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Abstract

Background: GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron
oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the
nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in
biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein
endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI).

Results: Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was
confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs
were 30.65 + 3.15 and 49.23 + 501 nm, respectively, and the shell thickness were 6.8 + 0.65 and 85 + 1.36 nm,
respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were
332 £ 268 and 53.12 + 4.56 nm, respectively. The r, relaxivity of the 50 nm GMNPs was 98.65 mM™" 57! whereas
it was 80.18 mM~' s~! for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and
ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure.
Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with
the 30 nm GMNPs at the same concentration and time. At no more than 25 ug/mL and 12 hours, the 50 nm GMNPs
exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 ug/mL and 24 hours for the
30 nm GMNPs.

Conclusions: These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration
and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher
labeling rate and ROS level for HUVECs. Coupled with r, relaxivity, it was suggested that the 50 nm GMNPs are more
suitable for HUVEC labeling and MR, and the suitable concentration and time were 25 ug/mL and 12 hours.
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Background
Because of their small size and high surface area to vol-
ume ratio, nanoparticles exhibit unusual physicochemi-
cal properties, which have led to their use in sports
equipment, the photovoltaic industry, industrial catalysis
and electronics. Additionally, nanoparticles are smaller
than a cell, protein or gene, which has led to their in-
creased use in biomedicine for the purpose of drug deliv-
ery, molecular imaging and targeting therapy. The
increasingly greater application of nanomaterials in our
daily life has aroused public concerns regarding adverse
effects on humans. Because of the higher surface area to
volume ratio, higher surface reactivity and susceptibility to
degradation and ion leaching, nanoparticles are generally
considered to have higher levels of toxicity compared with
bulk material in some studies [1-3]. Furthermore, through
interactions with specific biomolecules, nanoparticles can
induce noxious molecules, such as reactive oxygen species
(ROS), which cause apoptosis in cells and interfere with
organ function [4,5]. Thus, the biosafety of nanoparticles
should be fully studied prior to their use in biomedicine.
Magnetic resonance imaging (MRI) is one of the best
noninvasive methods currently used in clinical medicine
because of its superb soft-tissue contrast resolution, lack
of radiation exposure, and multi-parameter and multi-
sequence imaging [6]. MRI is less sensitive compared
with positron emission tomography and fluorescence
imaging; therefore, MRI cannot be used for small lesion
monitoring or molecule tracing [7]. However, contrast
agents (CAs) markedly enhance the sensitivity of MRIL
Superparamagnetic iron oxide nanoparticles (SPIO) ex-
hibit extremely high magnetic moments in the presence
of an external magnetic field, markedly shortening the
transverse relaxation time (T,) and T5, which is of great
interest for researchers; this technology has the potential
to provide improvements in the field of molecular im-
aging, gene and drug delivery and cell trafficking [8-10].
GoldMag nanoparticles (GMNPs) are a type of com-
posite nanoparticle that have a typical shell/core struc-
ture, with SPIO as the core and a layer of gold coating
the surface [11]. Gold is a noble metal, which displays a
strong optical absorbance and localized surface Plasmon
resonance, ensuring that gold is a superb candidate for
surface enhanced Raman scattering as well as chemical
and biological sensors. Additionally, proteins could be
conjugated to gold nanoparticles relatively easily through
thiol chemistry or physisorption. Furthermore, the excel-
lent biocompatibility of gold, which is derived from its
lack of toxicity and chemical inertness coupled with its
rapid heating by near infrared irradiation, ensures that it
is an excellent candidate for biomedical applications
[12,13]. GMNPs possess the properties of colloid gold
and SPIO; as a result, GMNPs have been used in the de-
livery, separation and purification of biological samples
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and are an excellent candidate for multimodal molecular
imaging [14,15].

There is a close relationship between angiogenesis and
tumor growth, invasion, metastasis, as well as the prog-
nosis of cancer. The diameter of a tumor does not ex-
ceed 2-3 mm in the absence of a blood vessel [16].
Hematogenous dissemination of cancer cells is the pri-
mary route for distant metastasis of malignant tumors
[17]. The direct or indirect assessment of tumor blood
vessels is crucial to identify tumor occurrence, develop-
ment and prognosis. Endothelial cells are the leading tar-
get in the study of tumor angiogenesis. Combining the
real-time and highly sensitive visualization of MR mo-
lecular imaging, MR targeted imaging of endothelial cells
labeled with GMNPs is an ideal platform to assess
angiogenesis.

In previous studies, GMNPs have been applied to MR
imaging and other biomedical applications [11,14]. Most
studies have explored the feasibility of MR imaging
based on GMNPs, and a limited number evaluated
nanotoxicity on biological systems. In this study we used
GMNPs of two sizes to label human umbilical venous
endothelial cells (HUVECs), and we evaluated the label-
ing efficiency and nanotoxicity of GMNPs. In addition,
we explored the preliminary nanotoxic mechanism of
GMNPs. We identified a suitable size, concentration and
duration of GMNP labeling of HUVECs for targeted
MRI of cells.

Results

GMNP characterization

The photomicrographs obtained by transmission electron
microscopy (TEM) showed that the average particle sizes
of the 30 and 50 nm GMNPs were 30.65 + 3.15 (Figure 1A
and D) and 49.23 + 5.01 nm (Figure 1 F and I), respect-
ively, as counted from 100 randomly selected nanoparti-
cle; the nanoparticles had a fairly spherical shape and a
relatively narrow particle size distribution. The magnified
TEM images showed that there was a high electron dens-
ity coating on the surface of GMNPs (Figure 1C and H),
indicating the presence of an Au shell on the surface of
Fe;O, nanoparticles. The core size and the gold shell
thickness of the 30 nm GMNPs were 23.3 + 1.95 nm and
6.8 + 0.65 nm, respectively (Figure 1C), and these values
were 38.2 + 2.3 nm and 85 + 1.36 nm, respectively, for
the 50 nm GMNPs (Figure 1H). High resolution transmis-
sion electron microscopy (HRTEM) images of 30 nm
GMNPs and 50 nm GMNPs are shown in Figure 1B and
Figure 1G respectively. The spacing between the lattice
fringes was measured to be approximately 0.24 nm which
correspond to the plane (111) of Au, also indicating the
deposition of Au on the Fe;O, nanoparticles. The hydro-
dynamic diameter of GMNPs dispersed in water was de-
termined by dynamic light scattering (DLS). Figures 1E
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Figure 1 GoldMag nanoparticles characterization. TEM, HRTEM, size distribution histograms, hydrodynamic diameter and EDS of 30 nm
(A, B, C, D, E and K) and 50 nm (F, G, H, I, J and L) GMNPs. MR images of 30 nm and 50 nm GMNPs with different concentrations; the r,
relaxivity of each are shown in (M) and (N), respectively.

and ] show that the average hydrodynamic diameters of  with the TEM results. The energy dispersive spectrometer
the 30 nm and 50 nm GMNPs were 33.2 + 2.68 nm and  (EDS) spectrum of 30 nm GMNPs (Figure 1K) and 50 nm
53.12 + 4.56 nm, respectively, which is in good agreement =~ GMNPs (Figure 1L) revealed the presence of Au, Fe and
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O in the GMNPs, whereas the Cu and C signal were de-
rived from the copper grid that was used to prepare the
TEM sample. The GMNPs showed a concentration-
dependent signal drop in the GRE T,W1I and FSE T,WL
The GMNPs that were 50 nm in size induced greater
hypo-intensities at the identical concentrations com-
pared with that of the 30 nm GMNPs. The linear fitting
showed that the r, relaxivity of the 50 nm GMNPs was
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98.65 mM " 57!, which is 1.23 times higher than that of
the 30 nm GMNPs (80.18 mM ' s™") (Figure 1 M-N).

Uptake of the GMNPs

In this study, the uptake of the GMNPs was determined
using TEM and Prussian blue staining. Figure 2X-Z
shows that the untreated and treated HUVECs are oval,
spindle or irregular polygons with a complete cell structure.

100q-+ 30 nm GoldMag T -
= 50 nm GoldMag x
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Figure 2 GMNP uptake. Prussian blue staining of HUVECs (A-U, x200). Cells were incubated with 5, 10, 25, 50 and 100 pg/mL 30 nm GMNPs for
12 hours (B-F), 5, 10, 25, 50 and 100 pg/mL 50 nm GMNPs for 12 hours (G-K), 25 pg/mL 30 nm GMNPs for 3, 6, 12, 24 and 48 hours (L-P), and 25
pg/mL 50 nm GMNPs for 3, 6, 12, 24 and 48 hours (Q-U). Control cells are shown in (A). The labeling rates of 30 and 50 nm GMNPs at different
concentrations and for durations are shown in (V-W). TEM of control HUVECs (X), HUVECs labeled with 25 ug/mL 30 nm GMNPs (Y, black arrow)
and 50 nm GMNPs (Z, black arrow) for 12 hours.
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Some vacuoles were within the HUVECs exposed to the
GMNPs. The vacuoles contained round, electron-dense
particles, which were indicative of the presence of the
GMNPs sequestered within the labeled HUVECs. These
vesicles were distributed in the perinuclear region and did
not penetrate the nucleus or the mitochondria. Compared
with the 30 nm GMNPs, there were more vacuoles and the
scale of the vacuoles was larger in the cells labeled with the
50 nm GMNPs, which indicates that there were more 50
nm GMNPs engulfed than 30 nm GMNPs.

Because SPIO can produce ferric ferricyanide, a dark
blue pigment known as Prussian blue, through its reac-
tion with potassium ferrocyanide within the acidic solu-
tion, the GMNPs could be observed with an optical
microscope after Prussian blue staining. Figure 2A-U
clearly showed that there were blue granules in the cyto-
plasm of the labeled cells and most of them were around
the nucleus, which is perfectly consistent with the TEM
results. The uptake of the GMNPs depended on the size,
time and concentration of the GMNPs. With an increas-
ing concentration and co-incubation time, the number
of cells containing blue particles and blue granules in
each cell increased. The labeling rate of the HUVECs la-
beled with 50 nm GMNPs is higher than that of the cells
labeled with 30 nm GMNPs at the identical concentra-
tion and exposure time. Specifically, the labeling rate of
the 50 nm GMNPs was 95.8% after co-incubation with
25 pg/mL of GMNPs for 12 hours, which was 50.2% for
the 30 nm GMNPs at the identical exposure.

Cell proliferation, apoptosis, cytoskeleton, migration and
tube formation

According to the growth curve based on the optical
density (OD) value and exposure time, the doubling time
of the untreated HUVECs is 31.81 hours, which is very
close to the doubling time of the cells exposed to low
concentrations of 30 and 50 nm GMNPs (<25 pg/mL).
With increasing concentration and exposure time, the
doubling time of the labeled HUVECs rapidly increased.
Under the identical concentration and exposure time,
the doubling time of the HUVECs labeled with 30 nm
GMNPs was much shorter than that of the cells labeled
with 50 nm GMNPs (Figure 3). HUVEC proliferation
was affected by the GMNPs in a size-, concentration-
and time-dependent manner. For more than a specific
concentration and exposure time of the GMNPs (25 pg/
mL and 48 hours for 50 nm and 50 pg/mL and 72 hours
for 30 nm), the OD value was below that at 0 hours, in-
dicating that the GMNPs were toxic and caused notice-
able cell necrosis.

The Annexin V-FITC apoptosis analysis showed that for
the 50 nm GMNPs, a significant decrease of approxi-
mately ~24% in the viability of cells incubated with 25 pg/
mL nanoparticles for 24 hours was measured compared
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with the controls; for the 30 nm GMNPs, a decrease of
only approximately 10% in the viability of the HUVECs
was measured compared with the controls at the identical
dose and time. Considering all the cells labeled with
GMNPs of different sizes, concentrations, and duration,
the proportion of the apoptotic cells was a function of the
time and concentration for the 30 nm and 50 nm GMNPs,
whereas the 50 nm GMNPs caused a larger proportion of
the cells to undergo apoptosis than the 30 nm GMNPs at
the identical dose and time. There was a significant in-
crease in the number of apoptotic cells detected only after
exposure to at least 25 pg/mL 50 nm GMNPs for more
than 12 hours and at least 50 pg/mL 30 nm GMNPs for a
minimum of 24 hours (Figure 4).

The cytoskeleton is a cellular skeleton that provides
cells with structure and shape; it plays important roles in
many cellular behaviors, such as intracellular transport
and cellular division. Therefore, the integrity of the cyto-
skeleton structure and function is very important for
cells. Here, our group observed the cytoskeleton and
morphology of the labeled cells by staining them with
fluorescent phalloidin under confocal laser scanning
microscope (CLSM). We determined that the untreated
HUVECs stretched well and adhered to the wall with a
clear and smooth cytoskeleton distributed uniformly
within the cells. The cells, which were incubated with
the 50 nm GMNPs at 5, 10 or 25 pug/mL for less than 24
hours, exhibited a similar appearance compared with the
control cells, which the exception of some round,
electron-dense vacuoles; these vacuoles lacked fluores-
cence sequestered within these HUVECs perinuclearly
and were verified to be GMNPs under the white light
view of CLSM. A clear loss of the cytoskeleton network
could be observed when the cells were exposed to the
50 nm GMNPs at either 50 or 100 pg/mL for more than
24 hours. Under a high magnification view of these
HUVECs, the cytoskeleton exhibited a fractured, corru-
gated, and sparse appearance. Furthermore, some cells
became necrotic and dissolved, and their cytoskeleton
became disorganized. It was clear that the effects on the
HUVEC cytoskeleton architecture that were induced by
the 50 nm GMNPs were size-, concentration- and ex-
posure time-dependent. The overall trend of reducing
the cytoskeleton network of the HUVECs labeled with
the 30 nm GMNPs, according to the concentration and
incubation time, was similar; however, the smaller size
resulted in a reduction in the inhibition effects and less
loss of the cytoskeleton architecture under the identical
concentration and exposure time compared with the 50
nm GMNDPs. The highest, nontoxic concentration for
the cytoskeleton after treatment with the 30 nm GMNPs
was higher compared with the 50 nm GMNPs after 12
hours of exposure; these concentrations were 50 pg/mL
and 25 pg/mlL, respectively (Figure 5).
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Figure 3 Growth curve of HUVECs exposed to different concentrations of 30 and 50 nm GMNPs (A) and the doubling time of these
HUVECs (B). HUVEC proliferation was affected by the GMNPs in a size-, concentration- and time-dependent manner.

Cell migration is a complex cellular behavior that is
precisely regulated by the cytoskeleton and other regu-
latory proteins. The results from the transwell assay
showed that the migration of labeled HUVECs was af-
fected by the GMNPs in a size-, concentration- and
time-dependent manner. With increased concentration
and incubation time, the 30 and 50 nm GMNPs began
to exhibit HUVEC migration-inhibiting activity at 25
pug/mL for 48 hours and 25 pg/mL for 12 hours, re-
spectively. Compared with the control group, the aver-
age relative number of the migrated HUVECs treated
with 25 pg/mL of the 30 nm GMNPs for 48 hours and
the 50 nm GMNPs for 12 hours were 81.4 + 4.1% and
83.6 £ 2.9%, respectively. Compared with the 30 nm
GMNPs, the 50 nm GMNPs exhibited much higher

inhibition of migration at the identical concentration
(Figure 6).

Angiogenesis, the formation of new capillaries from
existing vasculature, is crucial for physiological and
pathological events, including wound healing, inflamma-
tion and the growth and progression of tumors. The for-
mation of tube-like structures from endothelial cells
under appropriate conditions is a critical step in angio-
genesis. In this study, a tube formation assay was used
to assess the biotoxicity of the GMNPs using a three-
dimensional Matrigel assay. For the control cells, elon-
gated tube-like structures were formed 4 hours after cell
adhesion, which were also observed for the cells that
were labeled with low concentration GMNPs. Fewer
tube structures were formed from the cells that were
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incubated with 100 pg/mL of 30 nm GMNPs and 25 pg/
mL of 50 nm GMNPs. Additionally, higher concentra-
tions were associated with more GMNP-inhibited tube
formation. Under identical labeling conditions, the 50
nm GMNPs exhibited higher inhibition ability compared
with the 30 nm GMNPs (Figure 7).

ROS generation

As shown in Figure 8, the induction of ROS depended
on the size, concentration and time. For the cells labeled
with the 50 nm GMNPs, a significant elevation in the
ROS was detected in the cells that were exposed to 25
pug/mL of GMNPs for 24 hours, which was 2.5 times
higher than that of the control cells. Similar results were
obtained for the HUVECs that were labeled with the 30
nm GMNPs, reaching a significant increase in the intra-
cellular ROS at 50 pg/mL for 24 hours. At short incuba-
tion times and low labeling concentrations, minimal
intracellular ROS elevations were observed compared
with those of the control cells.

In vitro MRI of HUVECs

With increasing concentration, the signal intensity for the
T, weighted and T3 weighted MRI of the HUVECs labeled
with the 30 nm and 50 nm GMNPs decreased rapidly.
Consistent with the trend of the signal intensity in the T-
weighted MRI, the T, relaxation time of the labeled cells
decreased with an increased GMNP concentration. Com-
pared with the cells that were labeled with the 30 nm
GMNPs, the T, relaxation time of the HUVECs labeled
with 50 nm GMNPs was much lower. The cells incubated
with 100 pg/mL of the 30 nm and 50 nm GMNPs showed
the shortest T, relaxation times, which were 19.68 ms and
10.76 ms, respectively (Figure 9).

Discussion

The uptake of nanoparticles is a prerequisite and crucial
step for successful cell labeling and MRI [18]. Many
studies have investigated the factors that influence nano-
particle uptake, which is a complex process that may be
influenced by many factors, including the nanoparticle
size, shape, surface coating, and surface charge. Because
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Figure 5 (See legend on next page.)
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(See figure on previous page.)

Figure 5 CLSM of HUVEC cytoskeletons. (A) Control; (B-F) HUVECs labeled with 5, 10, 25, 50 and 100 pg/mL 30 nm GMNPs for 12 hours; (G-K)
HUVECs labeled with 5, 10, 25, 50 and 100 pg/mL 50 nm GMNPs for 12 hours; (L-P) HUVECs labeled with 25 pg/mL 30 nm GMNPs for 3, 6, 12, 24 and
48 hours; (Q-U) HUVECs labeled with 25 pug/mL 50 nm GMNPs for 3, 6, 12, 24 and 48 hours. The cytoskeletons of the cells exposed to the 30 and 50
nm GMNPs at either 50 or 100 pg/mL for more than 24 hours exhibited a fractured, corrugated, and sparse appearance. The round, electron-dense
vacuoles lacking fluorescence and sequestered perinuclearly within these HUVECs were verified to be GMNPs.

particles of different sizes possess distinct optical, elec-
tronic, and magnetic properties, the uptake of nanoparticles
is considered to most likely be size-dependent, and many
reports on the uptake and toxicity of nanoparticles have fo-
cused on the particle size [19-23]. In previous research, the
uptake of many types of nanoparticles, including quantum
dots, liposomes, gold, silver, silica and iron oxide nanoparti-
cles, was reported to be size-dependent [24-26]. In the
study of Clift et al. [22] study, the uptake of 20 nm nano-
particles by macrophages was easier, faster and more exten-
sive compared with that of 200 nm nanoparticles, which
was hypothesized to be because of different uptake mecha-
nisms for differentially sized nanoparticles. Huang et al.
[19] evaluated the uptake of gold nanoparticles that ranged
from 2 to 15 nm for monolayer breast cancer cells and ob-
tained a similar result, in which 2 nm nanoparticles exhib-
ited levels of higher cellular uptake than 6 and 15 nm
nanoparticles because of their ultra-small structure. Add-
itional studies [4,20,23] have drawn a similar conclusion
that a higher level of nanoparticle uptake was concomitant
with a decrease in nanoparticle size. Concurrent with this
finding, a recent hypothesis is that the uptake of nanoparti-
cles is size-dependent, with the optimal size for cell uptake
equal to 50 nm [21,27,28]. Lu et al. [21] investigated the up-
take of various sizes of silica nanoparticles, which ranged
from 30 to 280 nm, and discovered that the cellular uptake
was highly size dependent with 50 > 30 > 110 > 280 > 170
nm. Ma et al. [28] reported that the cellular uptake of gold
nanoparticles was heavily dependent on the particle size,
and 50 nm Au nanoparticles were most readily internalized
by cells, followed by 25 nm and 10 nm Au nanoparticles. In
this study, the internalization of GMNPs was verified by
Prussian blue staining and TEM (Figure 2). The number of
GMNPs ingested by HUVECs was concentration- and
time-dependent; there was a gradual increase in the num-
ber of blue-stained cells as the concentration and incuba-
tion time increased. Compared with the 30 nm GMNPs,
the internalization of the 50 nm GMNPs was substantially
faster and more efficient. These findings are consistent with
other studies [21,27,28]. Previously, the uptake of gold
nanoparticles was determined to occur via the endocytosis
pathway, which is mediated by the serum protein that non-
specifically adsorbed onto the gold nanoparticle surface.
The number of binding sites on the nanoparticles is
dependent on the surface area, which increases with the
particle size. Combined with the steric hindrance effect, the
protein density on the particle surface increases linearly

with size. Larger nanoparticles have more proteins on the
particle surface, allowing for their more efficient internal-
ization. Coupled with an uptake dependent on the mem-
brane wrapping time, which is based on the diffusion rate
of the receptors on the membrane, extremely large nano-
particles with substantially higher surface protein density
are incapable of compensating for the depletion of recep-
tors within the binding area and exhibit slight internaliza-
tion. According to kinetics, the increasing elastic energy
associated with the bending of the membrane results in a
decreased driving force for the membrane wrapping of
smaller nanoparticles. Smaller particles must be clustered
to create sufficient driving energy for uptake, and the up-
take level of smaller particles is substantially smaller com-
pared with that of optimally sized particles [27,28].
Furthermore, based on thiol chemistry, we hypothesize that
the internalization of GMNPs is mediated by the adsorp-
tion of membrane proteins with thiol onto the surface of
GMNPs, which results in production similar to receptor-
mediated endocytosis.

An overwhelming majority of reports state that iron
oxide nanoparticles are biosafe because the Fe ions are
biocompatible and highly tolerated [29,30]. Additionally, a
study by Huang reports that the ionic SPIO could dimin-
ish the intracellular H,O, through intrinsic peroxidase-
like activity and accelerate cell cycle progression to pro-
mote cell growth [29]. Some reports have confirmed that
gold is biosafe because of its chemical inertness [4,31,32].
However, other researchers have demonstrated that these
nanoparticles are not inherently benign and have potential
toxicity at the cellular, subcellular and protein levels in a
size-, time- and dose-dependent manner [3,5,33,34]. In
this study, a multi-parametric study was conducted to sys-
tematically assess the cytotoxic effects of the GMNPs on
the HUVECs. Considering all of the results, GMNPs have
cytotoxic effects that depend on the concentration and in-
cubation time; the bioactivity of the HUVECs that were
incubated with a relatively low concentration of GMNPs
for a short duration was not significantly changed, and
gradual cytotoxicity was observed when the HUVECs
were labeled with 50 pg/mL of 30 nm GMNPs and 25
pug/mL of 50 nm GMNPs for 12 hours. Extremely high
concentrations of GMNPs could induce HUVEC apop-
tosis and necrosis (Figures 3, 4, 5, 6 and 7). It is difficult
to explain the exact mechanism by which GMNPs ex-
hibit noticeable cytotoxic effects. However, according
to a previous study regarding nanoparticle toxicity,
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Figure 6 Crystal violet staining of migrated HUVECs (A-U, x200). (A) Control; (B-F) HUVECs labeled with 5, 10, 25, 50 and 100 pug/mL 30 nm
GMNPs for 12 hours; (G-K) HUVECs labeled with 5, 10, 25, 50 and 100 pg/mL 50 nm GMNPs for 12 hours; (L-P) HUVECs labeled with 25 ug/mL 30 nm
GMNPs for 3, 6, 12, 24 and 48 hours; (Q-U) HUVECs labeled with 25 pug/mL 50 nm GMNPs for 3, 6, 12, 24 and 48 hours. (V-W) Relative number of
migrated HUVECs labeled with different concentrations of 30 and 50 nm GMNPs for various times. P < 0.05, compared with the control group.
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several factors may be responsible for these effects, in-
cluding ROS production, genotoxicity, morphological
modifications and toxic ion leaching; ROS induction
has been posited as one of the main explanations for
these effects [5,33-35]. Particles within the nanometer
range might lead to structural defects and could

damage the electronic configuration, which may create
electron donor or acceptor sites on the nanoparticle
surface. Molecular dioxygen (O,) surrounding these
nanoparticles would react with the reactive sites and
lead to the formation of a superoxide radical (O%).
Additionally, many free hydroxyl radicals (OH") are
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(H-L) HUVECs labeled with 5, 10, 25, 50 and 100 pg/mL 50 nm GMNPs. (A) Relative number of tube-like structures formed from HUVECs labeled
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generated through Fenton chemistry and Haber-Weiss
reactions under the catalysis of transition metals (e.g.,
Fe and manganese). Both OH™ and O*", collectively
known as ROS, are generally perceived as toxins that
induce various deleterious effects, including cell mem-
brane damage, DNA and cytoskeleton injury, autophagy
and apoptosis [35-37]. Here, the results of the DCFH-
DA assay demonstrated that the induction of ROS was
clearly concentration- and time-dependent for HUVECs
labeled with 30 and 50 nm GMNPs, which is in agreement
with the cytotoxicity results of the GMNPs on HUVECs
and can be understood based on the aforementioned the-
ory for ROS. With increasing concentrations and times,
the number of GMNPs engulfed by the cells gradually in-
creased, resulting in the accumulation of ROS within the
cells and deleterious effects on the DNA, proteins, cell
membrane and cytoskeleton (Figure 8). Nevertheless,
GMNPs are a composite nanoparticle that have a layer of
gold coating on the surface of the SPIOs; gold is not as
relevant as the transition metals with respect to nanotoxi-
city [32,38] because it is chemically inert. Two factors
might be responsible for this contradictory phenomenon.

The synthesis of GMNPs is a two-step process involving
the formation of iron oxide nanoparticles and a layer of
gold deposition on the surface. The synthesis is relatively
complex, and there might be some uncontrollable factors
that result in incomplete coating of the core with gold
(Figures 1C and H). Prussian blue staining of the labeled
HUVEC:s has also confirmed this assumption; ferric ferri-
cyanide could only be produced by ferric iron through its
reaction with potassium ferrocyanide within an acidic so-
lution. Furthermore, gold has cytotoxicity through other
mechanisms, including cell morphology and cytoskeleton
defects; interactions with mitochondria; disturbances in
the intracellular signaling pathways via interference with
stimulating factors; and DNA damage and genotoxicity
[39-41]. Additionally, some recent studies have paradoxic-
ally suggested that gold nanoparticles cause oxidative
stress in mammalian cells after internalization [34,35,42].
Compared with the 30 nm GMNPs, the 50 nm GMNPs
exhibited higher cytotoxicity at the same concentration
and incubation time. These findings are inconsistent with
reports that smaller nanoparticles have a higher surface
area to volume ratio and higher surface reactivity,
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which results in higher nanotoxicity [1,2]. Additionally,
according to the study by Meng et al. [43], smaller
nanoparticles have a higher degree of curvature and
generate more potential toxicity. The difference in the
level of GMNPs internalized into the HUVECs might
be responsible for the seemingly contradictory results.
In a previous study, Soenen et al. [34] demonstrated
that the induction of ROS and toxic effects of nanopar-
ticles occurred while the cells or subcellular structures
maintained contact with the nanoparticles. The results
from the Prussian blue staining showed that internal-
ization of the 50 nm GMNPs was much more likely
and efficient than internalization of the 30 nm GMNPs.
The presence of more nanoparticles within the cells re-
sults in the generation of more ROS and greater dele-
terious effects on the DNA, proteins, cell membrane
and cytoskeleton, leading to higher nanotoxicity.

The main purpose of this study was to evaluate the
bioactivity effects of GMNPs with different sizes, con-
centrations and incubation times on HUVECs, to ex-
plore the mechanisms of GMNP nanotoxicity and to
select a suitable size, concentration and incubation time
for in vitro and in vivo MR imaging. Thus, the relaxivity
of GMNPs with different sizes should be considered.
Relaxivity is defined as the increase in the nuclear relax-
ation rate of water protons produced by 1 mmol/L of
CAs, which indicates the signal enhancement efficiency
produced by the MRI CAs. The iron oxide nanoparticles
within GMNPs could shorten the longitudinal relaxation
time and T,; however, the predominant effect is on the

T, and T, shortening, which produces the darkening of
the contrast-enhanced tissue. The results in this report
show that both types of GMNPs showed a concentration-
dependent signal drop in the GRE T,WI, FSE T,W1I and
T, mapping and that the r, relaxivity of the 50 nm
GMNPs is approximately 1.5 times higher than that of the
30 nm GMNPs. These findings are consistent with the
majority of previous studies on this topic [44,45]; in these
previous studies, the SPIO exhibit extremely high mag-
netic moments because of a cooperative alignment of the
electronic spins of the individual paramagnetic ions, and
the r, relaxivity is proportional to the particle size. Com-
bined with the uptake of GMNPs of different sizes, it was
clearly demonstrated that the MRI signal drop of labeled
HUVEC: increased with increased concentrations of both
sizes of GMNPs, and the HUVECs labeled with the 50 nm
GMNPs produced higher negative enhancement com-
pared with the 30 nm GMNPs at the same concentration.

Conclusion

In this work, the morphology, size, size distribution and
relaxivity of the GMNPs were characterized through
TEM and MRI; we focused on the nanotoxicity assess-
ment of GMNPs on HUVECs using a detailed and mul-
tiparametric approach. Various aspects of bioactivity
were analyzed, including cell proliferation, cytoskeleton
integrity, migration, tube formation and apoptosis. In
addition, ROS generation in the HUVECs labeled with
GMNPs of different sizes, concentrations and incubation
times was studied to explore the mechanisms of
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nanotoxicity. We found that the GMNPs had a regular as-
pect, fairly spherical shape and relatively narrow particle
size distribution. The r, relaxivity of the 50 nm GMNPs is
approximately 1.5 times higher than that of the 30 nm
GMNPs. The uptake and bioactivity effects, including cell
proliferation, the cytoskeleton, migration, tube formation,
apoptosis and the generation of ROS of the labeled
HUVECs, depended on size, concentration and time. Com-
bined with the relaxivity of the GMNPs of different sizes,
the 50 nm GMNPs are more suitable for HUVEC labeling
and MR imaging in vitro, and the optimal labeling concen-
tration and incubation time are 25 pg/mL and 12 hours,
respectively, which produce significant negative enhance-
ment in MRI and do not lead to significant effects with re-
spect to cell proliferation, the cytoskeleton, migration, tube
formation, apoptosis or ROS induction. In this work, we
conducted a multiparametric assessment of the cytotoxicity
of the GMNPs and defined a suitable size, concentration
and incubation time for cell labeling and MR imaging. This
work provides a reference for future studies using the same
nanoparticles for cell labeling and MRI in vitro or in vivo.

Methods

Cell culture

HUVEC cells were used in this study, and were routinely
harvested via the digestion of human umbilical veins
with type-1 collagenase, as previously described [46].
The human umbilical cords were obtained from the De-
partment of Obstetrics and Gynecology of Xingiao Hos-
pital. The specificity and purity of the isolated cells were
evaluated using immunofluorescence staining and flow
cytometry (FCM). HUVECs were cultured in medium 199
(Hyclone, UT, USA) supplemented with 20% fetal bovine
serum (FBS) (Hyclone), endothelial cell growth supple-
ment (Sciencell, USA), 0.05 mg/mL heparin (Sigma,
USA), 2 mM L-glutamine (Sigma), and 100 U/mL peni-
cillin/streptomycin (Hyclone) in a humidified incubator
(Thermo scientific, USA) with 5% CO, at 37°C. The
third to seventh passages were used for the subsequent ex-
periments. Proliferation and tube formation assays were
performed at a density of 3 x 10> and 1 x 10* cells/well in
96-well plates (Corning, NY, USA), respectively. HUVECs
incubated with various concentrations (0, 5, 10, 25, 50 and
100 pg/mL) of GMNPs (30 and 50 nm) were used for the
proliferation assay and the tube formation assay, and the
time periods used for incubation were 6, 12, 24, 48 and 72
hours and 6 hours, respectively. HUVECs were cultured
in glass bottom cultures with a diameter of 30 mm (NEST,
China) and 6-well plates (Corning) with 1 x 10° cells per
culture or well for the cytoskeleton and Prussian-blue
staining, migration, and apoptosis assays, which were
exposed to 25 pg/mL GMNPs (30 and 50 nm) for vari-
ous time periods (3, 6, 12, 24 and 48 hours) and incu-
bated with various concentrations (0, 5, 10, 25, 50 and
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100 pg/mL) of GMNPs (30 and 50 nm) for 12 hours.
For TEM and MRI, HUVECs were incubated with 25
pg/mL GMNPs (30 and 50 nm) for 12 hours. HUVECs
exposed to various concentrations (0, 5, 10, 25, 50 and
100 pg/mL) of GMNPs (30 and 50 nm) for various time
periods (6, 12, 24 and 48 hours) were used to assess
ROS generation. All cells were cultured overnight for
adherence and achieved 80% confluence prior to expos-
ure to GMNPs. For the fluorescence experiments, the
cells were maintained under lucifugal conditions. Each
experiment had a control and was repeated at least
three times.

TEM, EDS, DLS and MRI

GMNPs of 30 and 50 nm were purchased from Xian
GoldMag Nanobiotech Co., Ltd. (Xi’an, China). They
were prepared by the reduction of Au®* with hydroxyl-
amine in the presence of Fe;O, particles as seeds [11].
Briefly, the Fe;O,4 particles were co-precipitated from Fe
(I1) and Fe (III) ions in alkaline medium and then dis-
persed in chloroauric acid solution. NH,OH solution
was then added to the mixture, which was incubated
with shaking for 1 hour. Finally, the prepared GMNPs
were washed with plenty of water. The morphology, par-
ticle size and size distribution of the GMNPs were mea-
sured using TEM (Hitachi-7500, Japan) and HRTEM
(JEM-2100 F, Japan). The diameter of GMNPs in disper-
sion was determined using the DLS technique (Nano
2590, Malvern, England). The chemical composition of
GMNPs was quantified by EDS analysis (JEM-2100 F).
Following fixation, dehydration and embedding, the la-
beled HUVECs were cut into sections with a thickness
of 60 nm using a diamond knife before using TEM to ob-
serve their ultra-structures and confirm the location of
the GMNPs within them. Serial concentrations (0, 5, 10,
25, 50 and 100 pg/mL) of the GMNPs (30 and 50 nm) and
labeled HUVECs were resuspended in 1% agarose gel and
scanned in a head coil using a 3.0 T clinical MR scan-
ner (Signa HDx, GE, USA). The scanning parameters
were as follows: matrix 256 x 256, FOV 16 cm x 16
cm, interlayer spacing 0.4 mm, FSE T,WI (TR 2000 ms
and TE 43.7 ms), GRE T,WI (TR 400 ms, TE 12.0 ms,
and Flip angle 30°) and 16 echo T, mapping (TR 1025
ms and TE 2.4-60.5 ms). The r, relaxivity of the
GMNPs was calculated through the curve fitting of the
1/T, relaxation time (s™!) vs. the concentration (mM).

The region of interest was 5 mm?.

Prussian blue staining

The labeled HUVECs were fixed with 4% paraformalde-
hyde, incubated with Prussian blue staining solution
(which contained equal volumes of 2% hydrochloric acid
and 2% potassium ferrocyanide) for 30 min and stained
with a neutral red solution for 10 min. The images were
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obtained using an inverted fluorescence microscope
(DMIRB, Leica, Germany).

In vitro cell proliferation assay

The cell proliferation assay was performed with a cell
Count Kit-8 (CCK-8) (Beoyotime Biotechnology Com-
pany, China). Because the CCK-8 assay relies on the OD
of orange formazan and may be affected by the GMNPs,
the medium that contained the GMNPs was displaced
by the mixture that contained 100 pL of fresh medium
and 10 pL of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-
phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium after incu-
bation for the corresponding time. Following 1.5 hours
of co-culture, the medium that contained formazan was
transferred into a new 96-well plate with a permanent
magnet under the plate to minimize the influence of
GMNPs on the absorbance. A spectral scanning multi-
mode reader (Varioskan Flash, Thermo) was used to de-
termine the OD at a wavelength of 490 nm.

In vitro cytoskeleton assay

The treated HUVECs were fixed with 4% paraformalde-
hyde and incubated with fluorescent phalloidin (Sigma)
according to the manufacturer’s procedure. Following
staining with 4',6-diamidino-2-phenylindole (DAPI)
(Roche, Switzerland), the HUVECs were mounted with an
anti-fluorescence quenching agent and observed under a
CLSM (SP5, Leica).

HUVEC migration assay

The migration assay was conducted in a 6.5-mm diameter
transwell chamber (Millipore, USA) with 8-pm pore fil-
ters. Treated HUVECs (10% in 0.1 mL of medium with
1% FBS were added to the upper compartment, and 0.6
mL of M199 with 10% FBS was added to the lower com-
partment to stimulate migration. After 12 hours in the
culture, the HUVECs on the lower surface of the polycar-
bonate membrane were fixed with 4% paraformaldehyde
and stained with 2% crystal violet. The migrated cells were
evaluated with an inverted fluorescence microscope.

In vitro vasculogenesis assay

The effects of the GMNPs on the in vitro differentiation
of the HUVECs were evaluated through a vasculogenesis
assay using an Angiogenesis Assay Kit (BD, USA). Ac-
cording to the manufacturer’s instructions, all labeled
HUVECs were cultured as previously described and ob-
served under an inverted light microscope every 2 hours.
Five independent fields were assessed for each well, and
the mean number of tubules/100x field was determined.

Quantitation of ROS generation
The level of intracellular ROS was quantified using a
ROS assay kit (Sigma). After labeling with the GMNPs,
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the HUVECs were incubated with 2,7"-dichlorofluores-
cin diacetate (DCFH-DA) according to the manufac-
turer’s procedure. The fluorescent intensity of the
HUVECs was measured by FCM (Moflo XDP, Beckman
Coulter, USA) with excitation and emission wavelengths
of 488 and 525 nm, respectively.

Apoptosis assay

Apoptosis of the HUVECs exposed to various GMNPs
was measured using the Annexin V-FITC Apoptosis
Analysis Kit (Sigma) according to the manufacturer’s
instructions. All samples were analyzed using FCM by
measuring the average fluorescent intensity.

Statistics

All results are expressed as the mean + standard devi-
ation. The statistical comparisons were performed using
Student’s ¢-test and one way ANOVA; a P value <0.05
indicated a significant difference.
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