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ARTICLE INFO ABSTRACT

Keywords: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome with uncontrolled in-

IL-35 flammation that is a central issue. Its main characteristic is inflammatory mediators and cytokines as well as

Acute respiratory distress syndrome agglutinating chemokines that injure target cells. Interleukin (IL)-35 is a newly identified IL-12 cytokine family

Cytokines ) member with structural similarities to other IL.-12, IL-23, and IL-27 cytokines but unique immunological func-

g:gczlr: tr;)rl}lleﬁ ir;ﬂ:mmatwn tions. How IL-35 functions in ARDS is unclear. The purpose of our study was to determine what role IL-35 played

Spleen in the development of ARDS. Here we found serum IL-35 concentrations were significantly elevated in patients
with ARDS relative to healthy people. Moreover, we established a mouse model of lipopolysaccharide- and cecal
ligation and puncture-induced ARDS treated with neutralizing antibodies (anti-IL-35 Ebi3 or anti-IL-35 P35); the
results showed that lung injury occurred more often than in untreated models and the inflammatory cytokines
CXCL-1, tumor necrosis factor alpha, IL-6, and IL-17A increased significantly after neutralizing antibody treat-
ment in bronchoalveolar lavage fluid and serum. Therefore IL-35 can protect against the development of ARDS.
Even more interesting in our study was that we discovered IL-35 expression differed between lung and spleen
across different ARDS models, which further demonstrated that the spleen likely has an important role in ex-
trapulmonary ARDS model only, improving the ratio of CD4*/CD4* CD25*Foxp3 * (Tregs). Meanwhile in our
clinical work, we also found that the concentration of IL-35 and the ratio of CD4 * /Treg in the serum are higher
and the mortality is lower than those with the spleen deficiency in patients with extrapulmonary ARDS.
Therefore, IL-35 is protective in ARDS by promoting the ratio of splenic CD4* /Tregs in extrapulmonary ARDS,
and as such, may be a therapeutic target.

1. Introduction

Acute respiratory distress syndrome (ARDS) is a life-threatening
critical care syndrome characterized by alveolar-capillary membrane
injury and hypoxemic respiratory failure [1-3]. It is a common cause of
admission to the intensive care unit (ICU) because of hypoxemic re-
spiratory failure requiring mechanical ventilation [4]. Despite decades
of research, few therapeutic strategies for ARDS have emerged, and
current options for treatment are limited [5-7]. Currently, uncontrolled
inflammation is thought to be the physiological mechanism underlying
ARDS [8]. Research shows that upregulation of adhesion molecules and
chemokines, and an imbalance in proinflammation/anti-inflammation
are needed for the development and progression of ARDS [9]. Thus, we
sought to understand how inflammatory cytokines contribute to ARDS
and attempted to identify a therapeutic target for treatment.
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The IL-12 family has unique structural, functional, and im-
munological characteristics [10]. Studies suggest that IL-12 cytokines
have immune-regulatory roles in suppressing the development of T
helper (Th)1, Th2, and Th17 cell subsets in ARDS [11, 12]. IL-35, a
newly identified IL-12 cytokine, shares structural similarities with other
IL-12, IL-23, and IL-27 cytokines but mediates different immunological
functions [13]. Research suggests that IL-35 is a potent anti-in-
flammatory and immunosuppressive cytokine; therefore, increased IL-
35 may be a biomarker for inflammation and disease severity in sepsis
[14]. We hypothesized that IL-35 may have anti-inflammatory roles in
the development of ARDS, but studies are lacking to validate this hy-
pothesis.

ARDS is due to direct pulmonary (severe pneumonia, aspiration
pneumonia, and pulmonary contusion) or indirect (extrapulmonary)
insults to the lungs (abdominal infection, multiple trauma, severe acute
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pancreatitis, and septic shock) [15]. Thus far, studies have not de-
termined the mechanistic differences between each type of insult. IL-35
can regulate Tregs to achieve its anti-inflammatory and im-
munosuppressive effects [16] and a positive feedback loop exists be-
tween IL-35 and Tregs, including inhibiting effector T cells
(CD4*CD25 ~Teff) proliferation, blocking Th1 and Th17 cell synthesis
and downregulating IL-17 [17,18]. Studies show that increased Th17/
Treg ratios in the blood of ARDS patients is positively correlated with
poor prognosis [19].

Therefore, to clarify the role of IL-35 in ARDS, we collected serum
from patients with pulmonary and extrapulmonary ARDS and measured
IL-35 and inflammatory factors. Then we created lipopolysaccharide
(LPS)-induced pulmonary and cecal ligation and puncture (CLP)-in-
duced extrapulmonary mouse models and treated each with IL-35
neutralizing antibodies to determine the different roles and mechanisms
of IL-35. We also constructed a spleen-free ARDS model to illustrate the
effects of the spleen on IL-35 in ARDS.

2. Materials and methods
2.1. Study population

Twenty-seven adult patients with ARDS were recruited from the ICU
of the First Affiliated Hospital of Chongqing Medical University from
December 2015 to February 2016. ARDS diagnosis was based on the
Berlin standard [20]. Study patients were admitted to the ICU while in
the acute phase of the disease (onset within 24 h). Patients with massive
transfusion or hemofiltration within the preceding 24 h, those under-
going immunosuppressive or immune-enhancing therapy, or those with
chronic lung diseases were excluded. Patient data are presented in
Table 1. Control samples were obtained from healthy donors (n = 11).
The study protocol was approved by the Clinical Research Ethics
Committee of the University and informed consent was obtained from
all participants.

2.2. Human serum cytokine measurements

Blood was collected as described in Methods and kept at —80°C

until analysis. IL-35 was measured using enzyme-linked
Table 1
Characteristics of the study population.
Characteristic Controls (n = 11)* ARDS" (n = 27)
Age (years) 57 £ 6 60 = 8

Male/female gender (proportion of 6/5 (54.5%) 16/11 (59.2%)

male)

Smoker 5 (45.6%) 13 (48.1%)
Major surgery - 1 (3.7%)
Multiple trauma - 2 (7.4%)
Diabetic ketoacidosis - 1 (3.7%)
HELLP syndrome - 1 (3.7%)
Severe acute pancreatitis - 4 (14.8%)
Severe pneumonia - 8 (29.6%)
Aspiration pneumonia - 2 (7.4%)
Pulmonary contusion - 2 (7.4%)
Necrotizing fasciitis - 2 (7.4%)
Abdominal infection - 1 (3.7%)
Urinary tract infection - 1 (3.7%)
Chronic obstructive pulmonary disease - 2 (7.4%)

(COPD)

Pa0,/FiO, ratio 392.16 + 43.82 194.08 + 76.64

APACHE II° score - 20.13 + 7.86
Ventilator free days - 7.11 = 7.76
ICU free days - 8.73 = 9.34

Survival 100% (31) 59.3% (16/27)

@ Data as a percentage of patients or mean + SEM.
> ARDS acute respiratory distress syndrome.
¢ APACHE II Acute Physiology and Chronic Health Evaluation II.
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immunosorbent assay (ELISA) as described (MyBioSource, USA) and
tumor necrosis factor (TNF)-a, IL-1f, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10,
IL-17a, IL-27, interferon (IFN)-y, CXCL1, CXCL8, and CXCL10 were
measured using a Human Cytokine/Chemokine Magnetic Bead Panel
Kit (Merck Millipore, Germany) [21].

2.3. Animals

Male mice (C57BL/6, 8-12w old, 20-24g; Laboratory Animal
Center of Chongging Medical University, Chongqing, China) were pa-
thogen free, kept under a 12-h light/dark cycle and given food and
water ad libitum. All experimental protocols were approved by the
Institutional Animal Care and Use Committee at Chongqing Medical
University.

2.4. LPS-induced pulmonary ARDS model

Mice were anesthetized with chloral hydrate (3.5%, in-
traperiotoneally) and then 50 pug LPS intranasally (Escherichia coli, ser-
otype 055: B5; Sigma-Aldrich, St. Louis, MO, USA) in 50 uL phosphate
buffered saline (PBS) to induce lung injury. Control mice received 50 uL
of PBS intranasally. Mice were euthanized at 6, 12, and 24 h after the
treatment and lung and spleen tissues were collected. Blood was col-
lected retro-orbitally. Bronchoalveolar lavage fluid (BALF) was col-
lected by ligating blood vessels leading to lungs and the trachea leading
to left lungs and injecting them with 200 uL PBS into the right lungs via
the trachea. Next (10 s later), PBS was collected. This was repeated with
400 pL BALF and collected [21].

2.5. CLP-induced extrapulmonary ARDS model

Mice were anesthetized as before and an extrapulmonary ARDS
model was established using CLP [22]. At the end of the experiment,
mice were killed on the same timetable and the same fluids and tissues
were collected.

2.6. Splenectomy model

Mice were anesthetized as before and then placed in a flat position.
After shaving and aseptic preparation of the surgical site, a transverse
incision was made into the abdominal cavity along the left side of the
abdominal line. The splenic artery and vein were ligated and the spleen
was removed. The abdominal incision was closed. A sham operation
was performed in control mice, the abdominal wall was cut, and the
spleen was not resected. Mice were given ceftriaxone (20g/g, sub-
cutaneously) for 3 days after surgery. Fourteen days later, a sple-
nectomized mouse model was confirmed [23].

2.7. Histopathology

Lung tissues were fixed, sectioned, and stained with hematoxylin
and eosin (H&E) for morphological analysis. Lung injury scores were
estimated using a method by Mikawa (1 Alveolar hyperemia, 2
Hemorrhage, 3 Interstitial or neutrophil infiltration or aggregation, 4
Alveolar septal thickening or hyaline membrane formation). According
to the severity of lesions in each indicator, 0 to 4 points indicate
semiquantitative analysis. The total score for each score is used as the
pathological score for ARDS. Higher scores indicate greater injury.

2.8. Antibody-mediated neutralization

Neutralization assays were performed by giving 50 ug anti-mouse
IL-35 EBI3 (Rockland Immunochemicals) or anti-mouse IL-12A p35
(Abcam Systems) 30 min after CLP or LPS. Normal goat isotype im-
munoglobulin G (IgG) (Bioss, China) was used as a control. Blood,
BALF, spleen, and lung tissues were then collected as indicated [14].
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Fig. 1. IL-35 was elevated in those with pulmonary ARDS compared to those with extrapulmonary ARDS and was correlated with immune mediators but negatively
associated with CXCL-1 and IL-1f. (A) IL-35 from healthy donors and patients with ARDS. Each sample was tested in duplicate and concentrations were determined
from a standard curve (***p < 0.0001). (B) ROC curve analysis of serum IL-35 in patients with ARDS and control patients. (C) IL-35 measured by ELISA from
patients with extrapulmonary and pulmonary ARDS. Each sample was tested in duplicate and a standard curve was used (**p < 0.001). (D) ROC curve analysis and
area under the curve for serum IL-35 concentration in patients with extrapulmonary and pulmonary ARDS. (E-Q) IL-35 was positively and significantly correlated

with immune mediators but negatively associated with CXCL-1 and IL-1f3 when compared between healthy individuals and those with ARDS.
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Fig. 2. IL-35 expression differed in lungs and spleens of different ARDS models. C57BL/5 mice (5/group) were subjected to LPS or CLP. (A, B) IL-35 mRNA levels in
the lungs were measured with qRT-PCR. Relative expression levels of the genes were expressed with the GAPDH housekeeping gene as an internal reference. (C-J)
Organs were removed at the indicated time points, Blood specimens were collected from mice under anesthesia via the ophthalmic vein. Bronchoalveolar lavage fluid
was obtained by washing the bronchus three times with 0.2 mL of sterile PBS each time, and the homogenate was obtained by mixing tissue and PBS in a ratio of
0.5 g:1 mL. Samples were assayed for IL-35 content by enzyme-linked immunosorbent assays.*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by the
one-way ANOVA followed by LSD multiple comparisons test, compared with normal mice.

2.9. Mice Serum, BALF, lung homogenate, and spleen homogenate cytokines 100 uL PBS). Fluids and tissues were aliquoted and kept frozen at

—80 °C until analysis. IL-35 (MyBioSource, USA) in fluids and tissues

Blood was collected from mice under anesthesia via the ophthalmic were assayed with ELISA kits. TNF-a, IL-2, IL-6, IL-10, IL-13, IL-17-A,

vein and saved to EDTA tubes and centrifuged at 3000 rpm for 15 min IFN-y, and CXCL1 were measured using a Mice Cytokine/Chemokine
at 4 °C. Spleen and lungs were homogenized with PBS (10 mg tissues/ Magnetic Bead Panel Kit (eBioscience, USA).
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Fig. 3. Splenic function was tied to IL-35 in a CLP-induced ARDS model. C57BL/5 mice (5/group) were subjected to LPS, LPS (splenectomy), CLP or CLP (sple-
nectomy). The sample was extracted and detected by referring to the aforementioned method. IL-35 in serum, BALF, and lung homogenates in the splenectomized
CLP group were significantly lower than those in the nonsplenectomized CLP group. In the LPS and splenectomized LPS groups IL-35 in serum, BALF, and lung

homogenate did not differ significantly. **p < 0.01, and
no-splenectomy group.

2.10. RNA extraction and quantification

Total cellular RNA was extracted from lung tissue using TRIzol re-
agent (TakaraBio, Tokyo, Japan) and DNasel digestion. Quantitative
real-time polymerase chain reaction (QRT-PCR) for mouse IL-35 EBI3
and p35 was performed using specific primers and sequences for IL-35
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were: EBI3
sense 5-CGGTGCCCTACATGCTAAAT-3’; antisense 5-GCGGAGTCGGT
ACTTGAGAG-3; P35 sense 5-CATCGATGAGCTGATGCAGT-3’; anti-
sense 5’-CAGATAGCCCATCACCCTGT-3’; GAPDH sense 5’-TTCACCAC
CATGGAGAAGGC-3’; antisense 5-GGCATGGACTGTGGTCATGA-3".

Quantitative real-time PCR was performed in a 25-L volume with
2L cDNA, 400 nM each sense and antisense primer, and 12.5 L Brilliant
SYBR Green QPCR Master Mix (Takara Bio) on ABIPRISM7000 (Applied
Biosystems, Foster City, CA, USA). The action was performed for
40 cycles with denaturation at 95 °C for 30 s, annealing at 53 °C for 30s,
and extension at 72 °C for 10 s. Gene expression normalized to GAPDH
was used to determine relative target gene expression and the 224C(t)
method was used.

2.11. Flow cytometry

Cells were washed in PBS, pelleted, and subsequently stained for
flow cytometry. Mouse peritoneal cells were characterized accordingly
with monoclonal antibodies against CD4, CD25, and Foxp3. Cells were
counted and flow cytometry was performed using antibodies purchased
from eBioscience. For Foxp3 staining, extracellular staining was per-
formed followed by intracellular staining using the manufacturer's re-
commendations. At least 10* cells were collected with a FACScan flow
cytometer (Becton Dickinson) and analyzed with Flow Jo software 7.6.

2.12. Statistical analyses

SPSS 19.0 was used for all statistical analyses and data are reported
as means * standard error of the mean. Differences between groups
were analyzed using Student's t-test. Statistical analysis was performed
using one- or two-way analysis of variance (ANOVA) followed by a least
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p < 0.0001, by the two-way ANOVA followed by LSD multiple comparisons test, compared with the

significant difference (LSD) multiple comparison test or a Dunnett test
for multiple groups. Correlation analysis was done using a nonpara-
metric Spearman rank correlation coefficient (p < 0.05).

3. Results
3.1. Baseline characteristics of the study population

According to the inclusion and exclusion criteria, 27 patients with
ARDS and 11 healthy control patients were involved in this experiment.
The baseline characteristics of the study population are detailed in
Table 1.

IL-35 is abnormally elevated in patients with ARDS and associated
with other cytokines.

Because IL-35 is a newly identified IL-12 cytokine family member its
function in ARDS is unclear. We first compared the serum IL-35 levels in
patients with ARDS and healthy control patients. The results showed
that IL-35 of patients with ARDS were greater than in control patients
(Fig. 1A). Based on our receiver operating characteristic (ROC) analysis,
a cutoff level of serum IL-35 for the diagnosis of ARDS was set at
185.2 pg/mL. The specificity, sensitivity, negative predictive value, and
positive predictive value were 91%, 79%, 81%, and 79%, respectively
(Fig. 1B). IL-35 for pulmonary ARDS was greater than for patients with
extrapulmonary ARDS (Fig. 1C). Based on our ROC analysis, a cutoff
level of serum IL-35 for the diagnosis of pulmonary ARDS was set at
765.3 pg/mL. The specificity, sensitivity, negative predictive value, and
positive predictive value were 92%, 71%, 71%, and 92%, respectively
(Fig. 1D). In addition, as others have reported a variety of inflammatory
mediators involved in initiating, amplifying, and maintaining in-
flammation during ARDS, we therefore measured serum indices in-
cluding TNF-a,, CXCL-1, IL-1p, CXCL-8, CXCL-10, IL-6, IFN-y, IL-2, IL-4,
IL-5, IL-17A, and IL-27 to determine their correlation with IL-35. The
level of IL-35 in serum was positively and significantly correlated with
TNF-a, CXCL-8, CXCL-10, IL-6, IFN-y, IL-2, IL-4, IL-5, IL-17A, and IL-27
(Fig. 1E-J, M-0O, Q, p < 0.01) but negatively correlated with CXCL-1
and IL-1f3 during ARDS (Fig. 1K, L, p < 0.01).
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3.2. Expression of IL-35 in CLP- and LPS-induced murine ARDS models

We next analyzed local, systemic, and organ IL-35 concentrations,
using our well-established LPS- or CLP-induced ARDS model. qRT-PCR
and ELISA data show that IL-35 did what in CLP-induced or LPS-in-
tranasal instillation ARDS respectively. EBI3 and P35 mRNA in lungs
decreased 6 h after CLP and peaked (Fig. 2A). IL-35 protein in serum,
BALF, lung, and spleen homogenate were increased at 24 h with CLP
and peaked (Fig. 2C-F). EBI3 and P35 mRNA in the lung increased at
6 h and peaked at 24 h after LPS administration (Fig. 2B). IL-35 protein
in serum, BALF, and lung homogenate decreased (Fig. 2G-I), but the
expression in spleen homogenate did not differ after LPS administration
(p > 0.05, Fig. 2J).

3.3. Expression of IL-35 in CLP and LPS-induced murine ARDS
splenectomy models

Having observed that the IL-35 expression differed between the lung
and spleen across different ARDS models, we used our splenectomy
ARDS model to analyze changes in IL-35. Compared with the CLP-in-
duced ARDS model after splenectomy, IL-35 in serum, BALF, and lung
homogenate were significantly lower in a CLP-induced ARDS model (no
splenectomy) (Fig. 3A-C). In the LPS-induced ARDS model, IL-35 did
not differ between splenectomized and nonsplenectomized groups
(Fig. 3D-F).

3.4. Regulatory T lymphocytes ratios differ across ARDS models

Furthermore, because IL-35 can promote the proliferation of Treg
cells, Treg cells can also be elevated by IL-35 and have anti-in-
flammatory and immunosuppressive effects. We used a flow cytometric
method to determine whether Treg cells in spleen are involved in dif-
ferent ARDS models. The outcomes showed that Treg cells in spleen
were not significantly different after LPS (p > 0.05, Fig. 4B, D). In the
CLP-induced ARDS model, Treg cells in spleen showed a transient in-
crease at 6 h and then there was a downward trend during 6h to 24h
(Fig. 4A, C). What is undefined and more interesting is the ratio of
CD4+/Treg was significantly higher in the CLP-induced extra-
pulmonary ARDS model, and the percentage of CD4 " /CD4 " CD25 *and
CD4"CD25%/Treg did not increase significantly. The CD4%/
CD4"CD25%, CD4%/Treg, CD4*CD25"/Treg ratios were not in-
creased in the LPS-induced pulmonary ARDS model (Fig. 4E-F).

3.5. Neutralization of IL-35 affects histopathology expression in spleens
across ARDS models

In order to verify whether the antibody is effective, we detected IL-
35 levels in serum, BALF, and lung homogenate after given anti-EBI3 or
anti-p35 in both ARDS models. The results showed that IL-35 protein
level was significantly lower after administration of neutralizing anti-
body (Supplementary Fig. 2). From scoring the histologic examination
of lung sections stained with H&E, CLP-induced ARDS have a higher
Mikawa score than the IgG group after treatment with anti-IL-35 (p35
or EBI3) at 12 h. In addition, the increase in the Mikawa score lasted for
24 h (Fig. 5A-B). Furthermore, the LPS-induced ARDS model had the
same result after treatment with IL-35 neutralizing antibody (p35 or
EBI3) (Fig. 5G-D).

3.6. Neutralization of IL-35 affects CD4 + /Treg ratio expression in spleens
across ARDS models

By performing flow cytometry detection, we found that there was a
significant difference in the CD4 " /Treg of spleen at different times in
CLP-induced ARDS after treatment with neutralizing antibody
(Fig. 6A-B). Also, there were similar results for the CD4*/Treg of
spleen in LPS-induced ARDS (Fig. 6C-D). Thus, either in CLP- or LPS-
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by the method of Mikawa, which is from the following four indicators of lung injury score: alveolar congestion; bleeding; gap or vascular wall neutrophil infiltration
or aggregation; alveolar septal thickening or transparent membrane formation. 0 marks: no or very slight damage, 1 marks: mild injury, 2 marks: moderate injury, 3
marks: severe injury, 4 marks: very severe damage, the cumulative increase in the number of lesions of the total score is the pathological score of the ARDS.
Pretreatment with IL-35 neutralizing antibodies lungs injury were more severe than LPS + IgG group. **p < 0.01, ***p < 0.001, by the two-way ANOVA followed

by LSD multiple comparisons test, compared with the LPS + IgG group.

induced ARDS, IL-35 can regulate the transformation of CD4" T lym-
phocyte subsets in spleen, and it should lead to the decrease in the
CD4™ /Treg ratio of the spleen.

3.7. Neutralization of IL-35 and cytokine expression across ARDS models

As shown in Fig. 7, the concentrations of inflammatory cytokines
and chemokines, including TNF-a, IL-6, IL-17A, CXCL1 in BALF, and
blood specimens obtained 24 h after CLP or LPS were significantly

upregulated in ARDS mice that underwent therapeutic IL-35 treatment.
However, for IFN-y, IL-10, IL-2, IL-13, these concentrations were sig-
nificantly downregulated.

4. Discussion

ARDS is not an isolated, fragmented disease but a serious injury
caused by a systemic inflammatory cascade [24]. An “uncontrolled
inflammatory reaction” is a manifestation of excessive inflammation in
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the lung and a central link to ARDS. At its initiation, inflammatory
mediators and cytokines, as well as agglutinated chemokines, release
ROS and damage target cells to cause ARDS.

IL-12 is an inflammatory mediator along with IL-23, IL-27, and IL-
35 [13], which helps to regulate immunity against infectious and au-
toimmune diseases and cancers [25,26]. IL-23 and IL-27 may have
pathogenic roles in inflammatory diseases of the lungs, such as asthma
[27-29] and ARDS [22]. IL-35 has significant anti-inflammatory and
immunosuppressive effects and can improve the symptoms of mice with
collagen-induced arthritis [30], preventing multiple sclerosis in mice
with central nervous system demyelination [31] and improving mouse
T cell-dependent colitis [32]. Recently, IL-35 was reported to reduce the
severity of ARDS by decreasing IL-17 [33]. We noted increased IL-35 in
patients with ARDS (Fig. 1A), and an association between IL-35 and
other cytokines with inflammation was observed in patients with ARDS
(Fig. 1E-Q). IL-35 may affect other cytokines and contribute to the
immunopathogenesis of ARDS. Neutralization antibodies (anti-IL-35
EBI3 or anti-IL-35 p35) applied to both ARDS models lead to profound
alveolar hyperemia, neutrophil infiltration, alveolar hemorrhage, and
transparent film formation (Fig. 5A, C). Both ARDS models had greater
Mikawa scores than CLP/LPS groups at 12 and 24 h (Fig. 5B, D). CXCL-
1, TNF-a, IL-6, and IL-17A were increased significantly, and IFN-y, IL-
10, IL-2, and IL-13 were significantly reduced after IL-35 neutralizing
antibody treatment in BALF and serum (Fig. 7). Multiple studies have
shown that IL-35 can play a cross-talk role in regulating the expression
of various cytokines based on lymphocyte cells and related signaling
pathways. IL-35 could inhibit the expression of TNF-a and IL-6 [43]. It
can promote apoptosis by activating JAK1/STAT1 and shifting activa-
tion from TNF receptor-associated death domain (TRADD)-TRAF2/
RIP1-NF-kB to TRADD-FADD-caspase 3 signaling [44]. Binding of IL-35
with IL-12 receptor subunit beta 2 (IL-12RB2) and IL-6 signal trans-
ducer (IL-6ST) occupies the binding sites of IL-6 and reducing the
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proinflammatory effects [45]. IL-35 can upregulate IFN-y and inhibit
phosphorylation smad3 (transforming growth factor beta [TGF-(3] re-
ceptor downstream effector), then impede the differentiation of Th17
cells [46]. Further, IL-17, an important cytokine secreted by Th17 cells,
could be suppressed by IL-35 in pulmonary inflammatory disease [47].
Another study showed that the Notch/Notch ligands play a role in
maintaining balance of Th17/Tregs cells (IL-17/IL-35) [48]. Regarding
Th2-related cytokine, one study showed that IL-35 can reduce IL-13 to
induce eosinophils infiltration in asthma [49]. However, the interacted
mechanism between IL-35 and IL-10 is quite specific. IL-35 promoted
the phosphorylation of STAT3 and IL-10 production in B cells. It may
have potent effects in regulating immunoreactivity via IL-10-dependent
mechanisms in autoimmunity [50] because of a possibility for a feed-
forward loop whereby regulatory B cells utilize IL-10 to enhance their
other mechanisms of immune regulation [51]. IL-35 blockade may in-
crease inflammation during ARDS. The mutual regulation mechanism
of cytokines involved is complex and diverse.

IL-35 expression was greater in pulmonary than in extrapulmonary
ARDS (Fig. 1C). In LPS-induced direct pulmonary ARDS and CLP-in-
duced indirect extrapulmonary ARDS models, abnormal expression of
IL-35 was similar, but IL-35 in serum, BALF, and lung homogenate in-
creased in the extrapulmonary ARDS model (peaked at 24 h; Fig. 2C-E).
The opposite trend was observed for pulmonary ARDS (Fig. 2G-I). EBI3
and P35 mRNA in the lung also showed similar results in the corre-
sponding models (Fig. 2A, B). Thus, different pathological mechanisms
may underpin each type of ARDS.

Our unusual extrapulmonary ARDS case had less serum IL-35 and
different inflammatory factors than other ARDS cases (Supplemental
Table 2), and ratios of CD4 + /Treg cells were also lower than in other
ARDS cases (Supplementary Fig. 1B). The spleen, which is the largest
peripheral lymphoid organ and contains numerous immunologically
active cells and immune factors, may explain differences in these data



International Immunopharmacology 67 (2019) 386-395

C.-j. Wang et al.

"WnIRs pue A7vd Ul (Ged GE-TI-NUE J0 €1qY GE-TI-NUE) Jusunean Apoquue Suizifennau 1oye £1-1[ pue =11 ‘0T-I ‘A-NAI padnpar pue y1-T[ pue
‘9~T1 “0-ANL ‘T-TOXD PaseaIdul paanied) SV T0AU0D HIT [edIAI0ST YIIm pajean) 201w iim paredwod 9sa) suostreduwiod s[dnmu ST 4q pamo[0] VAONY Aem-au0 a1 £q ‘10000 > dissxx ‘TO0°0 > dixx ‘1070 > dux
‘G0°0 > d. 'SAYV Jo 19suo IR Y ¢ sAesse 11 [oued peaq d1ouSett SUDOUIRD,/QUNR01AD 91U AQ PIUTULISIAP dI9M SaIpoqriue unydo[q GEJ—-NU. J0 SIqH-TIUR INOYIIM IO YIIM PIJeaI) 9DTW A WOy suswdads poo[q pue
ATV UI SUOTIBIIUDUOD SUNROWSYD pPUe dUN0IAD ‘S[OPOW SqYV SULIMp saUn0IAd AI0)jeUIUR[JUI-NUR PIjR[N32IUMOp pue saUR0lAd A1ojeururerjuroid jo uondnpoid oy} pajendaidn apexdoiq (Ge-TI) SE URMII] £ “S14

Sd7Jeye awiL Sd14oye awiy Sd7oye awiy

Sd1eye awiy
& & & & & &
S N S o S & N & & 410 Joye oL 410 4eye BuwiL 10 aye iy 10 4eye By
o o & < o S s o & R 2 3 N & & ¢ ¢
s & &« s S &5 s S &
= —— SN SN AN &
= - = o A S & &£ 8 A G SN & & & s
z Ta I g LI o T T
= ® -
v 32 52 ' 52 gz ] 50
- sh w 3h ES o Z7 0 5Z s 5 preanll LU = B 5o
' . &F &z = &r 2 iz = o %2 iz s Tt 32
23 Y . Iz o §3 £5 - 22 = w =& £q
g g . E ot 09 2% ar o - &z = &z s 83
o 23 m o 3% w 23 3%
0
01 07 08 05 *
(0 ¢ v ST
Sd4eye awL Sd740ye awL Sd74eye il Sd7 Joue oL
46@ &000 000 &4&@ 000 400 40@ 400 d10 Jeye awy d10 Jeye awiy d10 Joye awiL
N N ¢
EAE A N A S & & 8 A A N & %% N RPN
ey | = g & o 8 A N & & &
o5 [r——— = =
== = = - = 0002 _ o ]
* B == 2 ™ o o5 o
g o 2 m 00001 mm = onez ¥ m gz [——] ' - 00k 5 — se = 52
o EF gz 33 ooy g 9 o 3E i o 3E o 35
St < EE] EH 5A wr 35 sa )
ER o000z 2 & m ooy 3 1 oo 25 ¢ 87 &z o 832 o S8
00z B ' ER R 7 Exs
T T . oz - 00¢ o0z o0z
052 0000€ 0009 haaad 0008 A frey * s
ST 00% 052 05
S 4ee oL Sd74ee BunL S Jeye swiL. Sd40ye sy
o o o o d12 seye auiy d10 Jeye sy 10 Jeye sy 410 Jeye sty
S & S & o EA SN R N o o s s o s o o
& & 8 . & & 8 . KA N E A A N S & PN & & e N
——— ro ro o o S N < B L < < &S o & & S
~ s = N
. = = = - - JE— = — - i =
59 w6 To - 59 s 3¢ = - ‘ o " o0
: &3 ig o 52 . sc = = fs 2% e o z¢ o =g
: | = i o 2 = i i i i
B o 3% st 5 o 32 g2 o g3 00z g2 gl
e = =e == o 23 ERY ERN 0z 2%
v - oz 28 w = w =3 = =2
S 0S4 052 Sk
s o oor o
SdJeye awiy SdJeye awiL SdJeye sy Sd748ye dwiL
N o o o N N N N d10 Jeye awiy d10 Jeye dwinL d710 Jeye awiy d10 Jeye awiy
§ $ K K g K
S o o & o & & & o & o ® @ 3 © 3
AN AN AN AN ) $ S &£ & & S N & & o & 4
&8 &8 &8 &8 9 SN &
$ S, 2 3 h $ N & &L 8 o £ L8 . S & 8 & L 8 .
— — 0 i
= = == c —
[R— 00z _ i " g - o000
T 7 e z _ 0oL _ 000z_ 9
= | J— i = = i = " = if o 8 i m i
= = oy = = 3 s 25 23
t gz - 000y M_mu w 22 &g v Mw E 00z g 3, m 000rg &
) i iz o000 3.8 £z ooooe § = $2 18
. . " 2 , ik S = il - it
= - = B : = = o000y m B
N v 0008 08 000} - . P

8 00005

§

393



C.-j. Wang et al.

[34-36]. Sepsis occurred rapidly in splenectomized mice, and they had
reduced pneumococcal clearance [37]. Patients with greater mortality
due to fulminant infection were seen in sepsis-induced ARDS and re-
quired prolonged mechanical ventilation after splenectomy [38]. Treg
expression increased in spleen and peripheral blood, so its im-
munoregulation should be enhanced after administration of exogenous
IL-35 gene expression vector [19]. In a mouse endotoxin model, Tregs
were significantly reduced in the spleen [39]. Thus, the regulatory
mechanism of spleen-IL-35-T lymphocytes may contribute to extra-
pulmonary ARDS.

ELISA data show that splenic IL-35 did not differ across LPS-induced
ARDS models (Fig. 2J) but gradually increased at 24 h after CLP-in-
duced (Fig. 2F). After splenectomy, IL-35 in lung homogenate, serum,
and BALF was significantly lower than after no splenectomy in an ex-
trapulmonary ARDS model (Fig. 3A-C). There was no significant dif-
ference in pulmonary ARDS model (Fig. 3D-F). Thus, splenic produc-
tion of IL-35 differs between extrapulmonary and pulmonary ARDS.
The immune and barrier functions of the lung may be less than that of
the spleen, and IL-35 expression is reduced in the pulmonary ARDS
model.

Tregs are anti-inflammatory due to contact-dependent suppression
or release of cytokines, IL-10, and TGF-31 in other immune cells, such
as CD4+ and CD8+ T cells, B cells, natural killer cells, and dendritic
cells [42]. Data show that reduced generation or deficient function of
Tregs is associated with disease severity and activity, as this is docu-
mented in patients with various inflammatory and autoimmune dis-
eases [40]. In mice and patients with ALI, alveolar recruitment of Tregs,
specifically mediated by leukotriene B4 (LTB4)-leukotriene B4 receptor
(BLT1) pathway [41], contributed to the resolution of lung inflamma-
tion [42]. IL-35 and Tregs are reported to interact, but whether IL-35
affects differentiation of Tregs in the spleen and affects progression of
ARDS is not known. We found that splenic Tregs increased at 6 h and
decreased at 24 h (Fig. 4A) in extrapulmonary ARDS, and this was as-
sociated with IL-35 expression in the spleen. However, this was not
observed in pulmonary ARDS (Fig. 4B). Also, the CD4+ /Treg ratio
increased significantly in the extrapulmonary ARDS model (Fig. 4E)
and was correlated with splenic IL-35 expression, but this was not ob-
served in the pulmonary ARDS model (Fig. 4F). IL-35 secretion is linked
to Tregs and associated with the ratio of CD4 + /Tregs. Treatment with
neutralizing antibodies decreased splenic CD4 + /Treg ratios, and this
followed IL-35 trends in the ARDS models (Fig. 6B, D). Thus, IL-35 can
regulate the transformation of CD4+ T lymphocyte subsets in the
spleen to elicit immunosuppression of Tregs and increased in-
flammatory amplification of ARDS.

5. Conclusion

IL-35 is protective against the development of ARDS, and different
underlying pathophysiological mechanisms occur with different etiol-
ogies of ARDS. The spleen was not involved in IL-35 secretion in pul-
monary ARDS but had a role in extrapulmonary ARDS. IL-35 may
promote the ratio of splenic CD4+ /Tregs in extrapulmonary ARDS
only, and this may offer a promising therapeutic avenue for ARDS.
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