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Abstract

Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and
two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an
interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a
way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and
classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of
MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo
score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model
trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides,
the Lipinski’s rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined
rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the
membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the
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investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores
and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical
programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at
https://molaical.github.io.

Key words: drug design; virtual screening; de novo drug design; artificial intelligence; GCGR; SARS-CoV-2 main protease

Introduction
Deep learning is a popular artificial intelligence (AI) way that
has been successfully applied in medical diagnoses [1], cellular
image analysis [2], chemical syntheses [3], classification of drugs
[4] and so on [5]. Deep learning is a promising technology for
the development and discovery of innovative drugs. The quan-
titative structure–activity relationship (QSAR) is a traditional
method to predict the relationship between molecular descrip-
tors and experimental values (Kd, IC50, etc.) for drug discovery
[6]. The traditional machine learning methods, which are used
to build the QSAR model, contain support vector machine (SVM)
[7], random forest (RF) [8], Bayesian algorithm [9], artificial neural
networks (ANNs) [10, 11] and so on. The inhibitors of cathepsin
L [12] and kallikrein 5 protease [13] are found by QSAR models
which are constructed by SVM method. The score function plays
an important role in the prediction of ligand-binding affinity in
the target pocket. RF-based scoring functions show that Pear-
son’s correlation coefficients between experimental affinities
and predicted values range from 0.559 to 0.783 with different
training sets based on PDBbind database v2007 [14]. As a well-
known machine learning method, Bayesian algorithms have
been successfully used to identify the inhibitors of G protein-
coupled receptors [15], kinases [16], etc. ANNs which are the
popular machine learning tools for QSAR studies have been used
to select new antibacterial ligands [17] and predict chemical
immunotoxicity [18]. Although the traditional machine learn-
ing methods have been widely used for new drug discovery,
some literature shows deep neural networks (DNNs) outperform
traditional machine learning methods in the high-performance
model construction of QSAR [19–21].

Besides, the deep learning methods also emerge in the
research fields of de novo drug design and drug virtual screening
[22–27]. The variational autoencoders (VAEs) [28] and generative
adversarial net (GAN) [29] are widely used to small molecular
generation for de novo drug design [30]. The reported VAE
strategy, which contains the encoder and decoder between
SMILES and latent-space representations, multilayer perceptron
and properties of interest based on ligands, shows a good
result for ligand design with the desired properties [31]. The
adversarial autoencoder (AAE) introduces the discriminator
network that is trained to distinguish the real input data from
the produced data following specified distribution [32]. The
AAE can be used to train the molecular SMILES representations
to generate the drug-like ligands with the desired properties
[33]. The objective-reinforced generative adversarial networks
(ORGAN) combines the reinforcement and adversarial learning
methods to generate the desired molecules [34]. The generator
of ORGAN produces the molecules to deceive the discriminator,
while the reward function is constructed with the linear
combination of the discriminator model and domain-specific
desired objectives. The Wasserstein-1 W distance is used to
improve the learning stability of GAN in the ORGAN [35]. The
introduced above deep learning models are based on the SMILES

sequence representation of molecules. The molecular graph
considers the nodes as molecular atoms and edges between
two nodes as molecular bonds. It is another way to generate
the desired properties of molecules [36]. MolGAN, a graph
generative model trained by GAN architecture, can produce
more meaningful drug-like molecules via the annotation matrix
and dense adjacency tensor [37]. Besides, the research reports
point out that SVM combined with molecular docking, molecular
mechanics/generalized Born surface area (MM/GBSA), ensemble
minimization and optimization hyper-parameter shows a good
performance for drug virtual screening [38].

In the deep learning model, the input data and corresponding
results are provided to train the rules. Then, these rules can be
further applied to generate analogous results. However, in clas-
sical programming, the input data and rules are supplied to pro-
duce corresponding results by running the designed procedures.
Comparing with the deep learning model for drug design, the
classical programs can generate 3D appropriate ligands based on
the three-dimensional (3D) properties of protein pocket by the
programmed algorithm. For example, the LigBuilder [39, 40] can
build the desired 3D ligands with small fragments in the pocket
of protein target. The OpenGrowth [41], which connects the small
fragments to grow 3D ligands in the active pocket of proteins, can
produce the molecules with drug-like and synthetic accessibility
properties. In addition, the virtual screening software such as
AutoDock Vina [42] shows a good scoring power for the binding
assessment of ligands in the 3D pockets of protein targets [43].

The deep learning can be used to train drug-like genera-
tive models based on one-dimensional (1D) SMILES sequence
or two-dimensional (2D) molecular graph. It is an interesting
and challenging issue for three-dimensional (3D) ligand gen-
eration in the 3D pocket of protein target by deep learning.
For the classical processes of drug design, it can design the
appropriate 3D ligands in the protein pocket by the molecular
docking and de novo methods. Based on the characteristics and
merits of deep learning and classical programming, the MolAICal
soft package is programmed for 3D drug design in the protein
pocket. The MolAICal soft package mainly contains two modules
which are written by the JAVA program. One module of MolAICal
is designed on the basis of the genetic algorithm and deep
learning model trained on the fragments of the Food and Drug
Administration (FDA)-approved drugs, while the other module of
MolAICal is written on the basis of molecular docking and deep
learning model trained on drug-like ligands of ZINC database.
The classical de novo drug design software of LigBuilder and
OpenGrowth needs to produce the seed fragments manually.
By contrast, the MolAICal can automatically generate valid and
diverse FDA-like fragments for ligand growth by deep learn-
ing generative model. Besides, AutoDock Vina shows the best
scoring power for the binding assessment of ligands in the 3D
pockets of protein targets [43]. The MolAICal has trained the
Vinardo score that has better scoring power than the score of
AutoDock Vina based on the PDBbind database [44]. Meanwhile,
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MolAICal can optimize the structures of ligands in the active
pocket of receptors by using the classical algorithm. Moreover,
the traditional molecular docking or similarity search needs
the ligand database to carry out virtual screening. MolAICal
provides a virtual screening way that does not depend on the
ligand database because the deep learning model of MolAICal
can generate enough number of drug-like ligands for drug virtual
screening. In addition, MolAICal is designed by JAVA program
that is a popular cross-platform language. So it is easy to run
with multicore CPU on different operating systems such as Linux
or Windows environment.

To assay the drug design processes of these two modules,
the membrane protein glucagon receptor (GCGR) and non-
membrane protein SARS-CoV-2 main protease (Mpro) are picked
up as the research targets. The GCGR is a member of G protein-
coupled receptor family which acts on the regulation of blood
glucose level. The SARS-CoV-2 Mpro which plays a key role in
the replication and transcription of coronavirus leads to the
rapid spread of coronavirus disease 2019 (COVID-19) throughout
the world. The researchers have developed an interactive
server named COVID-19 Docking Server for discovering small
molecules, peptide and antibody [45]. Both of COVID-19 Docking
Server and MolAICal can be used to design small ligands in
the protein pocket. However, the COVID-19 Docking Server
has some differences with MolAICal. Firstly, COVID-19 Docking
Server is online based on the webserver, while MolAICal is a
software that can be run on the users’ computers. Secondly, the
COVID-19 Docking Server has different purposes with MolAICal.
The COVID-19 Docking Server, which contains 27 essential
targets in the virus life cycle, is mainly built for designing small
molecules, peptide and antibody of SARS-CoV-2. The MolAICal
mainly focuses on small molecule design of protein targets
such as SARS-CoV-2 Mpro, GCGR and other disease receptors.
Thirdly, COVID-19 Docking Server web does not involve in the
deep learning for drug design. But MolAICal contains the deep
learning model for drug design. Lastly, the COVID-19 Docking
Server has different architectures with MolAICal. The COVID-19
Docking Server web is built on the basis of PHP, HTML and JSmol
(http://jmol.sourceforge.net). The COVID-19 Docking Server
includes program modules OpenBabel [46], Autodock Vina [42],
CoDockPP [47, 48], etc. The OpenBabel is responsible for format
transformation and 3D coordinate conversion for the uploaded
molecular files. The Autodock Vina is employed for small
molecule docking. The CoDockPP is a docking engine module
for peptide and antibody docking. The CoDockPP program
uses the multistage FFT-based strategy for the global docking
and site-specific docking. The binding modes are ranked and
clustered on basis of the ligand root mean square deviations.
The MolAICal is designed on the basis of deep learning model
and classical programming that contains genetic algorithm,
molecular docking, etc. The deep learning model of MolAICal
can generate the fragments and drug-like ligands for drug
design. The classical programming of MolAICal is responsible for
ligand growth and filter, etc. In this paper, the detailed principles
and algorithms of MolAICal are introduced for 3D drug design
in protein pocket. Our results show that MolAICal can design
various ligands which show the high and low 3D structural
similarities between generated ligands and crystal ligand of
the GCGR or SARS-CoV-2 Mpro. The studied results of SARS-
CoV-2 Mpro are shared freely as a reference to help scientists
develop new potential drugs of COVID-19 (see https://github.
com/MolAICal/COVID-19/tree/master/mpro). The MolAICal not
only provides a strategy to solve the issue of 3D ligand generation

in the protein pocket, but also gives a reliable, free of charge and
effective soft tool for the rational drug design.

Results and discussion
Deep learning generative model for 2D
molecular generation

Deep learning (DL) is a popular and effective way to generate
novel, synthesizable and drug-like ligands via generative models
that are trained on the specified set of small molecules. Espe-
cially, the generative adversarial network (GAN), which is a pop-
ular way for drug discovery, contains the generative model that
produces the counterfeit molecules and discriminative model
that tries to distinguish the genuine molecules from the training
set and counterfeit molecules. The generative model can be
improved for the ligand generation by training the indistinguish-
able counterfeit molecules from the training set. To use the merit
of deep learning, our designed soft tool employs the sequence-
based generative model and graph neural networks (GNNs) gen-
erative model for producing the ligand set and small molecu-
lar fragments (see Figure 1). For the sequence-based generative
model, because the drugs can be represented as the SMILES
sequences format, the drugs can be trained like natural language
and musical notation. The 1930 Food and Drug Administration
(FDA)-approved drugs, 21,064 fragments of FDA-approved drugs
extracted from e-Drug3D database [49] and 1,060,000 drug-like
ligands obtained from ZINC database [50] are chosen to train the
generative model. All the ligands and molecular fragments are
converted to SMILES. To generate the small FDA-like fragments,
the length of trained sequences is constrained within 12. The
diversity metrics are used to enhance the diversity generation
of FDA-like fragments. The length of molecular sequences from
ZINC database is limited within 60 to train the drug-like ligands.
For the GNN generative model, the molecule is considered as the
undirected graph with a set of nodes and edges. Each node which
represents atom type in the molecular graph has an annotation
matrix X. And the bond type between two atoms is expressed
as the adjacency tensor A in the molecular graph. The anno-
tation matrix X and adjacency tensor A handled by categorical
sampling can profile one molecular graph which corresponds to
a chemical compound (see Figure 1). The QM9 molecular data
[51] which contains 133 885 compounds are selected for training
deep learning generative model. All the molecules of QM9 are
converted to SDF format. Both the sequence-based generative
model and GNNs generative model are trained by Wasserstein
generative adversarial networks (WGANs) and reinforcement
learning (RL). The WGANs [35] which are minimization prob-
lems of Earth Mover distance, supply a reliable way to measure
the difference of probability distributions between the real and
plausible data distribution (see Equation 1);

W (Pr,Pθ ) = sup
||f||L≤1

Ex∼Pr [f (x)] −Ex∼Pθ
[f (x)] (1)

The first and second terms in the right-hand side of the
equation represent sample discrimination from the real data
and generative data, respectively. The WGAN value function is
solved to get the best optimization as Equation (2):

min
G

max
D

Ex∼Pr [D(x)] −Ez∼p(z) [D(G(z))] (2)

where G and D are the generative and discriminative models,
respectively. The discriminator D tries to maximize the
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Figure 1. Flowchart of deep learning based on sequence-based model and graph neural networks model.

distinguishable probability of real data and minimize the
indistinguishable probability of fake data. The reward network
deals with discrete samples by using reinforcement learning.
The reward functions for the molecular generator is a linear
combination of WGAN and RL (see Equation 3):

R = λ • fWGAN + (1 − λ) • fRL (3)

where R is a reward function. λ∈[0, 1] represents the hyper-
parameter which adjusts the components of WGAN and RL. The
sequence-based generative model and GNNs generative model
are trained by modifying minor source code of ORGAN [34] and
MolGAN [37] based on their benchmark. Besides, the DL gener-
ative model can be trained on the user-defined data set with
the special purpose. The trained generative model is packaged
as a binary module named AIGenMols in MolAICal soft package
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Figure 2. The diagram of 3D drug growth algorithm in receptor pocket combined with deep learning and de novo drug design method.

for generating 1D sequence or 2D structures of fragments and
drug-like ligands.

3D drug design in protein pocket by DL model
and classical programming

The deep learning (DL) model can generate 1D sequence or 2D
structures of ligands. However, the rational drug design needs
3D structures of ligands that target to the crystal structure of
protein. Currently, it is a challenging issue to design the 3D
ligands based on 3D structures of protein pocket by deep learn-
ing model. To solve this problem, the classical programming is
introduced to design 3D structural ligands in the receptor pocket
(see Figure 2). The DL and classical programming have their own
advantages. The DL trains the rules from the input data and
output results, while the classical programming can give the
output results from the input data and designed algorithm rules.
The classical programming such as de novo drug design is good at
3D drug design in the receptor pocket. We propose one strategy
which contains the merits of DL and classical algorithm to solve
the problem of 3D ligand design in the receptor pocket (see
Figure 2).

The generative model named AIGenMols in MolAICal soft
package has been trained for the generation of fragments and
ligands. It can be responsible to generate FDA-like fragments that
service for ligand growth in the receptor pocket (see Figure 2).
The initial fragment for growth can choose the part of crystal
ligand in the receptor pocket or be generated around the key
protein atom based on the setting SIMLES format fragment.
The next fragment growth is based on the previous molecular
fragment via the perturbation search of random or Fibonacci
algorithm (see Figure 2). As shown in Figure 3A, the random
algorithm distributes the points on the sphere randomly, while
the Fibonacci algorithm uses the golden angle π (3-

√
5) to

distribute the points on the sphere. MolAICal only chooses
one of the random and Fibonacci algorithms for perturbation
search. The positions of points on the sphere are calculated as in

Equation (4):

xi =
√

1 −
(

1 − 1
N

− 2i
N

)2

∗ cos
(
π

(
3 − √

5
)

∗ i
)

(4)

yi =
√

1 −
(

1 − 1
N

− 2i
N

)2

∗ sin
(
π

(
3 − √

5
)

∗ i
)

(4)

zi = 1 − 1
N

− 2i
N

where xi, yi and zi represent the coordinates of sphere points.
N is the total number of generated points. The next fragment
will try to find the best anchoring pose via perturbing search on
the generated points around the growth atom (see Figure 3A).
When the ligand grows long enough, the genetic algorithm
(GA) is further employed to optimize the grown ligands in the
pocket of the receptor. The grown ligands can be considered
as the formation of rigid fragments and rotational bonds (see
Figure 3B). The GA crossover is performed by interchanging
rigid fragments between any two ligands in the generated
populations. For GA mutation operator, the ligand mutates
its rigid fragments according to the mutation ratio. The GA
selection is based on the binding score between the ligands
and receptors. MolAICal chooses the Vinardo score to estimate
the affinity between ligands and receptors. The Vinardo score is
trained on the basis of the experimental affinity data and high-
resolution crystal structures of protein–ligand complexes which
are extracted from PDBbind v2018 database [44]. The complexes
that contain cofactors and metal ions are kicked out from the
PDBbind refined set. A total of 2903 protein–ligand complexes is
selected to train the equation coefficients of Vinardo score [52]
(see Equation 5):

E =
∑

i

w1 ∗ Gauss
(
di

) + w2 ∗ Repulsion
(
di

) +
w3 ∗ Hydrophobic

(
di

) + w4 ∗ Hbond
(
di

) (5)

where E is the binding score between the ligand and protein. di

is the distance between two atoms. w1, w2, w3 and w4 are the
coefficients. The steric interaction is evaluated by Equations (6)
and (7). The hydrophobic and H-bond interactions are assessed
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Figure 3. Perturbation search and the operators of genetic algorithm. (A) Perturbation search on the sphere grids around the anchored fragment. (B) Crossover and

mutation operators between two ligands.

using Equations (8) and (9):

Gauss(d) = e−((d−o)/s)
2

(6)

Repulsion(d) =
⎧⎨
⎩d2, if d < 0

◦
A

0, if d ≥ 0
◦
A,

(7)

Hydrophobic(d) =

⎧⎪⎨
⎪⎩

1, if d < p1

p2 − d, if p1 ≤ d ≤ p2

0, if d > p2

(8)

Hbond(d) =

⎧⎪⎪⎨
⎪⎪⎩

1, if d < h1

1 − d−h1
−h1

, if h1 ≤ d ≤ 0
◦
A

0, if d > 0
◦
A

(9)

where d is the distance between two atoms. o, s, p1, p2 and h1 are
the tuning parameters. Here, the Pearson and Spearman (rp/rs)
correlations of our fitting Vinardo score are 0.582/0.592, which
are better than rp/rs of 0.569/0.584 in Autodock Vina [43, 53].
The Vinardo score can select the elitist ligands for the next GA
evolution process.

The Vinardo score can assess the affinity of the ligands in
the protein pocket. It still needs to estimate the drug-likeness
for the selection of the good affinity ligands. MolAICal supplies
the filter rules of Lipinski’s rule of five (RO5) [54], Pan-assay
interference compounds (PAINS), synthetic accessibility (SA) and
other user-defined rules to enhance the drug-likeness selection
of the good affinity ligands. The SwissADME is a wonderful
tool for predicting the drug-likeness, pharmacokinetics, PAINS
and so on. The SwissADME [55] has a slight difference with
MolAICal in the calculated method of RO5. The SwissADME
employs the MLOGP for evaluating the octanol–water partition
coefficient, while MolAICal uses the XLOGP for RO5. With the
new drug development and discovery, the RO5 cutoff values of
molecular weight, hydrogen bond acceptors and rotatable bonds
have increased substantially according to the statistics of FDA-
approved oral drugs [56]. In order to enhance the druggability,
the cutoff of molecular weight, hydrogen bond acceptors and
rotatable bonds are recommended to 1000, 12 and 14 in the
MolAICal soft package, respectively. The PAINS are the ligands
which tend to react with biological receptor nonspecifically. The
MolAICal filters out the PAINS via mapping the molecular pat-
terns SMARTS of PAINS library. Because the growth ligands may

be difficult to synthesize, the SA prediction model can be used
to pick up the easy synthetic compounds. The MolAICal predicts
the synthetic accessibility of compounds based on Ambit JAVA
library. In addition, the MolAICal also supplies the function mod-
ule to filter the user-defined unwanted fragments. The ligands
with similar binding scores may have similar structures. To pick
up the representative ligands for the subsequent experiment,
the generated 3D ligands are clustered by the K-means algorithm
based on binding scores and similarities of molecular finger-
prints. By comparing with other algorithms, MolAICal can use
the merits of deep learning model and classical algorithm to
generate molecules with high validity and diversity (see Table
S2). In total, the MolAICal can take advantage of the DL model
and classical algorithm to design the rational 3D ligands in the
protein pocket.

3D drug design in protein pocket by DL model and VS

The DL generative model and de novo drug designed method
can design the 3D ligands in the receptor pocket fragment by
fragment. In addition, virtual screening (VS) is another way to
screen the rational 3D ligands in the receptor pocket based on
the ligand database. The MolAICal soft tool supplies a way to
search the rational 3D ligands in the receptor by combining deep
learning (DL) generative model and classical programming of
VS. The entire procedure is mainly divided into three parts to
screen 3D ligands in the receptor pocket (see Figure 4). Firstly, the
trained DL generative model is employed for generating drug-
like ligands with SMILES format. Secondly, the Merck Molecular
Force Field 94 (MMFF94) of Open Babel [46] is used to generate
the 3D conformations of SMILES format ligands produced by DL
generative model. In the next step, the Autodock Vina is invoked
to perform the drug virtual screening based on the generated
ligand database. The screened results can be further filtered
by Lipinski’s rule of five, Pan-assay interference compounds
(PAINS), synthetic accessibility (SA) and other user-defined rules
and clustered for selecting the representative ligands on the
basis of binding scores and similarities of molecular structures.
Besides, MolAICal provides a convenient way to calculate the
ligand-binding affinities by MM/GBSA method based on the log
files of molecular dynamics (MD) simulations which are per-
formed by NAMD software [57]. The MM/GBSA [58] is considered
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Figure 4. Searching 3D ligands in the protein pocket by deep learning generative

model and virtual screening method.

a relatively accurate way to estimate the binding free energy
between two molecules such as ligand and protein, protein and
protein, nucleic acid and protein, etc. The dynamical interaction
mechanism between receptors and ligands can be elucidated by
the calculation of MM/GBSA based on the MD simulations. The
MM/GBSA is estimated by Equations (10)–(12):

�Gbind = �H–T�S ≈ �EMM + �Gsol–T�S (10)

�EMM = �Einternal + �Eele + �Evdw (11)

�Gsol = �GSA + �GGB (12)

where �EMM and -T�S are the gas phase MM energy and con-
formational entropy, respectively. �EMM contains electrostatic
�Eele, van der Waals energy �Evdw and �Einternal of bond, angle,
and dihedral energies. �Gsol is the solvation free energy which
is the sum of the nonelectrostatic solvation component �GSA

and electrostatic solvation energy �GGB. The conformational
entropy is very difficult to get a converged value. Besides, if
the ligands do not have any binding-induced structural change
in the MD simulations, the conformational entropy is usually
ignored to calculate by the normal mode analysis [59]. The
MolAICal supplied a fast way to evaluate the binding free energy
without the entropy of ligands based on the three-trajectory
approach. If conformational entropy needs to be computed, the
MMPBSA.py program [60] can be used to assess the entropy of
conformational change. The scripts, coordinate files, trajectories
and relative parameters of MD simulations of example cases
such as glucagon receptor (GCGR) and non-membrane target
SARS-CoV-2 main protease (Mpro) can be found at the end of
supplementary material file. The authors can perform the MD
simulations on their appointed targets according to our supplied
files.

Examples of 3D ligand design in the protein pocket
by MolAICal

Two approaches have been introduced for 3D ligand design in
the protein pocket by using artificial intelligence and classical
programming of MolAICal. One is de novo drug design by deep
learning model and genetic algorithm. The other is drug vir-
tual screening by deep learning model and molecular docking
invoked by MolAICal. In order to demonstrate the 3D ligand

design by MolAICal, the membrane target glucagon receptor
(GCGR) and non-membrane target SARS-CoV-2 main protease
(Mpro) are chosen as the drug design targets (see Figure 5). The
GCGR [61, 62] is a potential target of type 2 diabetes which is
a member of the class B family of G protein-coupled receptors.
The SARS-CoV-2 Mpro plays an important role in processing the
polyproteins of viral RNA which is a potential drug target of
coronavirus disease 2019 (COVID-19) [63, 64].

The 3D structural similarity [65] between the growth ligands
and crystal ligand of GCGR or SARS-CoV-2 Mpro can be used to
check whether MolAICal software can generate similar or differ-
ent types of ligands. According to the recent research report [56]
and relative values of Lipinski’s rule of five of GCGR antagonist
MK-0893 (Table S1), the maximum XLOGP value is set to 6 for
filtering out the higher XLOGP values of ligand designed by deep
learning model, de novo and virtual screening methods. As shown
in Figure 6A, the binding scores and XLOGP values of ligands are
chosen as the components to draw the contour of 3D structural
similarity between MK-0893 and growth ligands. The growth
ligands are divided into six parts based on the 3D structural
similarity. The crystal antagonist MK-0893 shows gray, while
the representative ligand drawn red has 3D structural similarity
ranging from 0.6505 to 0.8220 in level 1. It shows that the ligand
in level 1 has a 3D similar structure with crystal antagonist MK-
0893 (see Figure 6A). Besides, the binding score of the crystal
antagonist MK-0893 is −8.63 kcal/mol in the pocket of GCGR. In
comparison with MK-0893, the results show the growth ligands
with lower 3D structural similarity still have good binding scores.
It indicates that MolAICal can generate potential novel com-
pounds with good affinities theoretically. Figure 6B shows the
drug virtual screening results from 2 million drug-like ligands
by deep learning generative model and molecular docking. This
strategy is different from de novo drug design way. It selects the
ligands on the basis of the random generated molecular set. The
results show the ligands with ∼79% 3D structural similarity are
captured from 2 million drug-like molecular sets (see Figure 6B).
With the decrease of 3D structural similarity, the ligands with
good binding scores show different structures with the crystal
antagonist MK-0893. It indicates that the diversity of ligands that
have good binding scores are enhanced by using the protocol of
MolAICal soft package.

Figure 7A and B shows the results of SARS-CoV-2 Mpro drug
design by MolAICal. The crystal structure of SARS-CoV-2 Mpro

contains inhibitor N3, which has 19 rotatable bonds (see Table
S1). The inhibitor N3 shows more flexible bonds than the antag-
onist MK-0893. And the small part of N3 is chosen as the initial
growth fragment (see Figure S1). Hence, level 4 ligands with blue
occupy a very large proportion of contours in Figure 7A and B.
It means a large number of novel ligands with good binding
scores are generated for SARS-CoV-2 Mpro. The level 1 ligands
ranging from 0.6305 to 0.8040 are grown on the basis of the initial
fragment of N3 (see Figure 7A). However, the number of level
1 ligands is very few because of the flexible conformation and
small initial growth fragment of N3. Figure 7B shows the drug
virtual screening results of SARS-CoV-2 Mpro from 2 million drug-
like ligands by deep learning generative model and molecular
docking. The results show that most of the screened ligands
have lower 3D structural similarity with the inhibitor N3 because
drug virtual screening depends on the number of generated
ligands. It indicates that MolAICal can produce a variety of lig-
ands with good binding scores. Besides, to help the researchers
develop the new drugs targeting to SARS-CoV-2, our results are
shared in GitHub freely (https://github.com/MolAICal/COVID-19/
tree/master/mpro).

https://github.com/MolAICal/COVID-19/tree/master/mpro
https://github.com/MolAICal/COVID-19/tree/master/mpro
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Figure 5. Designing 3D ligands of GCGR and SARS-CoV-2 Mpro via the MolAICal modules which involve deep learning model, de novo drug design and drug virtual

screening.

Figure 6. 3D structural similarities contour. (A) The contour of 3D structural similarities between growth ligands and crystal ligand MK-0893 of GCGR based on DL

model and de novo drug design. (B) The contour of 3D structural similarities between docked ligands and crystal ligand MK-0893 of GCGR based on DL model and drug

virtual screening of GCGR. The contour is divided into six color levels. The representative molecules of six color levels are extracted to show the structural similarity

with crystal ligand MK-0893 in the pocket of GCGR.

We select the representative interesting ligands that have
rich in ring groups in Figures 6 and 7. The results also indi-
cate that some ligands that are not rich in benzene rings still
have good binding scores (see Figure S2). Figure S2 shows the
representative ligands of GCGR and SARS-Cov-2 Mpro that have
no rich in ring groups. Especially, the ligands of SARS-Cov-2
Mpro can have structures without any ring group. It indicates
that MolAICal can generate the valid and diverse ligands in the
protein pocket. For GCGR, the binding sites of antagonist locate
outside the seven-transmembrane (7TM) domain in a position
between TM6 and TM7. In this case, to get a stable and good

binding pose in the allosteric sites of GCGR, the rigid structure
such as the ring group is an important factor for growth ligand. In
the future version, MolAICal will trace the experiment between
ligands and proteins and further improve its performance for
drug design.

Conclusions
In this study, the MolAICal software is designed for generating
3D structural ligands in the 3D pocket of protein targets by
deep learning model and classical algorithm. MolAICal mainly
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Figure 7. 3D structural similarities contour. (A) The contour of 3D structural similarities between growth ligands and crystal ligand N3 of SARS-CoV-2 Mpro based on

DL model and de novo drug design. (B) The contour of 3D structural similarities between docked ligands and crystal ligand N3 of SARS-CoV-2 Mpro based on DL model

and drug virtual screening. The contour is divided into six color levels. The representative molecules of six color levels are extracted to show the structural similarity

with crystal ligand N3 in the pocket of SARS-CoV-2 Mpro.

contains two modules. For the first module, the fragments of
FDA-approved drugs are used to train deep learning model based
on the WGANs. The generated fragments of deep learning model
are further used to grow the 3D ligands in the protein pocket. For
the second module, the drug-like molecules of ZINC database
are employed to train deep learning model based on the WGANs.
The affinities between generated molecules and protein are esti-
mated by molecular docking. The membrane target GCGR and
non-membrane target SARS-CoV-2 Mpro are chosen for assaying
the drug design functions of MolAICal. It shows MolAICal can
generate various ligands that have lower and higher 3D struc-
tural similarity with crystal ligand of GCGR or SARS-CoV-2 Mpro.
The MolAICal contains the useful drug design tools and will help
the researchers to find and transform the new potential drugs.

Materials and methods
Protein structural preparation

The crystal structure of GCGR in complex with antagonist MK-
0893 is extracted from PDB database (PDB ID, 5EE7) [61]. The
built crystal model of SARS-CoV-2 Mpro (PDB ID, 6LU7) [63] is
supplied by the team of Prof. Zihe Rao. The crystal ligands are
deleted from the crystal GCGR and SARS-CoV-2 Mpro for de novo
and deep learning (DL) drug design, respectively. The grid files
of GCGR and SARS-CoV-2 Mpro are produced for fragment growth
by MolAICal soft package (https://molaical.github.io). The initial

growth fragments of GCGR and SARS-CoV-2 Mpro are selected as
shown in Figure S1. The structures of GCGR and SARS-CoV-2 Mpro

are prepared for virtual screening by using MGLTools [66]. The
Gasteiger charges and polar hydrogens are added on the GCGR
and SARS-CoV-2 Mpro, which are saved as the PDBQT molecular
format. The pockets for drug design are defined by the crystal
ligands of the GCGR and SARS-CoV-2 Mpro, respectively.

DL model and de novo drug design

The MolAICal contains the drug deep learning generative model
that is trained from the 21,064 fragments of FDA-approved drugs.
The 90 fragments generated by MolAICal and additional 30 basic
fragments are mixed for fragment growth in the pocket of GCGR
and SARS-CoV-2 Mpro by MolAICal. The x, y and z coordinates
of the pocket box center of GCGR are set to −30.011, 1.665
and − 36.581 Å, respectively. The x, y and z coordinates of the
pocket box center of SARS-CoV-2 Mpro are set to −10.733, 12.416
and 68.829 Å, respectively. The lengths of the pocket box of GCGR
and SARS-CoV-2 Mpro are set to 30.0 Å along x, y and z direction.

The elitist molecules are extracted for next evolved growth
from 10% of generated molecular populations. The top 140
molecules of generated molecular populations are gener-
ated as the parent molecules. To enhance the diversity and
novelty of growth ligands, an additional 60 molecules are
randomly selected from the generated molecular populations.

https://molaical.github.io
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The maximum population is set to 3000. The 361 Fibonacci
points are generated for the perturbation search of fragments.
The operators of crossover and mutation are set to 1.0 and 0.5,
respectively. According to the Lipinski’s rule of five values of
crystal ligands in the pocket of GCGR and SARS-CoV-2 Mpro,
the values of XLOGP, hydrogen acceptors, hydrogen donors,
molecular weight and rotatable bonds for GCGR and SARS-
CoV-2 Mpro are set to 6.0, 12, 6, 1000.0, 14 and 6.0, 12, 7,
1000.0, 20, respectively. The Pan-assay interference compounds
(PAINS) filtered out unwanted growth ligands. The synthetic
accessibility scores of growth ligands are saved in the file of
statistical results. A total of 30 cycle generations are performed
for the whole process of drug design. A total of six parallel
processes of drug design are performed on the GCGR and SARS-
CoV-2 Mpro. The generated ligands of GCGR are stored between
480 and 690 of molecular weight, while the generated ligands of
SARS-CoV-2 Mpro are saved between 480 and 785 of the molecular
weight. A total of 30 multicores of CPU run parallel for a whole
molecular growth process. The whole drug design process
combined with deep learning model and classical programming
is performed automatically by designed MolAICal soft package.
A typical drug design process can be completed in ∼19 hours on
a computer with 30 of 2.20GHz CPU cores.

DL model and drug virtual screening

The MolAICal contains the drug deep learning generative model
that is trained from the 1,060,000 drug-like ligands. A total
of 2 million drug-like ligands are generated for drug virtual
screening of GCGR and SARS-CoV-2 Mpro. The x, y and z coor-
dinates of the pocket box center of GCGR are set to −30.011,
1.665 and − 36.581 Å, respectively. The x, y and z coordinates
of the pocket box center of SARS-CoV-2 Mpro are set to −10.86,
12.57 and 68.82 Å, respectively. The length, width and height of
GCGR pocket box are set to 30.0, 30.0 and 30.0 Å, respectively.
The length, width and height of SARS-CoV-2 Mpro pocket box
are set to 25.0, 30.0 and 25.0 Å, respectively. The 2D SMILES
format of generated ligands is converted to 3D PDBQT format
with Merck Molecular Force Field 94 (MMFF94) by Open Babel
[46]. The MolAICal invokes Autodock Vina to carry out virtual
screening with 40 CPU cores automatically. The virtual screen-
ing results are ranked by the binding scores that save in the
files of 2 million outputted ligands. The ligands are filtered out
whose XLOGP is higher than 6. The XLOGP and virtual screen-
ing calculations are carried out automatically by MolAICal soft
package.

Key Points
• MolAICal supplies a way to design 3D drugs in the 3D

protein pocket by deep learning model and fragment
growth algorithm.

• MolAICal supplies a parallel computing and effective
way to screen 3D drugs in 3D protein pocket by deep
learning model and molecular docking.

• MolAICal supplies useful tools for drug design by com-
bining with the merits of deep learning model and the
classical algorithm of computer-aided drug design.

• MolAICal provides detailed manual and tutorials, and
it could be freely accessible at https://molaical.githu
b.io.

Supplementary data

Supplementary data are available at Briefings in Bioinfor-
matics online.

Author contributions

Q.B. designs the MolAICal soft package. Q.B., T.X., J.H. and
X.Y. are responsible for the study of drug deep graph learning
model. Q.B., S.T., H.L. and X.Y. are responsible for the study of
drug deep learning model based on molecular SMILES. The
manuscript is written and modified by all authors.

Acknowledgments

We acknowledge Suzhou Supercomputing Center (siscc),
Shanghai SuperComputing Technology Co., Ltd. and GanSu
Computing Center for supplying the computing resource
for drug design of COVID-19 main protease by using
MolAICal. We appreciate Supercomputing Center of Lanzhou
University for supplying the computers for the drug design
of GCGR. We are grateful for the Vinardo score discussion
from Dr. Ximing Xu who works at Pilot National Laboratory
for Marine Science and Technology (Qingdao) and the
MolGAN discussion from Nicola De Cao who is from the
University of Amsterdam in the Netherlands.

Funding

This manuscript is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 21775060, 21605066).
We acknowledge ‘Tencent AI Lab Rhino-Bird Focused
Research Program (No. JR202004)’ that supports the grant
for the study of drug deep graph learning model.

Conflict of interest

There are no conflicts to declare.

References
1. Kermany DS, Goldbaum M, Cai W, et al. Identifying medi-

cal diagnoses and treatable diseases by image-based deep
learning. Cell 2018;172:1122–1131 e1129.

2. Moen E, Bannon D, Kudo T, et al. Deep learning for cellular
image analysis. Nat Methods 2019;16:1233–1246.

3. Segler MHS, Preuss M, Waller MP. Planning chemical syn-
theses with deep neural networks and symbolic AI. Nature
2018;555:604–10.

4. Miao R, Xia LY, Chen HH, et al. Improved classification
of blood-brain-barrier drugs using deep learning. Sci Rep
2019;9:8802.

5. Shi Q, Chen W, Huang S, et al. Deep learning for mining
protein data. Brief Bioinform 2019 doi: 10.1093/bib/bbz156.

6. Hou T, Wang J, Liao N, et al. Applications of genetic algo-
rithms on the structure− activity relationship analysis of
some cinnamamides. J Chem Inf Comput Sci 1999;39:775–81.

7. Hearst MA, Dumais ST, Osuna E, et al. Support vec-
tor machines. IEEE Intelligent Systems and their applications
1998;13:18–28.

8. Ho TK. Random decision forests. In: Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition. IEEE,
1995, 278–82.

9. Friedman N, Geiger D, Goldszmidt M. Bayesian network
classifiers. Machine learning 1997;29:131–63.

https://molaical.github.io
https://molaical.github.io
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa161#supplementary-data
https://doi.org/10.1093/bib/bbz156


MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm 11

10. Rumelhart DE, Widrow B, Lehr MA. The basic ideas in neural
networks. Communications of the ACM 1994;37:87–93.

11. Hinton GE. How neural networks learn from experience. Sci
Am 1992;267:144–51.

12. Chen JJF, Visco DP, Jr. Developing an in silico pipeline
for faster drug candidate discovery: virtual high through-
put screening with the signature molecular descriptor
using support vector machine models. Chem Eng Sci
2017;159:31–42.

13. Fang X, Bagui S, Bagui S. Improving virtual screening predic-
tive accuracy of human kallikrein 5 inhibitors using machine
learning models. Comput Biol Chem 2017;69:110–9.

14. Li Y, Yang J. Structural and sequence similarity makes
a significant impact on machine-learning-based scoring
functions for protein-ligand interactions. J Chem Inf Model
2017;57:1007–12.

15. Renault N, Laurent X, Farce A, et al. Virtual screening
of CB(2) receptor agonists from bayesian network and
high-throughput docking: structural insights into agonist-
modulated GPCR features. Chem Biol Drug Des 2013;81:442–54.

16. Xia X, Maliski EG, Gallant P, et al. Classification of
kinase inhibitors using a Bayesian model. J Med Chem
2004;47:4463–70.

17. Murcia-Soler M, Perez-Gimenez F, Garcia-March FJ, et al.
Artificial neural networks and linear discriminant analysis:
a valuable combination in the selection of new antibacterial
compounds. J Chem Inf Comput Sci 2004;44:1031–41.

18. Tenorio-Borroto E, Garcia-Mera X, Penuelas-Rivas CG,
et al. Entropy model for multiplex drug-target interaction
endpoints of drug immunotoxicity. Curr Top Med Chem
2013;13:1636–49.

19. Dahl GE, Jaitly N, Salakhutdinov R. Multi-task
neural networks for QSAR predictions. arXiv preprint
2014;arXiv:1406.1231.

20. Mayr A, Klambauer G, Unterthiner T, et al. DeepTox: toxicity
prediction using deep learning. Front Environ Sci 2016;3:80.

21. Winkler DA, Le TC. Performance of deep and shallow neural
networks, the universal approximation theorem, activity
cliffs, and QSAR. Molecular Informatics 2017;36:1600118.

22. Chen H, Engkvist O, Wang Y, et al. The rise of deep learning
in drug discovery. Drug Discov Today 2018;23:1241–50.

23. Leong MK, Syu RG, Ding YL, et al. Prediction of N-methyl-
D-aspartate receptor GluN1-ligand binding affinity by a
novel SVM-pose/SVM-score combinatorial ensemble dock-
ing scheme. Sci Rep 2017;7:40053.

24. Segler MHS, Kogej T, Tyrchan C, et al. Generating focused
molecule libraries for drug discovery with recurrent neural
networks. ACS Cent Sci 2018;4:120–31.

25. Xu Y, Lin K, Wang S, et al. Deep learning for molecular
generation. Future Med Chem 2019;11:567–97.

26. Shen C, Ding J, Wang Z, et al. From machine learning to
deep learning: advances in scoring functions for protein–
ligand docking. Wiley Interdisciplinary Reviews: Computational
Molecular Science 2020;10:e1429.

27. Zhang T, Leng J, Liu Y. Deep learning for drug-drug interac-
tion extraction from the literature: a review. Brief Bioinform
2019, doi: 10.1093/bib/bbz087.

28. Kingma DP, Welling M. Auto-encoding variational Bayes,
arXiv preprint. 2013;arXiv:1312.6114.

29. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative
adversarial nets. Advances in Neural Information Processing
Systems, 2014;2:2672–80.

30. Xue D, Gong Y, Yang Z, et al. Advances and challenges in
deep generative models for de novo molecule generation.

Wiley Interdisciplinary Reviews: Computational Molecular Science
2019;9:e1395.

31. Gomez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic
chemical design using a data-driven continuous represen-
tation of molecules. ACS Cent Sci 2018;4:268–76.

32. Makhzani A, Shlens J, Jaitly N, et al. Adversarial autoencoders
arXiv preprint 2015;arXiv:1511.05644. .

33. Kadurin A, Aliper A, Kazennov A, et al. The cornucopia
of meaningful leads: applying deep adversarial autoen-
coders for new molecule development in oncology. Oncotar-
get 2017;8:10883–90.

34. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, et al.
Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models arXiv preprint
2017;arXiv:1705.10843.

35. Arjovsky M, Chintala S, Bottou L. Wasserstein Gan arXiv
preprint 2017;arXiv:1701.07875.

36. Yang X, Wang Y, Byrne R, et al. Concepts of artificial intel-
ligence for computer-assisted drug discovery. Chem Rev
2019;119:10520–94.

37. De Cao N, Kipf TMGAN. An implicit generative model for
small molecular graphs. arXiv preprint 2018;arXiv:1805.11973.

38. Sun H, Pan P, Tian S, et al. Constructing and validating
high-performance MIEC-SVM models in virtual screening
for kinases: a better way for actives discovery. Sci Rep
2016;6:24817.

39. Yuan Y, Pei J, Lai L. LigBuilder 2: a practical de novo drug
design approach. J Chem Inf Model 2011;51:1083–91.

40. Wang R, Gao Y, Lai L. LigBuilder: a multi-purpose program
for structure-based drug design. Molecular modeling annual
2000;6:498–516.

41. Cheron N, Jasty N, Shakhnovich EI. OpenGrowth: an auto-
mated and rational algorithm for finding new protein lig-
ands. J Med Chem 2016;59:4171–88.

42. Trott O, Olson AJ. AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. J Comput Chem
2010;31:455–61.

43. Wang Z, Sun H, Yao X, et al. Comprehensive evaluation of
ten docking programs on a diverse set of protein-ligand
complexes: the prediction accuracy of sampling power and
scoring power. Phys Chem Chem Phys 2016;18:12964–75.

44. Wang R, Fang X, Lu Y, et al. The PDBbind database: col-
lection of binding affinities for protein-ligand complexes
with known three-dimensional structures. J Med Chem
2004;47:2977–80.

45. Kong R, Yang G, Xue R, et al. COVID-19 docking server:
an interactive server for docking small molecules, peptides
and antibodies against potential targets of COVID-19 arXiv
preprint. 2020;arXiv:2003.00163.

46. O’Boyle NM, Banck M, James CA, et al. Open babel: an open
chemical toolbox. J Chem 2011;3:33.

47. Kong R, Wang F, Zhang J, et al. CoDockPP: a multistage
approach for global and site-specific protein-protein dock-
ing. J Chem Inf Model 2019;59:3556–64.

48. Kong R, Liu RR, Xu XM, et al. Template-based modeling and
ab-initio docking using CoDock in CAPRI. Proteins 2020, doi:
10.1002/prot.25892.

49. Douguet D. Data sets representative of the structures and
experimental properties of FDA-approved drugs. ACS Med
Chem Lett 2018;9:204–9.

50. Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool
to discover chemistry for biology. J Chem Inf Model 2012;52:
1757–68.

https://doi.org/10.1093/bib/bbz087
https://doi.org/10.1002/prot.25892


12 Bai et al.

51. Ramakrishnan R, Dral PO, Rupp M, et al. Quantum chemistry
structures and properties of 134 kilo molecules. Sci Data
2014;1:140022.

52. Quiroga R, Villarreal MA. Vinardo: a scoring function based
on Autodock Vina improves scoring, docking, and virtual
screening. PLoS One 2016;11:e0155183.

53. Shen C, Wang Z, Yao X, et al. Comprehensive assessment
of nine docking programs on type II kinase inhibitors: pre-
diction accuracy of sampling power, scoring power and
screening power. Brief Bioinform 2020;21:282–297.

54. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental
and computational approaches to estimate solubility and
permeability in drug discovery and development settings.
Adv Drug Deliv Rev 2001;46:3–26.

55. Daina A, Michielin O, Zoete V. SwissADME: a free web tool
to evaluate pharmacokinetics, drug-likeness and medic-
inal chemistry friendliness of small molecules. Sci Rep
2017;7:42717.

56. Shultz MD. Two decades under the influence of the rule of
five and the changing properties of approved oral drugs. J
Med Chem 2019;62:1701–14.

57. Phillips JC, Braun R, Wang W, et al. Scalable molecular
dynamics with NAMD. J Comput Chem 2005;26:1781–802.

58. Hou T, Wang J, Li Y, et al. Assessing the performance of
the MM/PBSA and MM/GBSA methods. 1. The accuracy of

binding free energy calculations based on molecular dynam-
ics simulations. J Chem Inf Model 2011;51:69–82.

59. Wang C, Greene D, Xiao L, et al. Recent developments
and applications of the MMPBSA method. Front Mol Biosci
2017;4:87.

60. Miller BR, 3rd, McGee TD, Jr, Swails JM, et al. MMPBSA.Py:
an efficient program for end-state free energy calculations.
Journal of Chemical Theory and Computation 2012;8:3314–21.

61. Jazayeri A, Dore AS, Lamb D, et al. Extra-helical binding site
of a glucagon receptor antagonist. Nature 2016;533:274–7.

62. Bai Q, Tan S, Perez-Sanchez H, et al. Conformation transition
of intracellular part of glucagon receptor in complex with
agonist glucagon by conventional and accelerated molecular
dynamics simulations. Front Chem 2019;7:851.

63. Jin Z, Du X, Xu Y, et al. Structure of Mpro from COVID-19 virus
and discovery of its inhibitors. Nature 2020;582:289–293.

64. Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2
main protease provides a basis for design of improved alpha-
ketoamide inhibitors. Science 2020;368:409–412.

65. Ballester PJ, Richards WG. Ultrafast shape recognition to
search compound databases for similar molecular shapes.
J Comput Chem 2007;28:1711–23.

66. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and
AutoDockTools4: automated docking with selective receptor
flexibility. J Comput Chem 2009;30:2785–91.


	MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
	Introduction 
	Results and discussion
	Deep learning generative model for 2D molecular generation
	3D drug design in protein pocket by DL model and classical programming
	3D drug design in protein pocket by DL model and VS
	Examples of 3D ligand design in the protein pocket by MolAICal

	Conclusions
	Materials and methods
	Protein structural preparation
	DL model and de novo drug design
	DL model and drug virtual screening
	Key Points

	Supplementary data
	Author contributions
	Funding
	Conflict of interest


