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Ischemic stroke is a common cause of death and disability worldwide, which leads
to serious neurological and physical dysfunction and results in heavy economic and
social burdens. For now, timely and effective dissolution of thrombus, and ultimately
improvement in the recovery of neurological functions, is the treatment strategy focus.
Recently, many studies have reported that transcranial ultrasound stimulation (TUS), as
a non-invasive method, can dissolve thrombus, improve cerebral blood circulation, and
exert a neuroprotective effect post-stroke. TUS can promote functional recovery and
improve rehabilitation efficacy among patients with ischemic stroke. This mini-review
summarizes the potential mechanism and limitation of TUS in stroke aims to provide a
new strategy for the future treatment of patients with ischemic stroke.
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INTRODUCTION

Ischemic stroke is the most common type of cerebrovascular disease. According to the data of the
global burden of disease (GBD) study, stroke is the most common cause of death among Chinese
residents (GBD 2019 Stroke Collaborators, 2021). From 2010 to 2019, the incidence of ischemic
stroke has increased from 129/1,00,000 in 2010 to 145/1,00,000 in 2019, and the prevalence of
ischemic stroke has increased from 1,100/1,00,000 in 2010 to 1,256/1,00,000 in 2019. According
to China’s aging population trend and the seventh census data, in 2021, there will be approximately
17.8 million patients with stroke, with 3.4 million new stroke patients and 2.3 million stroke-
related deaths among the population over 40 years of age in China each year. China is the largest
developing country, accounting for one-fifth of the world’s total population, with the highest
number of patients with stroke worldwide (Wang et al., 2017). Current treatments for ischemic
stroke include thrombolysis, mechanical thrombectomy, and neuroprotective therapies (Liaw and
Liebeskind, 2020). However, intravenous thrombolytic therapy has a strict treatment time window,
with the risk of rebleeding, making its clinical application limited.

Statistical data have shown that only 16% of patients with acute ischemic stroke in China are
admitted to the hospital within 3 h of symptom onset, and only 1.3% of these patients receive
thrombolytic therapy (Wu et al., 2019; Shen et al., 2020; Tu et al., 2021a,b). Transcranial ultrasound
stimulation (TUS) is a non-invasive technique for patients with stroke, which can stimulate
specific brain areas, and improve neural activity and connectivity. The advantages of transcranial
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ultrasound for brain stimulation are that it does not necessitate
surgery or genetic alteration but confers spatial resolutions
superior to other non-invasive methods such as transcranial
magnetic stimulation (TMS; Tufail et al., 2011; Kim et al., 2012).
TMS uses magnetic fields to pass through the skull to stimulate
the brain tissue and has been widely used for disorders caused by
the brain lesions, such as those caused in the type of depression
that does not respond to medication, and cognitive impairment
after stroke. The disadvantage of TMS is the lack of good spatial
resolution, which results in limitations in the application of
neural rehabilitation (Dionísio et al., 2018; Krogh et al., 2021;
Liu et al., 2021a). The characteristics of high penetration and
high spatial resolution of TUS have shown therapeutic potential
in stroke treatment (Guo et al., 2015; Li et al., 2017; Liu et al.,
2019; Wu et al., 2020; Malinova et al., 2021). Transcranial
ultrasound is roughly divided into two types based on frequency:
one is diagnostic transcranial ultrasound, with a frequency
of 1.0–15 MHz, whereas the other is transcranial aggregation
ultrasound, with a frequency lower than 1.0 MHz (Yang et al.,
2008; Deng et al., 2021). At present, most studies focus on the
thrombolytic effect and the mechanism of neuroregulation in
low-frequency TUS (Li et al., 2017; Fomenko et al., 2018; Liu
et al., 2019). TUS is able to transmit a certain frequency of an
ultrasonic wave on the human skull with a specific ultrasonic
probe. Through the skull, the ultrasonic energy is transmitted
to the brain tissues, stimulating the brain to produce a series of
biological effects. TUS has been explored in arterial thrombolytic
therapy and post-stroke rehabilitation therapy as an emerging
and non-invasive brain stimulation method (Rubiera et al., 2008;
Tsivgoulis et al., 2008; Barlinn et al., 2013).

NEUROPROTECTIVE EFFECT OF
TRANSCRANIAL ULTRASOUND
STIMULATION IN STROKE

The neuroprotective effect of TUS has become a hot topic in
recent years, especially in the field of stroke. TUS mainly exerts
a neuroprotective effect through the following mechanisms.

Rapid Restoration of Cerebral Blood
Supply and Improvement of Cerebral
Blood Flow
The earlier the restoration of cerebral blood supplies after
acute cerebral infarction, the better the recovery of neurological
function (Fisher and Bastan, 2008; Molina and Alvarez-
Sabín, 2009). Therefore, improving cerebral circulation before
irreversible changes occur in the brain tissue and alleviating
neuronal damage are the key factors for the treatment of
ischemic stroke and also have a positive significance in improving
the rehabilitation efficacy post-stroke. After ischemic stroke,
the neurons in the stroke center rapidly undergo apoptosis
and necrosis because of ischemia and hypoxia, whereas the
surrounding cells still have transient survival ability because of
the existence of collateral circulation, thus forming an ischemic
penumbra. Within a certain period of time, cells in this area

can either undergo apoptosis or return to the normal brain
tissue (Bonnin et al., 2021; Davis and Donnan, 2021; Yang and
Liu, 2021). If the ischemic penumbra is rescued in time, it
can effectively prevent stroke progression; further, the successful
rescue of ischemic penumbra is also conducive to the recovery
of the nervous system and physical function in the future. TUS
has been proved to be beneficial for the improvement of cerebral
blood circulation after acute ischemic stroke, and within a certain
range, cerebral blood flow also shows a gradually increasing
trend with the increase of stimulation intensity and duration
(Yuan et al., 2020, 2021; Liu et al., 2021b). However, with an
improvement in cerebral blood flow, the risk of rebleeding also
increases. A previous clinical trial (Daffertshofer et al., 2005)
has confirmed that low-frequency (300 kHz) TUS not only
resulted in improvement of the thrombolytic efficiency of tissue
plasminogen activator (tPA) but also caused an increased rate
of a cerebral hemorrhage in patients concomitantly treated with
intravenous tPA. The limitation of the study was that only
26 patients were included. Combined lysis of thrombus with
ultrasound and systemic tPA for emergent revascularization in
acute ischemic stroke (CLOTBUST-ER), an international four-
center phase II trial, demonstrated that in patients with acute
ischemic stroke, transcranial ultrasound augments tPA-induced
arterial recanalization with a non-significant trend toward an
increased rate of clinical recovery from stroke, compared with
the control group. The rates of symptomatic intracerebral
hemorrhage were similar between the active and control groups
(Schellinger et al., 2015; Katsanos et al., 2020). Further studies
are still awaited on this important issue. A previous study has
shown that the earlier the transcranial ultrasound intervention,
the better the neuroprotective effect (Liu et al., 2019). Therefore,
early use of TUS after stroke may effectively improve the brain–
blood supply, restore local blood circulation, rescue the ischemic
penumbra, and ultimately reduce brain tissue damage.

Transcranial ultrasound stimulation has also been shown
to improve the vascular recanalization rate, which is an
important index to evaluate the treatment effect in acute ischemic
stroke. Evgenii et al. (Kim et al., 2021) reported a wireless,
wearable system to achieve ultrasound brain stimulation in freely
behaving animals. The brain activity induced by the system was
monitored as cerebral hemodynamic changes via near-infrared
spectroscopy. The system was also applied to stroke rehabilitation
after temporal middle cerebral artery occlusion (MCAO) in rats.
The stimulation was found to induce hemodynamic changes
in the sonicated area, whereas open-field tests showed that
ultrasound applied to the ipsilateral hemisphere for 5 consecutive
days after stroke facilitated recovery. Another study conducted by
Wu et al. (2020) aimed to determine the neuroprotective effect
of low-intensity TUS at different time points using endothelin-
1-induced MCAO in rats. The results showed that the rats
that received low-intensity TUS exhibited reduced damage of
the affected brain tissue after cerebral ischemia. The greatest
protective effect was found with ultrasound stimulation of 30 min
after cerebral ischemia. Hameroff et al. (2013) found that using
8 MHz ultrasound to stimulate the upper frontotemporal cortex
of patients for 15 s could increase arterial oxygen saturation,
suggesting that ultrasound stimulation at a higher frequency may
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alleviate ischemic hypoxic changes after stroke. Furthermore,
one study (Alexandrov et al., 2019) found that within 3 h after
ischemic stroke onset, low-frequency transcranial ultrasound
therapy within 30 min after thrombolysis can significantly
enhance atenolol enzyme-induced arterial recanalization ability
compared with the control group, but the results also indicated
that transcranial ultrasound therapy did not significantly improve
patient outcomes in 90 days after stroke.

Reduced Inflammatory Response and
Apoptosis
Inflammatory mediators can cause further damage to neurons
in the ischemic penumbra. A recent study applied low-intensity
TUS to the ischemic cortex after distal MCAO and found that
ultrasound may activate coagulation factors through certain
signal transduction pathways and reduce neutrophils in the
ischemic region, thus reducing the inflammatory response and
facilitating neuronal recovery in the ischemic penumbra (Guo
et al., 2015). Similarly, another research on Parkinson’s disease rat
model found that the low-intensity pulsed ultrasound treatment
significantly inhibited 6-OHDA-induced glial activation and the
phosphorylation of nuclear factor-κB p65 in the substantia nigra
pars compacta. Further evaluation revealed that low-intensity
pulsed ultrasound effectively preserved the levels of neurotrophic
factors, dopamine transporter, and tight junction proteins in
the blood–brain barrier (Song et al., 2021). Furthermore, (Zhou
et al., 2021) revealed that TUS reduced the chronic inflammatory
response in microglia and astrocyte activation, whereas Pang et al.
(2021) found that TUS could attenuate the level of TNF-α .

As ischemic stroke induces cellular apoptosis, especially
neuronal apoptosis, which leads to neurological dysfunction,
determining a means to alleviate neuronal apoptosis has
become an important issue for researchers while evaluating the
outcome of patients with ischemic stroke. A study conducted
in 2021 (Zhou et al., 2021) found that TUS could reduce
the level of apoptosis-related protein Bax, and improved the
movement and learning in aging rats. Su et al. (2017) further
observed that low-intensity pulsed ultrasound could inhibit
the progression of apoptosis following traumatic brain injury.
Thus, the neuroprotective effects of TUS may be associated
with the TrkB/Akt-CREB signaling pathway. Another study
from the same team (Chen S. F. et al., 2018) found that
the low-intensity pulsed ultrasound significantly attenuated the
brain edema and neuronal death, reduced neutrophil infiltration
and microglial activation, increased the Bcl-2/Bax ratio, and
enhanced the phosphorylation of Bad and FOXO-1, ultimately
improving the functional outcomes. These results indicated
that the neuroprotective effects of TUS are associated with
a reduction of early inflammatory events and inhibition of
apoptotic progression.

Promotion of the Release of
Neurotrophic Factors
Neurotrophic factors, such as brain-derived neurotrophic factor
(BDNF) and glial cell line-derived neurotrophic factor (GDNF),
are considered to be involved in the regulation of key nerve

functions and neuroplasticity in stroke (Wang et al., 2006;
Luo et al., 2019; Liu et al., 2020). A previous study has found
that TUS effectively prevents cerebral ischemia/reperfusion
injury through apoptosis reduction and BDNF induction (Chen
C. M. et al., 2018). Su et al. (2017) observed that low-
intensity pulsed ultrasound could increase the BDNF protein
levels following a traumatic brain injury. The neuroprotective
effects of TUS may be associated with the enhancement
of protein levels of neurotrophic factors. Similarly, another
study conducting MCAO using a C57BL/6J mouse model
found that the low-intensity pulsed ultrasound accelerated
the expression of BDNF in the brain of stroke mice and
significantly moderated neuronal function after injury including
neurological score, motor activity, and brain pathological score.
In addition, Yang et al. (2015) demonstrate that TUS could
enhance the protein levels of neurotrophic factors (i.e., BDNF,
GDNF, VEGF, and GLUT1), which could have neuroprotective
effects against neurodegenerative diseases. In a study using an
ischemic stroke mouse model, low-intensity pulsed TUS could
induce BDNF expression, decreasing the percentage of damaged
neurons and the loss of neurological function after stroke.
Tsai et al. (Zhang et al., 2019) interestingly found that TUS
can also exert antidepressant-like effects. TUS could change
the expression of BDNF in the hippocampus of rats. Given
that BDNF plays an important role in the pathogenesis of
depression, promoting BDNF could have a therapeutic effect
(Hashimoto, 2010).

Thrombolytic Effect of Transcranial
Ultrasound Stimulation
Ultrasound has direct and indirect thrombolytic effects. Indirect
thrombolytic effects of TUS mainly enhance the effectiveness of
thrombolytic drugs. In addition, ultrasound can directly dissolve
the thrombus through its special physical and chemical properties
(Cao et al., 2021; Doelare et al., 2021; Mei and Zhang, 2021). The
main thrombolytic effects of TUS are summarized as follows.

Cavitation Effect
Cavitation is the generation of a large number of small bubbles
when ultrasound is applied to a liquid (Lahiri et al., 2021). These
bubbles rapidly vibrate, expand, and burst. A large amount of
energy is released at the moment of bubble explosion, causing
the thrombus to tear and decompose, exposing the surface
of the thrombus in large quantities, and further accelerating
the dissolution of the thrombus (Ma et al., 2020; Jo et al.,
2021; Singh et al., 2021). The cavitation-induced thermal effect
has been confirmed as a potential mechanism underlying this
phenomenon. When a certain amount of heat is generated at
the moment of bubble expansion, the heat effect may be the
main role of ultrasound therapy, because a certain amount of
heat effect can increase the activity of fibrinolytic enzymes,
which is conducive to its binding with thrombosis (Wu et al.,
2020). Intensity-focused ultrasound can generate high heat for
the ablation of tumors and other biological tissues (ter Haar,
2007; Bessonova et al., 2010; Simon et al., 2012). The mechanism
underlying this is complex. Some studies have proposed that
high-intensity focused ultrasound can affect the action potential
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FIGURE 1 | The potential mechanism involved in the transcranial ultrasound stimulation (TUS)-induced effect on stroke.

of axons (Wahab et al., 2012); the electrical activity of neurons
can be suppressed by disrupting the ultrastructure of synapses
by blocking the connections between them (Borrelli et al., 1981;
Tsui et al., 2005). Furthermore, the thermal effect of high-
frequency and high-intensity focused ultrasound can damage
nerve tissue and thus block transmission between synapses (Foley
et al., 2008; Colucci et al., 2009). In contrast, one research
found that although low-intensity TUS was eventually converted
into heat energy when it passed through non-ideal media, the
ultrasonic signal had almost no thermal effect on the brain
tissue in the process of ultrasonic stimulation. The heat is
extremely weak, much lower than the predicted heat required
to produce obvious biological effects of temperature threshold
(Liu et al., 2019). The differences in the abovementioned studies
may be related to the differences between animal models and
clinical patients. However, it is still controversial whether low-
frequency TUS has a meaningful thermal effect during treatment.
Whether the strength of the thermal effect is related to the
frequency, intensity, and duration of TUS, and whether the
thermal effect will cause damage to the brain tissue, needs
further research.

Biomechanical Effect
The mechanical action is the main mechanism of ultrasound
thrombolysis. The mechanical vibration of ultrasound can
destroy blood clots, decompose thrombi, increase the contact
between enzyme and fibrin, and promote the dissolution of
thrombi. Ultrasound can also enhance the vitality of the brain
cells and promote the repair of nerve cells after cerebral ischemia
(Masomi-Bornwasser et al., 2021; Shin Low et al., 2021).

Microflow Effect
The microflow effect is caused by the cavitation effect. Here, the
pressure generated by the burst microbubble causes the liquid
to form microflow, which can accelerate drugs to the ischemic
region (Matsievskii, 2003; Park et al., 2019; Li et al., 2021).

LIMITATIONS OF THE CURRENT
TRANSCRANIAL ULTRASOUND
STIMULATION STUDY

Treatment with TUS lacks clinical trials, as there are great
differences between animal models and clinical patients, many
problems remain to be solved in the clinical application of
TUS. Although some clinical studies have proved that TUS
can improve the clinical efficacy in ischemic strokes, these
evaluation methods cannot reflect the improvement in a
patient’s ability during the rehabilitation process. More detailed
and specific assessment scales should be used for evaluating
the effect of TUS, such as assessment of cognitive, speech,
sensory, motor, and other aspects. Moreover, most of the
current clinical studies are about a combination of TUS
and thrombolytic drugs to improve the thrombolytic effect.
Clinical research in the future may explore TUS and other
rehabilitation treatment methods, such as physical therapy,
speech therapy, and low-frequency neuromuscular electrical
stimulation, to improve the effectiveness of rehabilitation therapy
in patients with ischemic stroke. For example, anodal transcranial
direct current stimulation combined with constraint-induced
movement therapy resulted in the improvement of functional
ability of the paretic upper limb compared with constraint-
induced movement therapy alone, indicating that TUS may
enhance the effect of rehabilitation in patients with chronic
stroke (Figlewski et al., 2017). In addition, there is no clear
standard answer with regard to the specific parameters of TUS.
Previous studies found that transcranial ultrasound with different
frequencies can produce different excitatory or inhibitory effects
on the brain (Krishna et al., 2018; Zhang et al., 2021). The
ultrasonic stimulation parameters mainly include frequency,
pulse repetition frequency, duty cycle, pulse duration, and
ultrasonic intensity (Uddin et al., 2021). Frequency refers to
the number of oscillation cycles per unit time, importantly, as
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the frequency is inversely proportional to the wavelength, the
higher the frequency, the smaller the focal spot volume, and the
more significant the acoustic attenuation and scattering effect.
Therefore, it is necessary to explore the most suitable frequency
and intensity of TUS according to the location depth of the
stimulation target and the thickness of penetration through the
skull, and the safety of different parameter combinations in
clinical application.

CONCLUSION

Ultrasound thrombolysis has already been used widely;
low-frequency TUS can exert its effect based on the
mechanical vibration, cavitation, or microflow, consequently
dissolving the thrombus, reducing the infarct size in
patients, promoting cerebral circulation, rescuing the ischemic
penumbra, and improving the prognosis of patients with
stroke. Low-frequency TUS is mostly used clinically at
present. Numerous studies have explored the mechanism

of low-frequency TUS and confirmed that low-frequency
TUS has certain neuroregulatory effects, which have both
excitatory and inhibitory effects on the human cerebral
cortex (Figure 1).

In summary, although there are still many issues that need to
be explored and solved in terms of clinical application, numerous
studies have shown that TUS can promote thrombolysis, increase
cerebral blood circulation, and improve neurological recovery.
Thus, after ischemic stroke onset, timely and proper TUS
intervention may improve the neurological function and quality
of life of post-stroke patients.
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