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The behaviours of the three invariants of the velocity
gradient tensor and the resultant local flow topologies
in turbulent premixed flames have been analysed
using three-dimensional direct numerical simulation
data for different values of the characteristic Lewis
number ranging from 0.34 to 1.2. The results have
been analysed to reveal the statistical behaviours of
the invariants and the flow topologies conditional
upon the reaction progress variable. The behaviours
of the invariants have been explained in terms
of the relative strengths of the thermal and mass
diffusions, embodied by the influence of the Lewis
number on turbulent premixed combustion. Similarly,
the behaviours of the flow topologies have been
explained in terms not only of the Lewis number
but also of the likelihood of the occurrence of
individual flow topologies in the different flame
regions. Furthermore, the sensitivity of the joint
probability density function of the second and
third invariants and the joint probability density
functions of the mean and Gaussian curvatures
to the variation in Lewis number have similarly
been examined. Finally, the dependences of the
scalar–turbulence interaction term on augmented
heat release and of the vortex-stretching term on

2018 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2017.0706&domain=pdf&date_stamp=2018-04-11
mailto:daniel.h.wacks@durham.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4048088
https://dx.doi.org/10.6084/m9.figshare.c.4048088
http://orcid.org/0000-0002-3985-9344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170706

...................................................

flame-induced turbulence have been explained in terms of the Lewis number, flow topology
and reaction progress variable.

1. Introduction
Recently, strict pollution control regulations have increased the need for low-emission premixed
combustion, in which the reactants are homogeneously mixed prior to combustion. In premixed
combustion, the maximum temperature attained when combustion is completed can be
determined from the temperature and composition of the homogeneous mixture, because
these quantities directly affect the combustion chemistry and the subsequent temperature
field. As a result, pollutants such as NOx can be controlled with relative ease in premixed
combustion by determining an optimal reactant mixture composition. Premixed combustion is
used predominantly in spark ignition engines and industrial gas turbines and is now being
developed for some modern aero-engines. In addition to the reduction of pollutant emissions, the
emission of greenhouse gases such as CO2 also needs to be reduced in order to meet government
regulations to tackle global warming. Several power generation techniques including non-
conventional methods involving sustainable sources (e.g. solar power, wind power, tidal power)
have been identified, but combustion is likely to remain a major contributor to industrial power
generation for the foreseeable future because of existing expertise, infrastructure and the high
reliability of conventional energy conversion methods. Hydrogen is often identified as a potential
future fuel which would allow combustion with the complete elimination of greenhouse gas
emission, but the chemistry of hydrogen is significantly different from that of hydrocarbon fuels
[1], while the presence of lighter chemical species induces significant effects of the differential
diffusion of heat and mass. The differential diffusion of heat and mass in premixed flames is
often characterized in terms of the Lewis number Le, which is defined as the ratio of thermal
diffusivity to mass diffusivity. Although every species in a combustion process has its own Lewis
number, a characteristic Lewis number can be assigned to a given premixed combustion process
in terms of the Lewis number Le of the deficient species [2,3] by heat release measurements
[4] or by a linear combination of the mole fractions of the mixture constituents [5]. A number
of analyses have demonstrated that the non-unity Lewis number has a significant influence on
the burning rate and wrinkling of perturbed laminar flames and is also responsible for thermo-
diffusive instability for Le < 1.0 (interested readers are referred to [6–8] and the references therein
for an extensive review in this regard). Experimental investigations have indicated that the effects
of the characteristic Lewis number do not disappear even for turbulent flames at high values
of the turbulent Reynolds number [9,10]. It has been found that the rate of diffusion of fresh
reactants into the reaction zone supersedes the rate at which heat is diffused out in the positively
stretched zones for Le < 1.0 flames. This gives rise to the simultaneous presence of high reactant
concentration and high temperature, and thus the burning rate and flame area generation are
greater in the Le < 1.0 flames than in the unity Lewis number flames with similar turbulent flow
conditions in the unburned reactants. Just the opposite mechanism gives rise to a reduced burning
rate in the Le > 1.0 flames, in comparison with the corresponding unity Lewis number flame.

The augmentation of the burning rate with decreasing Le gives rise to a strengthening of flame
normal acceleration and dilatation rate. This tendency is more prevalent in flames with Le < 1.0
due to thermo-diffusive instabilities [6–8]. The Lewis number dependences of the flame normal
acceleration and dilatation rate have a significant influence on the turbulent kinetic energy and
enstrophy transport through pressure gradient and baroclinic terms, respectively [11,12]. This
leads to stronger flame-generated turbulence and enstrophy generation within the flame brush
in the Le < 1.0 flames than in the unity Lewis number flame subjected to statistically similar
unburned gas turbulence, and this tendency strengthens with decreasing Lewis number [11,12].
Strengthening of the flame normal acceleration eventually leads to counter-gradient transport of
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the turbulent kinetic energy, reaction progress variable, c, and its variance and dissipation rate
with Le < 1.0 under similar turbulent conditions on the unburned gas side, for which gradient
transport has been observed for flames with Le ≈ 1.0 [11,13–15]. The global Lewis number also
significantly affects the alignment of the scalar gradient (i.e. the gradient of the reaction progress
variable, ∇c) with local principal strain rates [16] through its influence on the flame normal
acceleration and dilatation rate. It has been found that the reactive scalar gradient shows an
increased tendency to align preferentially with the most extensive principal strain rate with
decreasing Lewis number Le. This has been shown to have a significant influence on the normal
strain rate contribution to the transport of the generalized flame surface density (FSD = |∇c|,
with the overbar indicating the Reynolds average/large eddy simulation (LES) filtering, as
appropriate) and the scalar dissipation rate (SDR = Nc = D∇c · ∇c, with D being the progress
variable diffusivity) [14,17]; the normal strain rate contribution is found to dissipate the FSD
and SDR in flames with Le < 1.0 under similar turbulent conditions on the unburned gas side,
for which the scalar gradient is created by the normal strain rate contribution in the FSD and SDR
transport equations for flames with Le ≈ 1.0. The increased heat release with decreasing Le leads
to strengthening of the dilatation rate and its contribution to the FSD and SDR transports. The
contribution of the dilatation rate to the FSD and SDR acts to generate the FSD and SDR for all
flames irrespective of Le, but this effect strengthens with decreasing Le [14,17].

The differential diffusion of heat and mass has a significant influence on the flame curvature
(i.e. the curvature of a given c-isosurface, given by κm = 0.5∇ · (−∇c/|∇c|)) dependences of the
temperature and heat release rate in non-unity Lewis number flames [13,18,19]. This gives rise
to a finite probability of finding super-adiabatic temperatures even under globally adiabatic
conditions. These super-adiabatic hot spots in the Le < 1.0 cases play an important role in
increasing the wall heat flux and quenching the distance for head-on quenching of turbulent
premixed flames [20]. Furthermore, the aforementioned curvature dependence of the chemical
reaction rate affects the local stretch rate dependence of the flame displacement speed Sd [19].
This, in turn, affects the statistical behaviours of the curvature and propagation terms of the FSD
and SDR transport equation.

From the above discussion, it is evident that the Lewis number pervasively influences the heat,
mass and fluid flow processes in turbulent premixed flames, and these influences are likely to
have a significant influence on the underlying flow topology in turbulent premixed combustion.

Perry & Chong [21] and Chong et al. [22] classified all the possible flow topologies in terms
of the invariants (P, Q and R) of the velocity gradient tensor with components given by ∂ui/∂xj,
where ui is the ith component of the velocity vector. The topologies, denoted S1–S8, distinguish
eight regions in the three-dimensional P–Q–R phase space, as shown schematically in figure 1. For
incompressible flows, the first invariant P = −∇ · u is exactly zero, such that incompressible flow
topologies are dependent only on the second and third invariants (i.e. Q and R). Perry & Chong
[21] and Soria et al. [24] concluded, based on their analyses, that the S4 topology most likely occurs
for positive values of Q. Blackburn et al. [25] revealed that topologies S2 and S4 are dominant in
the regions away from the wall. Chong et al. [26] and Chacin & Cantwell [27] revealed that the
joint probability density function (PDF) between Q and R demonstrates a ‘teardrop’ structure
(figure 1). In addition, Ooi et al. [28] indicated that the joint PDF between Q and R tends to show
similar qualitative behaviour for a range of different incompressible turbulent flows, suggesting a
degree of universality of small-scale turbulent motion in the Q–R plane. The ‘teardrop’ structure
of the Q–R joint PDF for incompressible flows has been confirmed by experimental results [26,27].
Elsinga & Marusic [29] offered an explanation for the universal ‘teardrop’ shape of the Q−R
joint PDF for incompressible flows. Tsinober [30] provided qualitative arguments for local flow
properties for different topologies, and postulated that the enstrophy production is large in the S4
topology, whereas the strain rate production is concentrated in the S1 topology. Dopazo et al. [31]
examined the interaction of flow topologies with passive scalar surface topologies quantified in
terms of Gauss and mean curvatures (i.e. κg and κm). Direct numerical simulations (DNSs) and
experimental investigations revealed that the ‘teardrop’ structure of the Q–R joint PDF exists only
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Figure 1. (a) Classification of the S1–S8 topologies in theQ−R plane for (i–iii) P> 0, P= 0 and P< 0, and (iv) the ‘teardrop’-
shaped PDF(R,Q) lying in the P= 0 plane. The lines r1a (red), r1b (blue) and r2 (green) dividing the topologies are shown.
Black dashed lines correspond to Q= 0 and R= 0. (b) Classification of the S1–S8 topologies: UF, unstable focus; UN, unstable
node; SF, stable focus; SN, stable node; S, saddle; C, compressing; ST, stretching. (Reproduced with permission from Wacks &
Chakraborty [23].)

in the fully turbulent region and not in the interface between the turbulent and non-turbulent
regions [32,33]. All of these aforementioned analyses were carried out for incompressible fluids,
but in compressible flows the first invariant of the strain rate tensor, P, plays a key role in addition
to Q and R, and thus the three-dimensional P–Q–R space plays a pivotal role. Chen et al. [34]
analysed the structure of a compressible wake in terms of P, Q and R. Sondergaarad et al. [35]
also used the scatter plots of P, Q and R to analyse the local flow geometry of a turbulent shear
flow. Maekawa et al. [36] demonstrated that the S2 and S4 topologies dominate the Q–R plane
for decaying isotropic turbulence, which was subsequently investigated by Suman & Girimaji
[37]. Wang & Lu [38] analysed topology distributions in the inner and outer layers in turbulent
compressible boundary layers.

The flow topology in turbulent premixed flames was analysed for the first time by Tanahashi
et al. [39] to distinguish between strain-dominated (i.e. Q < 0) and vorticity-dominated (i.e. Q > 0)
regions. They also demonstrated that coherent structures can survive beyond the flame front.
Grout et al. [40] analysed the flow topology of a reactive transverse fuel jet in cross flow and
demonstrated that the regions of the highest heat release rates of the flame are associated
with the S8 topology. Recently, Cifuentes et al. [41,42] demonstrated, using a simple chemistry
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DNS database of premixed turbulent flames with unity Lewis number, that the probability of
finding the focal (nodal) flow topologies decreases (increases) across the flame front. Furthermore,
Wacks & Chakraborty [23] analysed flow topology distributions in turbulent spray flames and
demonstrated that the distribution of topologies within the spray flame has qualitative similarities
to the previous findings by Cifuentes et al. [41] and Grout et al. [40]. However, the influence of Le
on the turbulent flow topology distribution in premixed turbulent flames is yet to be analysed
and this paper addresses this gap in the existing literature. This void is addressed by analysing
a DNS database of statistically planar turbulent premixed flames with global Lewis number Le
ranging from 0.34 to 1.2. The specific objectives of this paper are as follows:

(1) To indicate, understand and provide physical explanations for Le dependence of the flow
topology distribution within turbulent premixed flames.

(2) To demonstrate the implications of the above results on scalar dissipation production
by scalar gradient normal stretching (henceforth referred to as the scalar–turbulence
interaction term following previous analyses [15,16,43,44]) and on the vortex-stretching
term in the enstrophy transport equation.

As the flow topologies are associated with particular combinations of strain rate and vorticity
distributions, they are likely to influence the statistical behaviours of the scalar–turbulence
interaction and vortex-stretching terms because these quantities are determined by the local
alignment of the principal strain rate and scalar gradient and vorticity, respectively. Moreover,
the vortex-stretching mechanism is of pivotal importance to the energy cascade in turbulent flows
[45] and it plays a leading-order role in enstrophy transport in turbulent premixed combustion
even though some other physical mechanisms (e.g. baroclinic torque) might also play leading
roles, alongside the vortex-stretching term [12].

The analysis in terms of the aforementioned objectives is expected to reveal the canonical
flow configurations, which make dominant contributions to the scalar–turbulence interaction
and vortex-stretching terms of the SDR and enstrophy transport equations, respectively,
for different values of the global Lewis number. This, in turn, helps to design simplified
configurations representing dominant flow topologies to gain further insight into the flame–
turbulence interaction and vortex-stretching terms, and thus these configurations can be used for
experiments and Reynolds-averaged Navier–Stokes (RANS) simulations and LES for obtaining
fundamental physical understanding and combustion model validation for premixed combustion
with different values of the characteristic Lewis number.

The rest of the paper will be organized as follows. The mathematical background and
numerical implementation pertaining to this analysis are presented in the next section. This will
be followed by the presentation of the results and their discussion. The main findings will be
summarized and conclusions will be drawn in the final section of this paper.

2. Mathematical background and numerical implementation
In order to analyse the effects of the global Lewis number Le on individual flow topologies
the chemical mechanism in this analysis is simplified by a single-step Arrhenius-type chemical
reaction following several previous analyses [6–8,11–20,46–51]. In the context of simple chemistry,
the species field in premixed turbulent flames is often represented by a reaction progress variable
c in terms of the reactant mass fraction YR in the following manner [6–8,11–20,46–51]:

c = YR0 − YR

YR0 − YR∞
, (2.1)

where the subscripts 0 and ∞ are used to refer to the values in the fully unburned reactants and
fully burned products, respectively. According to the above equation, c increases monotonically
from 0, in the unburned gas, to 1.0, in the fully burned products.
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Following Perry & Chong [21] and Chong et al. [22], the local flow topologies can be
characterized by the invariants of the velocity gradient tensor: Aij = ∂ui/∂xj = Sij + Wij, where
Sij = 0.5(Aij + Aji) and Wij = 0.5(Aij − Aji) are the symmetric and anti-symmetric components,
respectively. Three eigenvalues, λ1, λ2 and λ3, of Aij can be obtained from solutions of the
characteristic equation λ3 + Pλ2 + Qλ + R = 0, where P, Q, R are the invariants of Aij [21,22],

P = −(λ1 + λ2 + λ3),

Q = 0.5(P2 − SijSij) + 0.5(WijWij) = Qs + Qw

and R = −P3 + 3PQ − SijSjkSki − 3WijWjkSki

3
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

The discriminant D = [27R2 + (4P3 − 18PQ)R + 4Q3 − P2Q2]/108 of λ3 + Pλ2 + Qλ + R = 0 divides
the P–Q–R phase space into two regions: for D > 0 (D < 0), where Aij displays a focal (nodal)
topology [21,22]. The Aij tensor exhibits one real eigenvalue and two complex conjugate
eigenvalues for focal topologies, whereas Aij shows three real eigenvalues for nodal topologies.
The surface D = 0 leads to two subsets r1a and r1b in P–Q–R phase space which are given by [21,22]:
r1a = P(Q − 2P2/9)/3 − 2(−3Q + P2)3/2/27 and r1b = P(Q − 2P2/9)/3 + 2(−3Q + P2)3/2/27. In the
region D > 0, Aij has purely imaginary eigenvalues on the surface r2, which are given by R = PQ.
The surfaces r1a, r1b and r2, where r2 is described by PQ − R = 0, divide the P–Q–R phase space
into eight flow topologies, as shown in figure 1. Interested readers are referred to the appendix of
[22] for further explanation.

The distribution of these flow topologies for different values of Le has been analysed
here by using a three-dimensional DNS database of statistically planar turbulent premixed
flames with global Lewis number Le ranging from 0.34 to 1.2. This database has been used
several times in the existing literature [11–17] and thus only a brief discussion is provided
here. The simulations have been conducted using a well-known DNS code SENGA [11–17],
where the governing equations of mass, momentum, energy and reaction progress variable are
solved in non-dimensional form. Interested readers are directed to appendix A, where the full
transport equations are presented. The computational domain is taken to be a cube of size
24.1δth × 24.1δth × 24.1δth (where δth = (Tad − T0)/max|∇T|L is the thermal flame thickness with
T, T0 and Tad being the instantaneous dimensional temperature, unburned gas temperature and
adiabatic flame temperature, respectively), which is discretized using a uniform Cartesian mesh
of 230 × 230 × 230. This grid spacing ensures at least 10 grid points, and more than two grid
points within the thermal flame thickness δth and the Kolmogorov length scale η. The spatial
discretization for the internal grid points is carried out using a 10th order central difference
scheme, but the order of differentiation gradually drops to a second-order one-sided finite
difference scheme at the non-periodic boundaries. The temporal advancement has been carried
out using a third-order low-storage Runge–Kutta scheme (A. A. Wray 1990, unpublished data).
The turbulent velocity components have been initialized by an incompressible homogeneous
isotropic field using a pseudo-spectral [52] method. The reacting scalar field is initialized by the
steady planar laminar flame solution and the turbulent velocity field is superimposed on top of
it. The initial values of u′/SL and l/δth are taken to be 7.5 and 2.45 for five different global Lewis
numbers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 for cases A–E, respectively, where u′ is the root mean square
(RMS) velocity fluctuation and l is the integral length scale. For these values of u′/SL and l/δth, the
Damköhler number Da = SLl/u′δth and Karlovitz number Ka = (u′/SL)3/2(l/δth)−1/2 are 0.33 and
13.0, respectively, for all cases considered here, and the combustion takes place nominally in the
thin reaction zones regime [53]. Furthermore, the heat release parameter τ = (Tad − T0)/T0 = 4.5
has the same value in all cases. The unity Lewis number flames are analogous to the stoichiometric
methane–air flame, whereas the Lewis number 0.34 case is representative of a lean hydrogen–air
mixture [5,10,54]. The Lewis number 0.6 and 0.8 cases are representative of hydrogen-blended
methane–air mixtures (e.g. 20% and 10% (by volume), respectively, hydrogen-blended methane–
air flames with an overall equivalence ratio of 0.6) and the Lewis number 1.2 case is representative
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of a hydrocarbon–air mixture involving a hydrocarbon fuel which is heavier than methane (e.g.
ethylene–air mixture with an equivalence ratio of 0.7) [5,10,54]. The simulations for decaying
turbulence should be conducted for time tsim = max(tc, tf), where tc = δth/SL and tf = l/u′ are
the chemical time scale and initial eddy turn-over time. For all cases considered here, simulations
have been conducted for tsim = tc, which corresponds to 3.34tf. By that time, u′ has decayed by 50%
and l has increased by a factor of 1.7. Moreover, both the turbulent kinetic energy and dissipation
rate in the unburned gas ahead of the flame did not change rapidly with time when the statistics
were extracted. Further information about the conditions under which the statistics are taken for
this analysis can be found in [11–17].

3. Results and discussion
Figure 2 shows selected planes of the instantaneous reaction progress variable field, c, and
the normalized first, second and third invariant fields: P* = P × (δth/SL), Q* = Q × (δth/SL)2

and R* = R × (δth/SL)3, respectively. The data for these fields were extracted at the final time,
tsim = tc = 3.34tf. Figure 2 also shows the location of the flame in the form of the selected contour
lines of c = 0.1 and 0.9 (from left to right) superimposed on top of the reaction progress variable
field. The c-contours show that there is a marked decrease in the level of flame wrinkling as
the Lewis number increases from case A to case E (i.e. case A exhibits the greatest degree of
wrinkling and case E the least). This is consistent with the increased burning rate and flame area
generation associated with Le < 1.0 flames, due to the simultaneous presence of high reactant
concentration and high temperature, in contrast to the reduced burning rate experienced by
the Le > 1.0 flames. The augmentation of the burning rate in low Lewis number flames and its
reduction in high Lewis number flames (in comparison with the unity Lewis number flame) is
also evident from the P* fields. The first invariant, P = −∇ · u, is the negative of the dilatation
rate and, as such, strongly negative values of P* represent regions of high thermal expansion
due to a locally high burning rate. Case A exhibits strong negative values of P* in the region
of the flame front (compared with the location of the c-contour lines), and the magnitude of P*
decreases with increasing Le. The high values of dilatation in the Le ≈ 1.0 flames (e.g. cases C–E)
are to be found along the flame front in regions where the flame is concave towards the reactants,
whereas in regions where the flame is convex towards the reactants the dilatation rate assumes
more modest values. This behaviour follows from focusing (defocusing) of heat in the regions
which are concave (convex) to the reactants. This tendency is particularly strong for Le > 1.0 cases
because of stronger thermal diffusion out of the flame front than the reactant diffusion into it. This
leads to the simultaneous occurrence of strong focusing of heat and weak defocusing of reactants
in the regions which are concave to the unburned gases in the Le > 1.0 flames and thus the burning
rate and thermal expansion effects (e.g. high magnitudes of the negative value of P*) are strong
in these locations. This also gives rise to high burned gas temperatures in the regions which are
concavely curved towards the unburned gas. Just the opposite mechanism leads to small values of
burning rate, dilatation rate and burned gas temperature in the regions where the flame is convex
to the reactants in the Le > 1.0 flames. In flames where Le < 1.0, the focusing of reactants at zones
which are convex towards the reactants takes place at a faster rate than the thermal diffusion rate
out of these reaction zones. This leads to high (in some cases even super-adiabatic) burned gas
temperatures at the regions which are convex towards the reactants in the Le < 1.0 flames, and by
the same token lower values of burned gas temperature in the regions which are concavely curved
towards the unburned gas side. These high values of temperature at the convexly curved regions
tend to induce high values of the dilatation rate in the Le < 1.0 flames in addition to the effects
of focusing of heat at zones which are concavely curved towards the reactants. Thus, the high
negative values of P* in the Le < 1.0 flames are not confined to zones which are concavely curved
towards the reactants with Le ≈ 1.0 (e.g. cases C–E). Furthermore, temperature inhomogeneity
is observed in the burned gas for non-unity Lewis number flames because of the inequality of
the diffusion rates of species and heat (fig. 6 of [13] and fig. 1 of [14]), whereas the burned gas
temperature remains equal to the adiabatic flame temperature for the unity Lewis number flames.
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Figure 2. Selected regions of the instantaneous (column 1) reaction progress variable c, (column 2) normalized first invariant
P∗ = P × (δth/SL), (column 3) second invariant, Q*= Q× (δth/SL)2, and (column 4) third invariant R∗ = R × (δth/SL)3

fields at the x–ymid-plane for (top to bottom) cases A–E. White contours show c= 0.1 (left) and 0.9 (right) isolines.

The effect of this temperature inhomogeneity is relatively more prevalent for the Le < 1.0 flames
than in the Le > 1.0 cases because the higher thermal diffusion rate in the Le > 1.0 flames tends to
nullify thermal inhomogeneities in the burned gas. The temperature inhomogeneity in the burned
gas gives rise to a considerable dilatation rate within the burned gas beyond the flame and this
tendency strengthens with decreasing Lewis number. It is worth noting that the extent of flame
wrinkling increases with decreasing Le and thus the flame wrinkles out of the plane shown in
figure 1 can lead to significant magnitudes of P = −∇ · u, which is reflected in the non-zero values
of P* on the unburned gas side in cases A and B.

It can be seen from figure 2 that the distribution of the second invariant, Q*, appears similar
both qualitatively and quantitatively in cases B–E, such that non-negligible values occur mostly
in the unburned gas region which is composed of alternating small areas of positive and negative
values. The magnitudes assumed by Q* in the burned gas region remain negligible. In case A, the
non-negligible Q*-distribution penetrates the flame front to enter the burned side and consists of
larger areas of highly positive and highly negative values compared with cases B–E. A similar
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scattered distribution is apparent for the third invariant, R*, in cases B–E in the unburned gas
region. The distribution is once again stronger (more highly positive and highly negative) in case
A and can be seen to penetrate the burned gas region. The scattered distribution evident in the
unburned gas regions of both instantaneous Q* and R* fields arises because of the nature of the
distributions and relative magnitudes of SijSij and WijWij, and a qualitatively similar behaviour
was observed in previous analyses [23].

Although it is evident from equation (2.2) that the strain rate, vorticity and dilatation rate all
contribute towards the value of Q, it is clear from figure 2 that the magnitude of P2 remains
smaller than that of Q at most locations in the flow field and that these quantities are only
comparable within the reaction zone. Since the aforementioned scattered distributions in cases
B–E lie mainly in the unburned gas regions where P ≈ 0 (for low Mach number flows such as the
ones considered in this study), we may approximate QS ≈ −0.5SijSij, which is always negative.
Therefore outside the flame the sign of Q is indicative of vorticity-dominated regions (Q > 0) and
strain-dominated regions (Q < 0). The aforementioned alternating positive and negative regions
of Q* which can be seen in figure 2 show that both vorticity- and strain-dominated regions exist
in all cases in the unburned gas region, and, in case A, also in the burned gas region.

The third invariant, R (equation (2.2)), may be rewritten as the sum of the terms
which contribute towards enstrophy production (i.e. − (PQw − ωiSijωj/4)) and dissipation rate
generation (i.e. SijSjkSki/3) as follows:

R = 1
3

(−P3 + 3PQ − SijSjkSki) − 1
4
ωiSijωj

= 1
3

(−P3 + 3PQS − SijSjkSki)︸ ︷︷ ︸
Rs

+PQW − 1
4
ωiSijωj. (3.1)

Away from the flame front, where P ≈ 0, it is possible to approximate RS ≈ −SijSjkSki/3 > 0 and
PQW − ωiSijωj/4 ≈ −ωiSijωj/4 < 0. Hence, where P ≈ 0, R* will be non-zero where there is an
imbalance of − ωiSijωj/4 and − SijSjkSki/3. It is evident from figure 2 that, in case A, this imbalance
is present across the entire domain, on both sides of the flame front, whereas in cases B–E it is
significant only in the unburned gas region and is negligible elsewhere.

The variations of the normalized mean values of the three invariants (P, Q, R) and of their
constituent terms conditional on c are shown in figures 3–5. In general, in turbulent premixed
flames ∇ · u = −P remains positive. However, locations of negative dilatation rate can develop.
Such locations are most likely to develop where the flame is convex to the reactants (figure 2). In all
cases considered here, the probability of finding positive dilatation rates dominates and, thus, the
mean values of P remain negative across most of the flame front (figure 3). In the Le < 1.0 flames,
the reactants diffuse faster into the reaction zone than the rate of thermal diffusion out of it, which
leads to the simultaneous occurrence of high temperature and reactant concentrations, giving rise
to an increase in the burning rate and in the magnitude of the dilatation rate |∇ · u| = |−P|. The
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reaction progress variable c-isosurfaces on the unburned gas side are so strongly wrinkled in case
A that it shows a considerable probability of finding zones that are so strongly convexly curved
towards the reactants that the dilatation rate ahead of these zones assumes large negative values
because of the intense defocusing of heat. This gives rise, in case A, to a weakly positive mean
value of P conditional on c towards the unburned gas side of the flame.

The similarities between the distributions of Q* apparent from figure 2, column 3, in cases B–E
in contrast to that of case A are mirrored by the mean variation of Q and its constituent terms with
c, as can be seen in figure 4. The mean variations of Q, QS and QW conditional on c in case A differ
from those in cases B–E in several noticeable ways. However, these differences are not apparent
for all values of c. For values of c < 0.35, all cases show somewhat similar behaviour: for c close
to zero, the mean values of QS (negative) and QW (positive) approximately balance each other
such that the mean value of Q assumes a negligible value and, as c increases, the mean values
of QS and QW both tend towards 0. However, the magnitude of the mean value of QS decreases
more rapidly than that of QW, such that over this subrange (c < 0.35) Q rises monotonically with
c. The dissipation rate of kinetic energy ε = (τ ij∂ui/∂xj)/ρ can be expressed as ε = ν(4P2/3 − 4QS),
which indicates that QS = 0.25(4P2/3 − ε/ν) assumes negative (positive) values in the dissipation
(dilatation)-dominated regions. Following Wacks & Chakraborty [23], QS may be subdivided
as QS = QS1 + QS2 = P2/3 − ε/4ν. The density for the unity Lewis number low Mach number
flames can be expressed as ρ = ρ0/( 1 + τc) (where ρ0 is the unburned gas density), which upon
combining with the mass conservation equation yields ∇ · u = τρSd|∇c|/ρ0 [55,56]. It has been
shown elsewhere [56] that, although ∇ · u = τρSd|∇c|/ρ0 does not remain strictly valid for Le �= 1,
∇ · u still scales with τρSd|∇c|/ρ0 (i.e. ∇ · u ∼ τρSd|∇c|/ρ0). The quantities ρSd and |∇c| can be
scaled with ρ0SL and (1/δth), respectively, which lead to ∇ · u ∼ τSL/δth. Thus, it is possible
to write QS1 = P2/3 ∼ {τSL/δth}2 and |QS2| = |−ε/4ν| ∼ 1/τ 2

η (where τη is the Kolmogorov time
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scale), which leads to QS1/|QS2| ∼ τ 2Ka−2. This suggests that the magnitude of QS1 in comparison
with QS2 is expected to be small for large values of Ka (Ka 	 1), and thus the mean behaviour of QS
is principally governed by QS2 = −ε/4ν for the cases considered here. The contribution of QS is
principally governed by SijSij in the unburned gas region, where the magnitude of the dilatation
rate is small. However, P2 assumes high values because of large values of the dilatation rate as
the reaction zone is approached (figure 3), and thus the contribution of P2 compensates SijSij to
give rise to a small magnitude of the mean value of QS for intermediate values of c. The effects
of P2 weaken on the burned gas side and thus the mean behaviour of (−SijSij)/2 determines the
mean behaviour of QS, and yields predominantly negative values on the burned gas side of the
flame brush. In case A, QW = WijWij/2 = ωiωi/4 begins to increase in magnitude after c = 0.35 and
continues to increase monotonically with c until c ≈ 0.95. This behaviour arises as a result of flame-
generated vorticity due to strong baroclinic torque induced by strong flame normal acceleration
in case A. Interested readers are referred to Chakraborty et al. [12] for further discussion. The
flame-generated vorticity generation weakens with increasing Le [12], and in cases C–E the mean
value of QW = (WijWij)/2 decreases monotonically from the unburned to the burned gas side.
The flame-generated vorticity in case B is not as strong as that in case A and therefore it does
not exhibit an increase in the mean value of QW = (WijWij)/2, but it is sufficient to maintain an
approximately constant mean positive value of QW for c > 0.35.

As a result of the aforementioned behaviour of QW, the maximum mean value attained by Q
is higher for case A than for any other case and is located at a higher value of c than in any other
case. This feature could already be anticipated from figure 2 by considering the size, magnitude
and location of the highly positive regions visible in case A: these regions are larger in size, higher
in magnitude and extend further into the burned gas region than similar regions in cases B–E. It
should be pointed out that the magnitude of the mean value of Q diminishes from case A to the
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other cases, which accentuates the difference in the magnitude of the terms. Finally, the increase in
the magnitude of QW in case A results in the increase in the mean value of Q remaining vorticity
dominated across almost the entire flame (except for a very small region near c = 0), whereas
cases B–E, which do not benefit from flame-generated vorticity to the same extent as case A, all
possess regions with mean Q < 0. These regions with negative mean Q are located away from
the unburned gas side (i.e. in all cases the vorticity dominates towards the unburned gas side);
however, the value of c which signifies the onset of these regions decreases with increasing Le.

Figure 5 shows the mean variation of normalized R and its components (RS, PQW and
−ωiSijωj/4) conditional upon c for cases A–E. In all cases the mean value of R remains close to zero
across the entire flame, indicating that the terms are well balanced across the entire flame. More
specifically, in all cases RS remains positive and is balanced by the negative contributions which
arise due to both PQW and −ωiSijωj/4 (this follows from the fact that P and QW are predominantly
negative and positive, respectively, within the flame front and the vortex-stretching term ωiSijωj
in the mean sense generates enstrophy (i.e. remains positive)). However, the relative importance
of the contributions arising due to PQW and − ωiSijωj/4 changes with increasing Lewis number,
such that for low Lewis number flames (e.g. Le = 0.34 ) the magnitudes of the mean contributions
due to RS and PQW remain much greater than the magnitude of the mean values of − ωiSijωj/4,
whereas for high Lewis number flames (e.g. Le ≈ 1.0 ) these contributions are of approximately
equal importance. Furthermore, the size of the dominating constituent terms decreases by one
order of magnitude from case A to case B and by a further order of magnitude from case B to cases
C–E. The greater (negative) magnitudes of RS and PQW observed in cases A and B arise from the
augmented dilatation rate experienced by these flames, as can be seen in figure 3, especially near
c ≈ 0.75.

Figure 6 shows the joint PDF of the normalized second and third invariants, PDF(Q*, R*),
for cases A–E on the isosurfaces c = 0.1, 0.3, 0.5, 0.7, 0.9 in order to illustrate the nature of the
distribution of samples in the Q−R plane and to analyse the correlation between Q* and R*.1

The joint PDF exhibits a negative correlation between Q* and R* [26,27] in all cases and on
all c-isosurfaces which are considered in this analysis: R* increases as Q* decreases. However,
while, in general, all c-isosurfaces and all cases exhibit negative correlations, the strength of the
negative correlation is noticeably less in case A than in cases B–E (i.e. the downwards slope of
the distribution is greater for cases B–E than for case A). Note that the ratio of the ranges of the
abscissa and ordinate are the same for all cases and thus the slopes may be compared. In addition,
the distribution of the data is wider (i.e. the data are more spread out) in case A than in cases B–E.
It is also worth noting that, although Q* and R* are negatively correlated, most non-negligible
values lie in the top left quadrant of the joint PDF or close to the origin (i.e. Q* = 0 and R* = 0). In
other words, although a decrease in Q* is associated with a shift from the combined dilatation-
and vorticity-dominated regions to strain-dominated regions and an increase in R* is associated
with a shift towards increased dominance of RS over (PQW − ωiSijωj/4), nevertheless the joint
PDF remains negligible throughout most of the Q* < 0 and R* > 0 quadrant. According to the
previous analyses [21,25,36] the observed features of the joint PDF suggest that the S2 and S4
topologies are expected to play significant roles in all cases considered here.

The variation of the population of each individual local flow topology, S1–S8, across the flame
and how these variations vary from case to case is considered in figure 7. Following the approach
adopted by Cifuentes et al. [41,42], figure 7a–e shows the behaviour of the volume fraction (VF) of
each topology as a function of c. It can be seen from figure 7 that the behaviour of the distributions
of the local flow topologies is very much dependent on the Lewis number. Topologies S1–S4 are
present for all values of P (figure 1) and, consequently, exhibit non-negligible values across the
entire flame brush. However, each topology responds differently to the effect of the changing
Lewis number. In case A, topologies S1 and S4 exhibit local maxima at both low and high value
of c (i.e. c ≈ 0.0 and c ≈ 1.0) with the VF of S1 assuming higher values than that of S4 for all values

1The actual values of the joint PDF are not important for the subfigures in figure 6 because the purpose of these plots is to
illustrate the relative population of samples in Q − R space and the correlation between Q and R.
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of c. As Le increases (i.e. from case B to case E) little effect can be seen at lower values of c, but
at higher values of c the profiles of S1 and S4 collapse onto one curve and the local maximum at
c ≈ 1.0 decreases in value in both cases. By contrast, topology S2 for case A exhibits local minima
at both low and high values of c and as Le increases the local minimum at c ≈ 1.0 increases in
value, developing into the maximum. Finally, topology S3, which assumes the smallest values of
VF of S1–S4 across the flame brush, appears to be largely unaffected by the changing value of
the Lewis number. Topologies S5 and S6 are associated with negative values of the dilatation rate
(∇ · u = −P < 0, figure 1) and are largely absent in combustion (figure 3). Hence, the likelihood of
finding either of these topologies remains negligible (but non-zero) across the entire flame brush
for all values of Lewis number. Conversely, topologies S7 and S8 are associated with positive
values of the dilatation rate (∇ · u = −P > 0, figure 1) and, as has been seen clearly in figure 3, they
assume non-negligible values for intermediate values of c. The magnitude and profile of the VFs
for topology S7 show little variation with Lewis number, although the location of the maximum
value shifts from high c for low Lewis number (case A, c ≈ 0.85 ) to low c for high Lewis number
(case E, c ≈ 0.35). In other words, the likelihood of the occurrence of S7 remains approximately
constant despite changes in the value of Le, notwithstanding the noticeable increase in the
magnitude of the dilatation rate with increasing Le observed in figure 3. Finally, in all cases the
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profile of topology S8 exhibits a maximum value at some intermediate c-value. In case A, the
profile of the VF is somewhat flatter and of lesser magnitude than in the other cases.

Figure 7f shows the variation with c for all cases A–E of the VFs of the total combined focal
(i.e. S1, S4, S5, S7) and nodal (i.e. S2, S3, S6, S8) topologies. In all cases, focal topologies are
dominant in the unburned gas region (for c < 0.7). Within this region, for 0.1 < c < 0.5, the VFs of
focal topologies increase with increasing Lewis number with cases D and E equally dominant.
Thereafter, for c > 0.5, the order reverses such that the VFs of focal topologies decrease with
increasing Lewis number. This is due to flame-generated turbulence, which is much greater in
low Lewis number cases and leads to an increase in the number of vortical structures (related to
focal topologies) present in the flow. Consequently, for c > 0.7, in cases C–E the VFs for the focal
topologies have fallen to such an extent that the VFs for the nodal topologies become dominant,
while in cases A and B the VFs for the focal topologies continue to rise. The results obtained here
for cases C–E, where the VFs of focal topologies decrease from the unburned to the burned gas
side, are in agreement with previous simple chemistry analyses [41,42], whereas the observed
behaviour of cases A and B differs because of the effects of flame-generated vorticity due to the
strong baroclinic torque [12] in low Lewis number combustion.

The statistical dependence of the flame curvature on the local flow topologies is examined
next. Following Dopazo et al. [31], the curvature of each c-isosurface is assessed with respect
to its mean (κm = (κ1 + κ2)/2 = 1/2∇ · (−∇c/|∇c|)) and Gauss (κg = κ1κ2) curvatures, where the
principal curvatures are denoted κ1 and κ2 [31,42]. Complex, non-physical curvatures, such
as the region κg > κ2

m, are discounted. Those wrinkles which are convex to the reactants are
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Figure 8. Joint PDF of the normalized mean and Gaussian curvatures coloured by count for (left to right) cases A–E. Data for
S6 are not shown because of insufficient data. The magnitude increases with colour from white to red. Green dots indicate the
location of the maximum values.

said to exhibit positive mean curvature, while those which are concave to the reactants are
said to exhibit negative mean curvature (figure 2). Then {κm > 0, κg > 0} represents cup-convex
and {κm < 0, κg > 0} cup-concave flame topology; {κm > 0, κg < 0} represents saddle-convex and
{κm < 0, κg < 0} saddle-concave flame topology; and {κm > 0, κg = 0} represents tile-convex and
{κm < 0, κg = 0} tile-concave flame topology. Figure 8 shows the joint PDFs between κm and κg for
cases A–E conditional on each local flow topology. Topology S6, associated with positive values
of the dilatation rate, is not shown because of the lack of available data points for this topology.
An examination of figure 1a(i) reveals that the region corresponding to S5 is much larger than
that corresponding to S6. Thus, S5 is relatively more prevalent than S6. For this reason, there are
sufficient data points to demonstrate the behaviour of S5 in the κm − κg plane, but not that of S6.
The plots in figure 8 are coloured to highlight the highest concentrations of data points. The actual
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values of the joint PDF to which the colours correspond is of no interest because the population of
different topologies varies widely and the actual values would be of little use. It is the shape
of the distribution and its relative spread which hold useful information. It is evident from
figure 8 that the distributions associated with the different topologies and Lewis numbers exhibit
appreciably different behaviour. In general, case A exhibits the most symmetric distributions
for all topologies in comparison with the other cases. The symmetry of the distribution tends
to break down with increasing Lewis number. Topology S5, associated with negative dilatation
rates, exhibits strong cup-convex curvature ( κm > 0, κg > 0) at higher Lewis number (cases C–E),
whereas topologies S7 and S8, which are associated with positive dilatation rates, exhibit strong
cup-concave curvature (κm < 0, κg < 0) for the same cases. This behaviour originates from the
negative correlation between ∇ · u and κm in the cases with Le ≈ 1.0 (e.g. cases C–E) [57] due
to focusing (defocusing) of heat at negative (positive) curvature locations, which leads to high
positive values of ∇ · u at negative values of κm, whereas small positive and negative values
of ∇ · u are obtained for positive values of κm. The above effect is to some extent countered in
the Le < 1 flames because high temperature values are associated with the flame wrinkles with
κm > 0 [13,14,18], which also tends to increase the local value of ∇ · u. Thus, topologies S7 and
S8, which are associated with ∇ · u = −P > 0, are more prevalent for κm < 0 for cases C–E with
Le ≈ 1.0, but the probability of occurrence of S7 and S8 becomes more symmetric with respect to
κm for case A with Le = 0.34. The topology S5, which is obtained only for ∇ · u = −P < 0, occurs
predominantly for κm > 0 for all cases. Topologies S1–S4 exhibit more symmetric distributions,
owing to the contributions from all values of P, although S3 and S4 are somewhat skewed towards
cup-convex for high Le cases (cases C–E) because S3 and S4 can occur also for ∇ · u = −P > 0 at
the positive value of κm.

Figure 1 shows the generic flow structures which are associated with each of the local flow
topologies. Turbulent processes such as micro-mixing (characterized by the SDR, Nc = D∇c · ∇c)
and enstrophy (Ω = ω · ω/2) transport are dependent on the local flow structure and, hence, on the
local flow topology. Thus local flow topologies are of fundamental importance in understanding
these processes. Following Chakraborty [58], Chakraborty et al. [59] and Tsinober et al. [60], the
transport equations for Nc and Ω may be written as

ρ
DNc

Dt
= ∂

∂xj

(
ρD

∂Nc

∂xj

)
− 2D

Dc
Dt

∂c
∂xk

∂ρ

∂xk
− 2ρD

∂c
∂xi

∂ui

∂xj

∂c
∂xj︸ ︷︷ ︸

Λ

+ 2D
∂ω̇T

∂xk

∂c
∂xk

− 2ρD2 ∂2c
∂xk∂xi

∂2c
∂xk∂xi

+ f (D), (3.2a)

DΩ

Dt
= ωiωk

∂ui

∂xk︸ ︷︷ ︸
V

−εijkωi
1
ρ2

∂ρ

∂xj

∂τkl

∂xl

+ εijkωi

ρ

∂2τkl

∂xj∂xl
− 2

∂uk

∂xk
Ω + εijk

ωi

ρ2
∂ρ

∂xj

∂p
∂xk

. (3.2b)

In these equations f (D) represents the contribution due to diffusivity gradients. τij, ω̇T and p are
the viscous stress tensor, chemical source term and pressure, respectively. −2ρDΛ is the scalar–
turbulence interaction term and V is the vortex-stretching term [15,16,43,44,58–60]. The angles
described by ∇c and ω and the eigenvectors associated with eα , eβ and eγ , where eα , eβ and
eγ are the most extensive (positive), intermediate and the most compressive (negative) strain
rates, respectively, are written as {α, β, γ } and {α′, β ′, γ ′}, respectively. The scalar–turbulence
interaction term, Λ = (∂c/∂xi)(∂ui/∂xj)(∂c/∂xj), may then be written in terms of the angles
{α, β, γ }: Λ = (eαcos2α + eβcos2β + eγ cos2γ )∇c · ∇c = an ∇c · ∇c, where an = NiNj∂ui/∂xj is the
normal strain rate with Ni = −(∂c/∂xi)/|∇c| being the ith component of the flame normal vector
[15,16,43,44]. In other words, the behaviours of Λ and an are governed by the alignment of
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Figure 9. Variation with reaction progress variable c of the mean values of (a) Λ∗
i = Λi × δ3th/SL and (b) V

∗
i = Vi ×

(δth/SL)3 for (top tobottom) casesA–E, respectively,where{i = 0} is the total valueof the terms (black lines) and {i= 1, . . . ,
8} are the percentage-topology-weighted terms corresponding to S1–S8: focal topologies S1, S4, S5, S7 (red, blue, green,
magenta solid lines, respectively) and nodal topologies S2, S3, S6, S8 (red, blue, green, magenta dotted lines, respectively).

∇c with the local principal strain rates and the sign of Λ depends on that of an [15,16,43,44].
The vortex-stretching term, V = ωiωk∂ui/∂xk, may similarly be expressed in terms of the angles
{α′, β ′, γ ′}:V = 2(eα cos2α′ + eβ cos2β ′ + eγ cos2γ ′)Ω .

In the light of these expressions for Λ and V, it is clear that the statistical behaviours of
the scalar–turbulence interaction and the vortex-stretching terms should exhibit dependence on
the local flow topologies, which represent particular combinations of strain rate and vorticity
distributions.

Figure 9 shows the contribution of different topologies towards the mean values of Λ and V
conditional on c, where Λ = Λ0 =∑8

i=1 Λi and V = V0 =∑8
i=1 Vi are the total scalar–turbulence

interaction and vortex-stretching terms, respectively, and Λi and Vi are the contributions which
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arise due to each individual topology. It is evident (figure 9a) that in all cases the scalar–turbulence
interaction term remains positive across most of the flame brush and attains its maximum value
at c ≈ 0.7. It is, furthermore, evident from figure 9 that the lead contributor towards the behaviour
of Λ = Λ0 is Λ8 (i.e. the contribution arising from topology S8). The magnitude of the scalar–
turbulence interaction term Λ originating from topology S7 varies between 50% and 100% of
that of S8 and is the second largest contributor. Topologies S7 and S8 are associated with regions
of high dilatation rate and the overall behaviour of Λ is clearly dependent on its behaviour
in these regions. This is further emphasized by the magnitudes of the peak value of Λ, which
are greatest for cases A and B where the high burning rates are obtained due to the low Lewis
number in these cases. Even topologies S1–S4 (which are present for all values of P and not only
where the dilatation rate is positive) exhibit non-negligible contributions to the scalar–turbulence
interaction term for values of c, which typically lie within the reaction zone (i.e. medium values of
c) and in cases where the value of the Lewis number is relatively low (i.e. cases A–C). It has been
shown elsewhere [15,16,43,44,61,62] that a preferential alignment between ∇c and eα (eγ ), which
is characterized by the high probability of cos2α ≈ 1.0 (cos2γ ≈ 1.0), leads to positive (negative)
Λ. It is worth noting that ∇c preferentially aligns with eα (eγ ) when the strain rate induced by
flame normal acceleration overcomes (is overcome by) turbulence straining [15,16,43,44,61,62].
The uniformly positive values assumed by Λ0 in all cases show that the heat release is sufficiently
strong even in the highest Lewis number case considered here (Le = 1.2) to ensure alignment
between ∇c and eα . However, the increased heat release enjoyed by the lower Lewis number
cases engenders an increase in the magnitude of Λ0 and those topologies which are associated
with high dilatation rates (e.g. S7 and S8), as noted above.

Figure 9b shows the contribution of different topologies (Vi) to the mean values of the
vortex-stretching term V = V0 conditional on c. This figure reveals that the mean value of
V = V0 remains positive in all cases A–E. This feature is evident also for individual topologies,
which remain largely positive across the entire flame brush. The predominant alignment of ω

with the intermediate and most extensive principal strain rates (eβ and eα) in these cases, in
accordance with previous findings [58,60], gives rise to the positive mean value of V for all
cases considered here, although the magnitude of the value of V increases with decreasing
Lewis number because of the increased flame-generated turbulence experienced by the low Lewis
number flames.2 In case A, this phenomenon leads to the development of a maximum at c ≈ 0.7
due to flame-generated enstrophy, as opposed to the decay of enstrophy evident in the higher
Lewis number cases (cases C–E) as the flame is traversed (i.e. as c increases from 0 to 1). Case B
exhibits intermediate behaviour, in which the decay of enstrophy is arrested, but flame-generated
enstrophy is insufficient to lead to any noticeable increase in V = V0. In case E, the leading
contributor towards V = V0 is the focal topology S4 and the secondary contributor is another focal
topology S7. No other topologies make significant contributions towards V = V0. As the Lewis
number decreases (from case D to case A), these positions are reversed such that S7 becomes
the primary contributor (due to the increased flame-generated enstrophy in low Lewis number
flames) and S8 also becomes more prominent (cases A and B) until its magnitude matches that
of S7 (case A). The predominance of S4 and S7 for all values of Lewis number considered here is
due to the focal nature of these topologies, which is associated with vortex stretching (figure 1).
This natural proclivity for vortex stretching dominates in the absence of significant flame-induced
enstrophy generation and is subject to decay as Ω decreases within the flame, as has been noted
in cases C–E, such that the peak mean values of V0, V4 and V7 are all obtained close to c ≈ 0.0. In
cases A and B, the behaviour of V4 remains unaltered, but that of V7 is affected by the significant
flame-induced turbulence in the regions where heat release is strong. The behaviour of V8 arising
from nodal topology S8 is due to the same effect, such that V8 remains negligible where heat
release is negligible, but shows the same features as V7 in the regions where heat release is strong.
The overall behaviour of the vortex-stretching term V0 is thus attributable to two factors: (i) strong

2The physical reasons for increased flame-generated turbulence for low Lewis number flames have been discussed elsewhere
[12] and are not repeated here. Moreover, Lewis number dependence on the alignment of ω with the intermediate and most
extensive principal strain rates has been explained in [58].
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contributions due to focal topologies and (ii) areas of strong heat release regardless of the focal or
nodal nature of the topology.

4. Conclusion
Three-dimensional DNSs of freely propagating statistically planar premixed turbulent flames
have been analysed to investigate the effects of Lewis number on the behaviour of the three
invariants of the velocity gradient tensor (P, Q, R) and the consequent eight individual local
flow topologies (S1–S8). The range of Lewis numbers considered herein (Le = 0.34, 0.6, 0.8, 1.0
and 1.2) includes cases where mass diffusivity dominates (Le < 1.0) and where thermal diffusivity
dominates (Le > 1.0). The lowest Lewis number case (case A) exhibited strong signs of increased
burning rates and flame-generated enstrophy. These were embodied by a larger magnitude of
the dilatation rate (related to the first invariant), of the QW-component associated with vorticity-
dominated regions (related to the second invariant) and of the PQW-component associated with
both the dilatation rate and vorticity (related to the third invariant). This was also apparent from
the variation of the individual flow topologies across the flame, such that those flow topologies
associated with a positive dilatation rate (S7 and S8) were more prominent further into the flame
(i.e. at higher values of c) for low Lewis number cases (i.e. cases A and B). Although heat release
due to combustion was strong enough in all cases to ensure the preferential alignment of the
scalar gradient (∇c) with the most extensive strain rate (eα), those cases (i.e. cases A and B) and
topologies (S7 and S8) which experienced augmented heat release exhibited greatly increased
peak magnitudes of the scalar–turbulence interaction term in the region of the flame associated
with a non-negligible dilatation rate. Likewise, the behaviour of the vortex-stretching term in the
burned gas region for the low Lewis number cases (i.e. cases A and B) was shown to depend
significantly on contributions arising from the topologies associated with a positive dilatation
rate (S7 and S8) and areas of strong heat release (c ≈ 0.7). The joint PDF of the second and third
invariants showed a similar general behaviour for all Lewis numbers, although minor differences
were noted. The interaction between the flow and flame topologies has been analysed in terms
of the joint PDFs of the mean and Gaussian curvatures (i.e. κm and κg) conditional on flow
topologies. These joint PDFs exhibited greater symmetry along the κm = 0 axis for lower Lewis
number flames. The focusing (defocusing) of heat at κm < 0 (κm > 0) leads to a high positive
(low positive or negative) dilatation rate in the Le ≈ 1.0 flames, which leads to the preferential
occurrence of flow topologies specific to a positive (negative) dilatation rate at the flame locations
with κm < 0 (κm > 0). This directionality weakens for flames with Le < 1.0 because this tendency is
countered by the presence of high temperature zones at the positively curved zones, which locally
give rise to a high positive dilatation rate at κm > 0. Thus, the probability of the occurrence of
flow topologies for positive and negative mean curvatures is more symmetric for Le < 1.0 flames
than for the corresponding distributions for the Le ≈ 1.0 flames. This suggests that the dominant
flow topologies for a curved flame might be different from a planar flame and the global Lewis
number is likely to have a significant influence on this interaction of flow and flame topologies in
premixed turbulent premixed flames.

Figure 1 shows that each of these eight flow topologies is associated with a canonical
flow configuration. Thus, the distributions of the topologies and their contributions to scalar–
turbulence interaction and vortex-stretching terms in the SDR and enstrophy transport equations,
respectively, could, in principle, be used to design simplified experimental and computational
configurations based on dominant flow topology contributions for different characteristic Lewis
numbers. This will offer guidance for choosing representative simple flow geometries for the
development of turbulence and combustion models (because the SDR closure can be linked to
the mean/filtered reaction rate modelling and the mean enstrophy transport can be linked to
the dissipation rate of the kinetic energy closure) and their validation based on experiments and
also using RANS simulations and LES for turbulent premixed combustion for different values of
Le. The high-fidelity turbulence and combustion models identified based on the aforementioned
exercise are expected to give rise to the development of methodologies for accurate quantitative
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predictions of burning rate and pollutant emission in future combustion devices in the presence
of differential diffusions of heat and mass.
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Appendix A. Non-dimensional form of conservation equations
The non-dimensional mass, momentum, energy and progress variable transport equations are
given as

∂ρ+
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+ ∂(ρ+u+

i )
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i
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where the non-dimensional quantities are defined as
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, (A 5)

where E = CvT + ukuk/2 + H(1 − c) is the specific internal energy and H is the heat of reaction per
unit mass of reactants consumed. Therefore, the non-dimensional specific internal energy takes
the following form:

E+ = 1
γ

(1 + τT+) + 1
2

(γ − 1)Ma2u+
k u+

k + τ (1 − c). (A 6)

In equations (A 1)–(A 4), Re = ρrefurefLref/μref is the nominal Reynolds number, Ma = uref/aref is
the Mach number, γ = Cp/Cv is the ratio of specific heats, Pr is the Prandtl number and Sc =
Pr · Le is the Schmidt number with ρref, λref, Dref, uref, Lref, aref and μref being the reference values
of density, thermal conductivity, mass diffusivity, velocity scale, length scale, acoustic velocity
and viscosity, respectively. For this analysis, the density, thermal conductivity, mass diffusivity,
viscosity and acoustic speed of the unburned gas are taken to be ρref, λref, Dref, μref and aref,
respectively, while SL and 10δth are considered to be uref and Lref, respectively. Standard values are
assumed for Pr and γ = Cp/Cv (i.e. Pr = 0.7 and γ = 1.4). The ideal gas law P = ρRT is considered,
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which takes the following non-dimensional form:

P+ = 1
γ Ma2 ρ+(1 + τT+). (A 7)

Equations (A 1)–(A 4) are solved in conjunction with equation (A 7) in SENGA [11–17].
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