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ABSTRACT Most biodiversity measures indicate an ongoing deterioration due to
intensifying anthropogenic pressures even though efforts are being intensified world-
wide to conserve biodiversity. Knowledge of the implication of land use change on
soil bacterial communities is essential for ecosystem restoration. Here, the effect of the
conversion of native forests to temperate pine forests on soil bacterial diversity and
community composition was investigated. The diversity and composition of the bacte-
rial communities were affected by land use change across the sites.

Soil bacterial communities are integral parts of ecosystem functioning and are highly
susceptible to land use change. Native forests, which are significant pools of biodi-

versity, are being converted to forest plantations to meet the growing needs of agricul-
ture and timber mining of the ever-increasing human population (1–3). The conversion
of native forests to plantations alters the diversity and functioning of forest ecosys-
tems. Land use practices that can diminish land degradation garner enormous atten-
tion globally (4–6). A keen understanding of the influence of land conversion from
native forests to plantations on bacterial communities that control key biogeochemical
processes is significant for environmental sustainability.

Using a soil corer, replicate samples (4 soil cores) were collected within multiple tree
rows from 2 native forests and 2 plantations located in Tweefontein (224°589N, 30.489E)
and Witklip (225°129N, 30°569E), South Africa. Pinus patula is the dominating tree species
in the plantations, while Acacia xanthophloea and Celtis africana dominate the native for-
ests (details in references 4 and 7). Soil samples were collected in July 2016 at a 2-cm di-
ameter and 10-cm depth within multiple tree rows (4, 7). Soil samples in plastic bags
were transported to the lab on ice and stored at 4°C in the dark until analyzed (DNA
extraction was carried out 3days after sampling). The soil cores were sieved through 2-
mm mesh, and genomic DNA was isolated from 0.25 g of soil using the PowerSoil DNA
isolation kit (MoBio Laboratories, CA, USA). Examination of bacterial communities was
carried out using 16S amplicon sequencing. The 16S rRNA gene V4 variable region was
sequenced by the next-generation sequencing service provider Molecular Research LP
(Shallowater, TX, USA) using a MiSeq sequencer (Illumina, Inc. San Diego, CA, USA). Using
PCR primers 515F and 806R, paired-end reads of 312bp were obtained. Data were ana-
lyzed using Quantitative Insights Into Microbial Ecology (QIIME; v1.9.1) (8). Except where
otherwise stated, default parameters were used all through the analysis. The sequences
per sample were clustered into operational taxonomic units (OTUs) using SILVA 99 v132
(9). For filtering, mapping, and OTU picking, SortMeRNA was utilized (10).

Total read counts generated were 915,871 with 57,241 average counts per sample.
The maximum counts per sample was 178,222, while the minimum was 17,012. After fil-
tering, a total of 21,443 low-abundance features were removed contingent on preva-
lence. Based on interquantile range, a total of 180 low-variance features were removed.

Land use change influenced the bacterial communities, as the microbiome in the
native forests differed from those in the temperate pine plantations. For abundance
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profiling, OTU data were summarized, and their abundance was compared at the phylum
level based on the annotation. The overall abundance of OTUs was visualized using a
stacked bar plot as shown in Fig. 1. Acidobacteria (17.89% to 54.74%) was the most abun-
dant phylum, and Proteobacteria (16.74% to 30.96%) and Verrucomicrobia (0.99% to

FIG 1 Relative abundance plot of the microbial communities in the native and temperate pine forests.
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14.53%) were next. Across all sites, the temperate pine forests constantly influenced the
acidobacterial communities which were relatively higher in the native forests.

Data availability. The 16S rRNA gene amplicon raw read data set is available at
the NCBI Sequence Read Archive (SRA) under BioProject PRJNA715835 with accession
numbers SRR14023269 (TC1), SRR14023268 (TC2), SRR14023277 (TC3), SRR14023276
(TC4), SRR14023275 (TI1), SRR14023274 (TI2), SRR14023273 (TI3), SRR14023272 (TI4),
SRR14023271 (WC1), SRR14023270 (WC2), SRR14023267 (WC3), SRR14023266 (WC4),
SRR14023265 (WI1), SRR14023280 (WI2), SRR14023279 (WI3), and SRR14023278 (WI4).
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