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In this review, we discuss the state of our knowledge as it relates to embryonic
brain vascular patterning in model systems zebrafish and mouse. We focus on
the origins of endothelial cell and the distinguishing features of brain endothelial
cells compared to non-brain endothelial cells, which is revealed by single cell RNA-
sequencing methodologies. We also discuss the cross talk between brain endothelial
cells and neural stem cells, and their effect on each other. In terms of mechanisms,
we focus exclusively on Wnt signaling and the recent developments associated with
this signaling network in brain vascular patterning, and the benefits and challenges
associated with strategies for targeting the brain vasculature. We end the review with a
discussion on the emerging areas of meningeal lymphatics, endothelial cilia biology and
novel cerebrovascular structures identified in vertebrates.
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INTRODUCTION

Normal physiological function of the brain depends upon adequate supply of oxygen and
nutrients. Cells in the brain rely on the brain vasculature for their supply of oxygen and
nutrients, which are carried out by the macrovasculature (arteries and veins) and microvasculature
(arterioles, capillaries, and venules). To meet the growing needs of the neural tissue, the
brain concomitantly expands and remodels its vasculature. Alteration in the central nervous
system (CNS) vascularization results in the progressive destruction of tissue, especially at the
subventricular zone, which eventually leads to embryonic lethality (Raab et al., 2004). The brain
vasculature develops exclusively via angiogenesis; a process of new vessel formation from existing
established vasculature in contrast to de novo vasculogenesis, a process that involves assembly of
vessels from endothelial precursor cells. In most tissues, vasculogenesis and angiogenesis processes
work together to determine vessel expansion and remodeling (Risau, 1997; Louissaint et al., 2002).
However in the brain, angiogenesis is the main process responsible for vascular development that
results in 600 kilometer (∼372 miles) network of capillaries (Zlokovic, 2005). Brain endothelial
cells (ECs) that line the vasculature are distinct from peripheral ECs in that they are in contact with
more cell types (astrocytes and neurons) in addition to smooth muscle-like mural cells referred to as
pericytes. Brain ECs also do not align to shear stress like the large caliber human umbilical vein ECs
do and the shear stress encountered by the brain vessels are much different than those encountered
by the peripheral vasculature (DeStefano et al., 2017). Further, the brain microvasculature is made
up of capillaries and postcapillary venules which carries out its microcirculatory function. Brain
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capillaries are also structurally distinct from capillaries of the
skin, lung, and liver in that they are continuous and non-
fenestrated (lack of pores) with tight junctions that makes
solute transport highly restrictive and regulated (Daneman and
Prat, 2015; Zhao et al., 2015). Thus, the brain vasculature
possesses distinct properties, which is suited to the unique cellular
environment that the brain ECs reside in. In this review, we focus
on the brain ECs and its interaction with cell types in the brain
in both embryonic and adult life, the underlying mechanisms
associated with this process, and the areas of emerging research
in the brain.

BRAIN VASCULAR DEVELOPMENT:
LESSONS FROM VERTEBRATE AND
MAMMALIAN DEVELOPMENT

We will discuss our current understanding of brain vessel
formation from studies in vertebrate zebrafish (Figures 1A,B)
and mammalian mouse (Figures 2A,B) model systems (Tata
et al., 2015). We focus on vascular development in the
hindbrain and forebrain regions of the brain. Zebrafish,
a freshwater fish from the Ganges river has contributed
immensely to our understanding of vascular development
primarily because: embryos develop fairly rapidly ex vivo and
are transparent in embryonic stage, and genetic manipulation
is relatively straightforward with injection of RNA, DNA
and oligonucleotides feasible at the 1-cell stage. The genetic
engineering methods facilitated the development of tissue-
specific fluorescent reporter gene expressing transgenic lines,
which when combined with confocal and 2-photon microscopy,
provided deep insights into the vascular assembly processes in
the developing brain. Early studies on mutants identified in
the ethylnitrosurea (enu)-induced mutagenesis screens reported
violet beauregarde (vbg) (causative allele: activin-receptor-like
kinase, ALK1), which showed increased ECs numbers in the
brain at 2–2.25 days post fertilization (dpf) (Roman et al., 2002).
Using the vascular-specific transgenic reporter line (etv2:GFP),
time-lapse imaging revealed onset of two major clusters of
cells in the 12 hour post fertilization (hpf) embryonic brain
namely the rostral organizing center and the midbrain organizing
center. By 24 h, these two cell clusters give rise to the most
rostral and posterior cranial vessels, respectively (Proulx et al.,
2010) (Figures 1A,B). Subsequently, using two different vascular
transgenic lines (kdrl:GFP & fli1a:EGFP), additional details of
the hindbrain vascular patterning process were identified (Fujita
et al., 2011; Ulrich et al., 2011). Two sets of precursor cells (24–
28 hpf), one from the anterior end, primordial midbrain-derived
and second from posterior end namely anterior cardinal vein-
derived, migrate and form the primordial hindbrain channels
(PHBCs) (Ulrich et al., 2011) (Figure 1B). At 26–28 hpf, basilar
artery, the major blood vessel that supplies the hindbrain is
formed by medial sprouting and migration of ECs from the
bilateral pair of PHBCs veins (Fujita et al., 2011) (Figures 1A,B).
A second wave of sprouting (30–42 hpf) occurs from PHBCs that
gives rise to central arteries (CtAs) (Figure 1B), which penetrate
and vascularize the hindbrain at the rhombomere (segment
of the developing neural tube) boundaries (Fujita et al., 2011;

Ulrich et al., 2011). Flow, which commences between 25 and
28 hpf in the developing zebrafish brain has been implicated
as a critical feature that ensures the proper formation of
arterial-venous connection and the establishment of a functional
circulatory loop (Bussmann et al., 2011). Between 36 and 48
hpf, a subset of hindbrain vessels has aligned proximally to
neuron clusters and axon tracts suggesting cross-communication
between these cell types during development (Ulrich et al.,
2011). Moving posteriorly, the integration of the vascular systems
between the hindbrain and spinal cord was determined using
time lapse imaging in 3–4 dpf fli1a:EGFP & fli1a:nEGFP lines
(Kimura et al., 2015).

In the zebrafish forebrain, much of our knowledge of vascular
patterning has emerged from high-resolution time-lapse imaging
of the palatocerebral artery (PLA), which forms via angiogenesis
(Lenard et al., 2013). PLA runs along the base of the forebrain
and connects two cranial internal carotid artery that encapsulate
the optic cup on each side of the embryonic head. PLA forms
through fusion of two lumenized angiogenic sprouts, and blood
flow influences the transcellular lumen formation. VE-cadherin
(a pivotal EC junction marker) plays a critical role in the
initial steps of the vessel fusion process (Lenard et al., 2013).
Vessel anastomosis (fusion) and establishment of ECs polarity are
coordinated processes, which occur in a stepwise manner.

The brain development in mouse (Figure 2A) begins as early
as embryonic day 7.5 (E7.5), when the formation of neural
tube begins. At E9.5, dorsoventral patterning of neural tube
progenitors is established (Dessaud et al., 2008). During this time,
neurons and glial cells differentiate from progenitor cells and
begin migrating, an event that coincides with the development
of the brain vasculature. Vascularization of spinal cord and
brain is initiated before birth through the angiogenic sprouting
networks, specifically, the perineural vascular plexus (PNVP) and
the periventricular plexus (PVP) (Ruhrberg and Bautch, 2013).
PNVP arises from mesoderm-derived angioblasts (endothelial
precursor cells) and covers the entire CNS by E9.0 (Hogan et al.,
2004; Engelhardt and Liebner, 2014) (Figure 2A). Half a day later,
the mouse hindbrain vascularization begins. Vascular sprouts
emerge from PNVP and grow in a radial direction toward the
ventricular zone in the direction of the neural progenitor cell
location, which are thought to secrete vascular growth factors
that stimulate the radial migration of ECs (Fantin et al., 2010).
At E10.25, radial vessels extend at 90◦ angle and parallel to
the hindbrain surface when they intersect with neighboring
radial vessels and anastomose to become the sub-ventricular
vascular plexus (SVP). This anastomosis process is facilitated by
macrophages (precursors of microglia) (Fantin et al., 2010). At
E12.5, an extensive vascular network has emerged from SVP,
which sprouts and penetrates deep into the brain based on cues
from neural glial cells (Figure 2B). For additional details on the
brain anatomy and vessel location in mouse brain, we refer the
reader to a detailed review on this subject (Puelles et al., 2019).

The mouse forebrain vascularization commences at E9.5,
which also occurs from the PNVP and progresses across the
entire rostro-caudal axis in a ventrolateral or dorsomedial
direction. At E10.0, the ventral forebrain is vascularized by
PNVP while the dorsal region is largely avascular. Intriguingly,
vasculature in the dorsal forebrain does not arise from dorsal
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FIGURE 1 | Progression of vascular development in brain of embryonic zebrafish. (A) A summary of the timeline of events demonstrating how two endothelial cell
(ECs) clusters in rostral or midbrain organizing centers give rise to blood vessels in embryonic zebrafish is provided. (B) Schematics demonstrate how blood vessels
in brain are formed at 24–48 hpf during embryonic development. Precursor cells sprout from PMBC or ACV that ultimately form PHBC (blue). ECs migration and
sprouting occurs from PHBC to first establish BA (red) and subsequently CA (green). Direction of neural tube development is also shown (red arrow). ACV, Anterior
cardinal vein; BA, basilar artery; CA, central artery; ECs, endothelial cells; HPF, hours post fertilization; MOC, midbrain organizing center; PMBC, primordial
midbrain channel; PHBC, primordial hindbrain channel; PCS, posterior communicating segment; ROC, rostral organizing center.

FIGURE 2 | Progression of vascular development in brain of embryonic mouse. (A) A summary of the timeline of events showing how brain vessel is formed and
synchronized to neural development in embryonic mouse is provided. (B) Schematics demonstrate how blood vessels in brain are formed and stabilized. During
neurovascular development in embryonic mouse brain, neuroglia (NG) release proangiogenic factors. Vascular sprouts emerges from SVP as stalk cells differentiate
into tip cells along the angiogenic gradient as established by neuroglia. These sprouting form the brain vessels, which are stabilized by the recruitment of ECM, mural
cells and pericytes. The stable brain vessels eventually give rise to mature arteriovenous vasculature in the ventricular area of embryonic mouse hindbrain at E12.5
and beyond. ECM, extra cellular matrix; ED, embryonic days; MC, mural cell; NG, neuroglia; P, pericyte; PNVP, perineural vascular plexus; S, stalk cell; SVP,
sub-ventricular vascular plexus; T, tip cell.

PNVP but instead, it is derived from the SVP of the ventral
compartment (Vasudevan et al., 2008). By E11.0, SVP is
formed in both ventral and dorsal areas of the forebrain
including the dorsal medial wall region. In addition to PNVP,
vascularization of the embryonic forebrain also occurs from the
PVP. The PVP vascularization process is regulated by EC-derived
transcription factors (Vasudevan et al., 2008). EC migrates from

the surrounding PNVP into the neuroepithelium and initiates
CNS vascularization, and also migrate from the pial surface
toward the subventricular zone. As ECs migrate into these
avascular regions, they adopt specific phenotypes (Haigh et al.,
2003; Mancuso et al., 2008). As the neural tissue expands, the
blood vessels grow into vast networks and remodels into arterial
and venous vasculature.
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The nascent brain vasculature continues to develop with cues
from surrounding brain resident cells, and is stabilized via the
recruitment of mural cells, and establishment of extracellular
matrix (Jain, 2003). This growth and maturation of the brain
vasculature coincides with the generation of different neural
cell types and establishment of the neural circuit (Vasudevan
et al., 2008; Ulrich et al., 2011; Tata et al., 2016). The timing of
this vascular maturation is critical toward serving the metabolic
need of developing neural tissue and the expansion of various
neural cells in the brain (Knobloch and Jessberger, 2017).
Thus, coordination of the neural and vascular development
processes in the brain is necessary and suggests that crosstalk
between these two cellular systems are critical for physiological
brain development.

EVOLUTION AND GENETIC SIGNATURE
OF A BRAIN ENDOTHELIAL CELL –
INSIGHTS FROM SINGLE CELL
SEQUENCING DATA ANALYSIS

The origin of brain ECs in mammals is not well understood
and understudied. The long-standing hypothesis in the field
is that brain-derived ECs are unique with respect to distinct
transcriptome and gene expression signatures, and function.
Clues for brain ECs origin have emerged from studying the
expression of a transcription factor Sox2, which is a key regulator
of neuronal differentiation and brain development (Amador-
Arjona et al., 2015). Flk1+ Sox2+ ECs were identified adjacent
to the developing brain cells that only express Sox2 at E10.5 and
E14.0 (Bostrom et al., 2018). At E12.5, Sox2+ VE-cadherin+ EC
sub-population were observed, which was absent at E18.5 upon
development of the vasculature. These data collectively suggest
that Sox2-marked cells are undergoing sub-selection for vascular
lineage specification, leading to progressive temporal expression
of vascular markers Flk1 and VE-cadherin. Knowledge from
these initial observations has expanded further with the advent
of single cell RNA sequencing technologies (scRNA-seq) (Picelli,
2017; Potter, 2018). Profiling of individual brain ECs suggested
great heterogeneity in this population and extensive molecular
changes during embryonic development (Hupe et al., 2017).
Using scRNA-seq method, 15 distinct cell sub-types of mouse
brain ECs have been observed compared to 17 distinct cell sub-
types of mouse lung ECs (He et al., 2018). Not surprisingly,
mouse embryonic brain ECs show more features related to
BBB differentiation, while post-natal brain ECs reveal distinct
relationships between cell types (for example, arteries and tip
cells, veins, and mitotic cells) (Sabbagh et al., 2018). When
EC-specific translating ribosome affinity purification (EC-TAP)
was combined with scRNA-seq methodology, additional low
abundance transcripts were revealed (Cleuren et al., 2019), and
marked differences across vascular beds was observed when
host was challenged with stress factors (lipopolysaccharides).
The scRNA-seq studies also revealed that organ-specific ECs
typically show expression patterns that mimic the site that
they reside in Jambusaria et al. (2020). For example, brain
ECs express synaptic vesicle genes or cardiac ECs express

contractile genes. This tissue-specific heterogeneity of EC
expression pattern is also conserved during disease conditions
such as inflammation. Further, brain- and liver-specific ECs
cluster strongly by tissue of residence while others, adipose-
and heart-specific ECs overlap with ECs from other tissues
(Paik et al., 2020).

In a comprehensive study of >32,000 single EC
transcriptomes from 11 mouse tissues revealed some interesting
insights (Kalucka et al., 2020). First, ECs from somewhat
unsuspected pairs of tissue (brain/testis, liver/spleen, small
intestine/colon, and skeletal muscle/heart) show partially
overlapping gene expression. Second, tissue rather than vessel
type contributed to the EC heterogeneity. Third, capillary ECs in
a tissue are more heterogenous in gene expression than arterial,
venous, and lymphatic ECs in that tissue. Fourth, transcriptomes
of metabolic gene products showed distinct patterns across
vessel types in a given tissue and was reflective of the respective
tissue function. Additional scRNA-seq studies also revealed
during aging that hippocampal brain capillary ECs undergo the
greatest transcriptional changes, upregulate innate immunity and
oxidative stress response pathways compared to hippocampal
arterial or venous brain ECs (Chen et al., 2020b). Further,
senescent EC numbers increases by 10% in the mouse cerebral
microcirculation (Kiss et al., 2020). Thus, transcriptional age
of brain ECs are sensitive to age-related circulatory cues (Chen
et al., 2020b). Another noteworthy connection that emerged
from scRNA-seq analysis is the one between tip cells and aortic
ECs (Sabbagh et al., 2018). Tip cells are front line cells of the
plexus and act as “sensor” of growth factor gradients, and rarely
proliferate. Stalk cells, which are located behind the tip cells,
proliferate, form the vascular lumen and help extend the length
of the growing sprout (Gerhardt et al., 2003; Ridley et al., 2003;
Mancuso et al., 2008). Brain capillary EC clusters identified
by scRNA-seq are enriched for cells expressing catecholamine
DOPA Decarboxylase (Ddc), which was previously reported to
express in aortic ECs (Sorriento et al., 2012). Similarly, CXCR4
receptor (tip cell marker) (Strasser et al., 2010) was observed in
brain-derived EC clusters, and its ligand CXCL12 was enriched
in the arterial EC cluster. These data collectively suggest that a
communication signal may exist between endothelial sprouting
tip cells and arterial ECs in the brain. These examples highlight
the ability of scRNA-seq method to provide unexpected insights
and spur new areas of EC biology.

ENDOTHELIAL CELL AND ITS EFFECT
ON NEURAL STEM CELLS IN THE
DEVELOPING AND ADULT BRAIN

In the embryonic CNS, the vascular and neural compartments
develop concomitantly (Karakatsani et al., 2019). The
mammalian neocortex is defined by six layers of neurons
that develops from a single layer of neuroepithelial cells called
radial glial cells (RGs), also referred to as neural stem cells
(NSCs). RGs undergo extensive symmetric division to expand,
followed by differentiation into neurons or basal progenitors, and
finally symmetric division to generate post-mitotic pyramidal
neurons, which migrate to attain their terminal position in the
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cortex. All these processes occur between E10.5 and E17.5 in the
mouse embryonic brain (Gotz and Huttner, 2005). The early
embryonic brain is hypoxic because of lack of vasculature, and in
this hypoxic microenvironment, NSCs proliferation is abundant
(Mohyeldin et al., 2010). Positional proximity of developing
vasculature in brain sets the microenvironment conducive for
the expansion of neural progenitors (Javaherian and Kriegstein,
2009; Nie et al., 2010). Interestingly, the relief of hypoxia by
angiogenesis promotes NSCs differentiation (Lange et al., 2016b).
Premature neuronal differentiation at the expense of reduced
self-renewal of NSCs occurs in a reduced angiogenic state (Tata
et al., 2016). Thus, the vasculature that develops from the PVVP
(E8.5–E10.0) and PNVP (E11.0–E12.5) provide nourishment
to growing stem cell niches and balance the expansion vs
differentiation of NSCs. ECs effect on NSCs and the reverse
effect of NSCs on ECs have been well documented. For example,
ECs when co-cultured with embryonic NSCs, promote stem
cell maintenance through unknown paracrine factors (Gama
Sosa et al., 2007; Vissapragada et al., 2014), and enhance NSC
survival and preserve their pluripotency (Lowry et al., 2008).
On the contrary, conditioned media from RGs decreases brain
ECs proliferation (da Silva et al., 2019), promotes migration and
formation of vessel-like structures in vitro (Siqueira et al., 2018).
Also, in an autopsy of telencephalon from 22-week old human
embryo, a defined Gfap+ Cx43+ CXCL12+ RG population
appeared to establish physical contact and interaction with
angiogenic-activated (CD105+) ECs (Errede et al., 2014). These
specialized contacts, recognizable on both perforating radial
vessels and growing collaterals, appeared as CXCL12-reactive. In
absence of RG cells, a significant reduction has been observed
of cortical thickness and the regression of nascent brain vessels,
via the inhibition of EC-specific Wnt signaling in a contact and
stage-dependent manner (Ma et al., 2013). In the adult, similar
to embryonic stage, the vasculature is required not only for
transporting oxygen and nutrients but also for trophic support of
the neuronal compartment (Licht and Keshet, 2015; Ramasamy
et al., 2015). The ECs are located adjacent to self-renewing
multipotent NSCs populations in sub-ventricular zone (SVZ)
and sub-granular zone (SGZ) both in the adult (Gage, 2000;
Alvarez-Buylla and Lim, 2004). ECs indeed promote NSCs
proliferation and differentiation (Han et al., 2015) via secretion
of VEGF-C that act on its cognate receptor VEGFR-3 expressed
on NSCs. Further, the EC’s role in maintaining NSCs quiescence
was suggested as cell-cell contact mediated, with ephrinB2 and
Jagged1 identified as molecules that were responsible for this
process (Ottone et al., 2014). Thus, ECs and NSCs depend on the
other for sustenance during embryonic and adult stages.

SIGNALING MOLECULES: FOCUS ON
EMERGING WNT-β CATENIN SIGNALING
PATHWAY TO SHAPE BRAIN VASCULAR
DEVELOPMENT

A survey of the literature for signaling pathways impacting the
brain vasculature formation shows that VEGF, TGF-β, and Wnt

signaling are repeated themes that emerge. Both VEGF and TGF-
β signaling pathway in the context of brain development have
been extensively reviewed elsewhere (Rodriguez-Martinez and
Velasco, 2012; Lange et al., 2016a). In this review, we emphasize
Wnt signaling and its role in brain vascular patterning. Wnt
signaling (Figure 3) is one of the pivotal evolutionarily conserved
networks that orchestrates cell–cell communication during the
embryonic development of multicellular organisms (Clevers,
2006; MacDonald et al., 2009; Clevers and Nusse, 2012). The
Wnt signaling pathway directs cell proliferation, cell polarity, and
cell fate determination during embryonic development (Logan
and Nusse, 2004). Mutations in the Wnt pathway are often
linked to congenital defects (Clevers, 2006). The developmental
importance of Wnt protein was first demonstrated in larval
development of Drosophila, where Wnt1 homolog was shown
to regulate segment polarity (Nusslein-Volhard and Wieschaus,
1980). The study on developmental significance of Wnt signaling
cascade was further extended in Drosophila as well as in Xenopus
(McMahon and Moon, 1989; Siegfried et al., 1992; Noordermeer
et al., 1994; Peifer et al., 1994). Once gastrulation is commenced,
Wnt/β-catenin signaling activates a defined transcriptional
program that directs anteroposterior axis development, leading
to the development of head structures and formation of tail
(Green et al., 2015). In the last four decades, “canonical” Wnt
signaling has been extensively studied and emerged as a major
Wnt pathway that regulates key developmental gene expression
programs (MacDonald et al., 2009). In the absence of ligand Wnt
(“Wnt switch off”), the cytoplasmic β-catenin protein is degraded
by an Axin protein complex, which includes adematous polyposis
coli gene (APC), casein kinase 1 (CK1), and glycogen synthase
3 (GSK3). CK1 and GSK3 phosphorylates specific amino acid
residues in β-catenin in a specific sequence, which leads to its
recognition by β-Trcp, an E3 ubiquitin ligase subunit that targets
β-catenin protein for proteasomal degradation (Figure 3). In the
presence of ligand Wnt, it binds to a seven pass-transmembrane
Frizzled (Fz) receptor and co-receptor low-density lipoprotein
receptor-related protein 6 (LRP6) complex leading to recruitment
of the scaffolding protein Dishevelled (Dvl) resulting in LRP6
phosphorylation. This results in inhibition of Axin-mediated
β-catenin phosphorylation leading to β-catenin stabilization,
accumulation of β-catenin in the cytoplasm, followed by entry
into the nucleus. In the nucleus, β-catenin engages with DNA-
bound TCF transcription factors (Behrens et al., 1996; Molenaar
et al., 1996) to activate Wnt target genes (“Wnt switch on”) (Lee
et al., 2009; Hikasa et al., 2010) (Figure 3). In the “Wnt switch off”
condition, TCFs interact with specific transcriptional repressors
(Cavallo et al., 1998; Roose et al., 1998) preventing the gene
transcription. Axin2 gene is a global transcriptional target of Wnt
and is therefore considered a “generic” index of Wnt pathway
activity (Lustig et al., 2002).

In mammals, Wnt signaling is facilitated by 19 ligands
(MacDonald et al., 2009), targets several genes (Vlad et al., 2008),
and the effects are cell or context-specific (Logan and Nusse,
2004). Apart from canonical Wnt signaling cascade, there are two
additional pathways that are also known to be activated following
Wnt receptor activation (Clevers, 2006), a noncanonical planar
cell polarity (PCP) pathway (Seifert and Mlodzik, 2007; Wang
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FIGURE 3 | Canonical Wnt pathway in brain endothelial cells (ECs). In absence of its cognate ligand, canonical Wnt pathway remains inactive or “OFF” state. In the
OFF state, cytosolic axin protein complex (APC) prevents stabilization of β-catenin and promotes its proteasomal degradation. In the Wnt “OFF” condition, axin
indirectly downregulates VEGFR2 or VEGFR3 by inhibiting Sox17/7 and abrogates CNS angiogenesis. In active or Wnt “ON” state, Wnt binds to its receptor located
in the surface of brain ECs, which causes the stabilization of cytosolic β-catenin. Stable β-catenin is then translocated to nucleus to promote transcription of
downstream target genes. P, phosphorylation; NP, nuclear pore. In brain ECs Wnt OFF state, hypoxic condition is ensued, which in turn influences neural stem cell
(NSC) proliferation.

and Nathans, 2007), and a Wnt/Ca2+ pathway (Kohn and
Moon, 2005). In the non-canonical pathway, Wnts bind to Fz
receptors and activate Dvl, independent of GSK-3β or β-catenin.
Other signaling proteins involved in the non-canonical pathway
activation include small GTPases, the heterotrimeric G proteins,
and, in some cases, C-Jun N-terminal kinase (Mlodzik, 2002;
Fanto and McNeill, 2004; Montcouquiol et al., 2006). In the
second non-canonical pathway, certain combination of Wnts
and Fzs can activate intracellular calcium, which in turn induces
calcium-calmodulin-dependent kinase (CAMKII) and protein
kinase C (Moon et al., 1993; Du et al., 1995; Sheldahl et al.,
1999; Kuhl et al., 2000). Thus, Wnt signaling has several ways
to trigger signaling cascades associated with specific phenotypic
readouts, which makes it a prime candidate for fine tuning of
brain angiogenesis in the developing and adult vasculature.

Several Wnt family members are expressed in the neural tube,
which coincides with neural tube angiogenesis (Parr et al., 1993).
Enrichment of high mobility group transcription factors Lef1
and Tcf7 are indicators of active canonical Wnt signaling in
brain ECs (Cadigan and Waterman, 2012; Sabbagh et al., 2018).
Impaired endothelial β-catenin signaling in experimental animal
model results in abrogated ECs proliferation and sprouting that
ultimately causes hypo-vascularization of the brain (Martowicz

et al., 2019). ECs with and without β-catenin formed tip cell
suggesting that endothelial β-catenin is not absolutely needed for
tip cell formation. However, the tip cell’s ability to compete for the
tip cell position was compromised. Notably, impaired endothelial
β-catenin signaling abrogated the expression of the VEGFR2 (tip
cell selection marker) and VEGFR3 in brain microvessels but
not in the lung endothelium, suggesting that the β-catenin-EC-
specific functional implication are specific to brain ECs (CNS)
compared to peripheral ECs (non-CNS) (Martowicz et al., 2019).
Several lines of evidence support the theory of restriction of Wnt
signaling to the CNS versus non-CNS tissue. Spatial distribution
of Wnt ligands in CNS and non-CNS tissues were investigated
using EC-specific (Tie2-Cre) mouse line that was crossed to
Wnt reporter (R26-Tcf/Lef-LoxPSTOPLoxP-H2B-GFP-6xMYC)
mice (Sabbagh et al., 2018). In this model, Cre recombinase
enzyme-mediated excision of a LoxP-flanked transcription stop
cassette allows for visualization of active Wnt signaling in ECs
wherein the multimerized TCF/LEF motifs, together with a
minimal promoter drives the expression of a nuclear-localized
histone H2B-GFP-6xMYC fusion protein (Cho et al., 2017a). The
nuclear accumulation of LEF1, which is both a mediator and
a marker of canonical Wnt signaling was confined to the CNS
and perineural ECs. This observation implies that the canonical
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wnt signaling is active in ECs of CNS but not elsewhere. In a
second-independent approach (Daneman et al., 2009), a Wnt
reporter TOP-GAL transgenic mice was used that expresses the
lacZ transgene under the control of Tcf promoters, a downstream
effector of Wnt signaling. Thus, LacZ expression occurs in cells
where canonical Wnt/catenin signaling is activated. Activated
Wnt signaling was co-localized with the transgenic EC marker
(Tie2-GFP) only in the CNS, but not in peripheral tissues. To
implicate β-catenin function in Wnt signaling in ECs, an EC-
specific β-catenin knock-out mice (Tie2 cre+/− β-cateninflox/flox)
was generated. Normal vascular pattern in non-neural tissues was
retained while major vascular defects were observed in the CNS
of all knockout mice. No capillaries were formed throughout the
developing forebrain and the PNVP was significantly thickened.
In terms of Wnt signaling and its role in BBB, EC-specific
β-catenin activation in vivo was necessary for formation and
maintenance of BBB, and enhanced barrier maturation, while
inactivation of this pathway contributed to BBB breakdown
(Liebner et al., 2008).

To date, how brain ECs respond and react in the brain
microenvironment is not fully understood but recent studies
are beginning to shed some light on this process. In the
first zebrafish study, GPI-anchored MMP inhibitor Reversion
Inducing Cysteine Rich Protein with Kazal Motifs (RECK)
was identified as critical for cerebrovascular development and
promotes canonical Wnt signaling (Ulrich et al., 2016). A second
zebrafish study suggested that an orphan G-protein coupled
receptor (GPCR) Gpr124 along with RECK worked together as
integral components of the Wnt-specific signaling complex to
facilitate brain angiogenesis (tip cell development) and dorsal
root sensory neurogenesis (Vanhollebeke et al., 2015). This
GPR124-RECK-WNT signaling axes was also later confirmed in
the mouse CNS angiogenesis (Cho et al., 2017b). GPR124, an
orphan GPCR has been previously reported by several groups
as essential for CNS vascularization (embryonic and adult)
(Kuhnert et al., 2010; Anderson et al., 2011), establishment
of the BBB (Cullen et al., 2011; Zhou and Nathans, 2014),
and BBB integrity (Chang et al., 2017). Biochemical studies
reveal that GPR124 through its ectodomain binds to RECK,
and RECK binds to Wnt7A and 7B ligands but not Wnt3A
ligand (Vallon et al., 2018). Further, RECK binds with low
micromolar affinity to the disordered region of Wnt7 ligand
(Eubelen et al., 2018). This interaction leads to Wnt receptor
Frizzled signaling, which is dependent in part on the interaction
between GPR124 and Dvl, a downstream phosphoprotein from
the Frizzled receptor (Figure 3). Thus, RECK is a selective
Wnt receptor that mediates GPR124/Frizzled/LRP-dependent
canonical Wnt-β-catenin signaling. The extracellular interactions
are partly associated with controlling the bioavailability of Wnt
ligand for signaling (Eubelen et al., 2018; Vallon et al., 2018) and is
a key regulatory step in this mechanism. Intracellularly, GPR124
contains a PDZ domain that is responsible partly for Wnt7-
stimulated β-catenin signaling in brain ECs (Posokhova et al.,
2015). Taken together, several studies have made inroads into
our understanding of the genetic and biochemical mechanisms
associated with Wnt signaling in the brain vasculature.
Collectively, these studies imply that canonical Wnt-β-catenin
signaling is active, functions in a cell autonomous manner in

brain ECs, specific to the CNS, and facilitates BBB formation and
maintenance through specific protein–protein interactions.

EMERGING TOPICS, FUTURE
DIRECTIONS, AND PERSPECTIVES

Thus far, we have extensively discussed the brain ECs and
the underlying mechanism that is involved in their inception
and development. In this section, we will discuss emerging
topics of interest to the brain vascular field including meningeal
lymphatic ECs, the role of brain microvascular EC cilia to
vascular stability and the discovery of a new cerebrovascular
structure in vertebrates.

ENDOTHELIAL CELLS OF THE
MENINGEAL LYMPHATIC SYSTEM

The recent discovery of a meningeal lymphatic vascular system
in the dura mater adds to the ongoing controversy surrounding
brain waste clearance that includes glymphatic, paravascular,
and perivascular pathways (Szentistvanyi et al., 1984; Iliff
et al., 2012; Morris et al., 2016; Bacyinski et al., 2017). While
there is evidence to support the existence of each of these
distinct routes, the total contribution of each pathway to
waste clearance under physiologic and pathologic conditions
remains to be determined. In this section we will briefly
discuss the development of meningeal lymphatics, provide a
comparison with peripheral lymphatics, and present their role
in emerging areas of interest. Additional, in-depth reviews
have previously been published on origins and development
of lymphatic ECs and meningeal lymphatic vessels (Balint
et al., 2019; Gutierrez-Miranda and Yaniv, 2020). Studies in
mice have determined that peripheral lymphatic vessels develop
out of venous ECs from the common cardinal vein. Around
embryonic day E9.5 to E10, venous ECs start to express
prospero homeobox protein 1 transcription factor (PROX1)
(Antila et al., 2017). After this, vascular endothelial growth
factor receptor 3 (VEGFR3)+ lymphatic EC progenitors begin
to sprout from the common cardinal vein to develop the first
peripheral lymphatic plexus. Additional sprouting in response
to the paracrine action of VEGF-C expands the lymphatic
vascular tree (i.e., lymphangiogenesis). The identification of these
specific lymphatic endothelial cell (LEC) markers allowed for the
discovery of the meningeal lymphatic system. CNS lymphatic
vessels positive for the classic lymphatic EC markers PROX1,
VEGFR3, and podoplanin (PDPN) were recently identified using
whole-mount preparations of dissected mouse brain meninges
(Aspelund et al., 2015; Louveau et al., 2015). With this technique,
Louveau et al. (2015) demonstrated the existence of independent
vessel structures that run parallel to the dural sinus veins within
the meningeal layer. These vessel structures were confirmed to
be lymphatic vessels since they were lined with cells positive
for lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)
and were not connected to the cardiovascular circulation as they
were not labeled by intravenous injection of fluorescent lectin.
Furthermore, Aspelund et al. (2015) demonstrated the entirety of
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the network of lymphatic vessels within the CNS and surrounding
meninges by analyzing Prox1-GFP and Vegfr3+/LacZ reporter
mice. While no lymphatic vessels were observed on the brain
parenchyma or the pia mater, lymphatic vessels were visualized
along the superior sagittal sinus, the transverse sinus, the rostral
rhinal veins, the middle meningeal artery, as well as exiting
the skull along the meningeal portions of the pterygopalatine
artery and cranial nerves (Aspelund et al., 2015). Like peripheral
lymphatic vessels, the meningeal lymphatics also function to
transport fluid and immune cells allowing for waste clearance
and immune surveillance of the CNS. Unlike ECs of the blood
brain barrier, meningeal LECs are characterized by fenestrated
endothelium and absence of a basal membrane. Also, the
meningeal lymphatics do not have valves to prevent back flow
like their peripheral counterparts with the noted exception
of some vessel segments located near the base of the skull
(Aspelund et al., 2015). RNAseq analysis comparing meningeal
LECs to those obtained from peripheral lymphatics of the
diaphragm and skin showed high similarity in LEC-specific
gene sets. However, gene set enrichment analysis suggested
that the specific microenvironment of the LECs influences
cell phenotype as multiple pathways related to extracellular
matrix, focal adhesion, angiogenesis, and response to endogenous
and exogenous stimuli were uniquely altered (Louveau et al.,
2018). This theme of tissue environment influencing LECs gene
expression is reminiscent to that observed for blood ECs in brain
and other tissues described earlier in this review. Efficient brain
waste clearance of molecules such as amyloid beta and tau is
considered an important mechanism to alleviate neuronal injury
and degeneration in Alzheimer’s disease and after traumatic brain
injury (Iliff et al., 2012, 2014; Peng et al., 2016; de Leon et al.,
2017). In addition to waste molecules, meningeal lymphatics
have a role in regulating CNS immune responses as a route
for antigen and immune cell drainage and for clearing red
blood cells from the subarachnoid space after hemorrhagic stroke
(Louveau et al., 2018; Chen et al., 2020a). Interfering with the
normal clearance function of the meningeal lymphatic pathway
has been shown to cause cognitive impairment in mice, increase
pathology in experimental autoimmune encephalomyelitis (EAE)
models of multiple sclerosis, and increase edema and infarction
volume in an ischemic stroke rat model (Si et al., 2006; Radjavi
et al., 2014; Louveau et al., 2018). Importantly, CSF drainage via
meningeal lymphatic vessels to the deep cervical lymph nodes
has been demonstrated in humans and non-human primates
using contrast enhanced MRI scans further suggesting that
meningeal lymphatic pathways are an emerging area of important
clinical relevance for multiple CNS injury and neurodegenerative
diseases (Absinta et al., 2017; Eide et al., 2018; Wu et al., 2020).

BRAIN MICROVASCULAR
ENDOTHELIAL CELL CILIA

Growing evidence in the literature suggests that a microtubule-
based cell organelle called cilia that projects from the apical
surface of ECs into the lumen (Goetz et al., 2014), is thought
to function as a cellular antenna and a central processing

unit (Malicki and Johnson, 2017) and signaling center (Goetz
and Anderson, 2010). Recently, endothelial cilia is thought to
play an important role in brain vascular barrier function (Ma
and Zhou, 2020), which is an emerging area of research in
brain vascular biology. Cilia are found in most cells (Goetz
and Anderson, 2010), and defects in cilia are often collectively
referred to as “ciliopathies.” In ECs, cilia are widely considered
as a flow sensor (Nauli et al., 2008; Egorova et al., 2012)
and often reported as mechanosensors (Luu et al., 2018)
wherein they convert mechanical input (flow-mediated) into
chemical signaling inside the cell. The prevailing theory is
that upon blood flow, cilia bends at an angle of 45◦ (Goetz
et al., 2014), which triggers the release of calcium into the
cells (Nauli et al., 2008; Ando and Yamamoto, 2013; Goetz
et al., 2014), and subsequent cellular signaling effects (Hierck
et al., 2008). Cilia is often considered a low-flow sensor (Goetz
et al., 2014; Vion et al., 2018), and upon high flow, they
have been shown to be lost from macrovessel (Iomini et al.,
2004). Cilia expression and function in brain vessels have not
been comprehensively investigated, until recently. We showed
using confocal imaging of zebrafish vasculature that cilia are
found in brain ECs prior to flow, during flow, and post
establishment of high flow (Eisa-Beygi et al., 2018). We also
found cilia in vasculogenic, and angiogenic vessels in the brain,
and during various distinct processes associated with the vessel
growth such as sprouting, anastomosis and lumen formation.
Thus, these data collectively suggest that brain EC-cilia have
functions beyond just sensing flow (Norris and Santoro, 2018).
Knocking out or knocking down proteins in cilia causes the
brain vessels to rupture followed by intracranial hemorrhage
(Kallakuri et al., 2015; Eisa-Beygi et al., 2018; Pollock et al.,
2020). These hemorrhages are exacerbated by enhanced shear
stress (Eisa-Beygi et al., 2018). Similarly, polycystic kidney
mutant fish and ciliary intraflagellar transport (IFT) protein
mutant fish show intracranial vessel hemorrhage (Kallakuri
et al., 2015; Pollock et al., 2020). Re-expressing of the IFT
protein in the brain ECs rescued the hemorrhage phenotype
thus arguing for a cell autonomous function for cilia in vascular
stabilization (Eisa-Beygi et al., 2018). Similarly, mouse mutants
Ift172 (Gorivodsky et al., 2009) and Ift122 (Cortellino et al.,
2009), both show cranial neural tube defects and bleeding, and
ECs isolated from Ift88 mice with polycystic kidney disease
show higher permeability to dextran (Jones et al., 2012). In
addition to its role in promoting vascular stability through ECs
junctional integrity, EC-cilia has also been recently implicated
to recruit support cells such as mural cells that stabilizes the
brain vasculature (Chen et al., 2017). Thus, we hypothesize
that cilia role in vascular barrier formation and the underlying
mechanisms associated with cilia-mediated vascular stability are
perhaps the next areas of brain vascular integrity research. Given
the propensity for cerebrovascular incidents in several patient
populations including sickle cell disease (Hirtz and Kirkham,
2019), preeclampsia (Miller, 2019) and others, it will not be
surprising if brain EC-cilia emerges as a key signaling center that
contributes to the cerebral vessel pathogenesis. Finally, in relation
to lymphatics ECs, it is unknown whether cilia are expressed
in LECs and if so, what their potential function is? These and
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other emerging questions will keep scientists from numerous
multi-disciplines busy.

NEW TRANSIENT CEREBROVASCULAR
STRUCTURE IN VERTEBRATES

In a recent zebrafish study (Kugler et al., 2019), using time series
light sheet microscopy of brain vessels in 3 days old fish, the
authors observed a spherical EC membrane structure that is
transient in nature and protrudes from the cerebral vessel. This
structure dubbed “kugeln” (German for sphere) was observed
as early as 3 days post fertilization (dpf), and as late as 28 dpf.
On an average, kugeln was observed to exist for 23 min, formed
in the absence of flow, and does not communicate with vessel
lumen. Kugeln also contains little to no cytoplasm, no nuclei
but is filled with nitric oxide. Further, kugeln does not interact
with brain lymphatic ECs, or with macrophage cells in the brain
nor was it observed in peripheral trunk vessels. Inhibition of
VEGF signaling or Wnt signaling dysregulation increases kugeln
formation, and inhibition of actin polymerization, myosin II
or Notch signaling decreases kugeln formation. The obvious
question of kugeln’s role and function remains unknown, and a
congruent kugeln structure in mammalian brain vessels has not
been identified to date. The presence of such dynamic structures
in cerebral vessels emphasizes the point that so much is still
unknown regarding how brain vessels pattern. These and other
such discoveries will bring fresh and novel perspectives to the
field of brain vascular biology.

CONCLUSION

Considerable progress in our understanding of the developing
brain vascular patterning process has been made in vertebrates,
and more is yet to come especially at the mechanistic level.
In this review, we discussed the contributions of the zebrafish
and the mouse model systems to the brain vessel patterning
process. The contribution of various cell types in the brain
to the ECs-driven vascular patterning process is an untapped

area of research. Mechanisms associated with vasculogenesis,
angiogenesis and the origin of brain ECs are beginning to emerge.
Single cell sequencing technology is providing a framework for
new questions such as the similarity of ECs between brain
and testis. Details related to various molecules that participate
together to mechanistically control Wnt signaling in brain
vascular development is coming to focus. Finally, meningeal
lymphatics, brain EC-cilia and a new brain-specific vascular
structure kugeln are emerging areas of research that will offer
new insights into brain vascular patterning and homeostasis.
These basic science studies are likely to contribute to better
understanding of vascular compromise states in several clinical
conditions that afflict the brain.
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