stem cells through activation of 
WNT signaling.61 SOX11 is a transcription factor essential 
for neuron survival and neurite outgrowth.62 In our study, 
the expression of MYCN and SOX11 pathways is positively 
correlated (Spearman’s ρ=0.81 in TARGET and 0.83 in 
GMKF, respectively, p<0.0001), suggesting the two mech-
anisms may interact. Indeed, recent studies reported that 
SOX11 was a direct target of MYCN.63 However, 30% of 
MYCN non-amplified tumors showed SOX11 pathway acti-
vation, which may indicate other signaling routes inde-
pendent of MYCN. KMT2A (alias MLL1 in human) is an 
epigenetic regulator of neuronal function. In pancreatic 
cancer where anti-PD1/PD-L1 immunotherapy is ineffec-
tive, MLL1 directly binds to the promoter of the check-
point inhibitor PD-L1 and activates its transcription, and 
combinatorial therapy of anti-MLL1 and anti-PD1/PD-L1 
was proven to suppress tumor growth in mouse models.64 
Taken together, these transcriptional programs support 
a stem cell-like phenotype in neural tissues, which is a 
consistent theme with what has been observed in adult 
tumors for a state of epithelial–mesenchymal transition 
being associated with immuno-oncology resistance.65

In conclusion, the association of improved survival with 
T cell-inflamed neuroblastoma and high neoantigen load 
indicate that crosstalk between tumor cells and compo-
nents of the microenvironment influence neuroblastoma 
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phenotype. Our studies also suggest that tumor-intrinsic 
MYCN, ASCL1, SOX11, or KMT2A signaling may mediate 
immune exclusion in neuroblastoma. Understanding 
the molecular mechanisms that drive the presence or 
absence of T cell infiltration and neoantigen load should 
enable more personalized treatment approaches and 
provide insight for the development of new therapies that 
may enhance response to immunotherapy and improve 
outcome. Clinical trials testing the efficacy of anti-GD2 
antibodies and other modalities of immunotherapy 
in patients with neuroblastoma tumors that are T cell-
inflamed or harbor high neoantigen load are warranted.
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