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Abstract: Compton cameras can simultaneously detect multi-isotopes; however, when simultaneous
imaging is performed, crosstalk artifacts appear on the images obtained using a low-energy window.
In conventional single-photon emission computed tomography, a dual energy window (DEW)
subtraction method is used to reduce crosstalk. This study aimed to evaluate the effectiveness of
employing the DEW technique to reduce crosstalk artifacts in Compton images obtained using
low-energy windows. To this end, in this study, we compared reconstructed images obtained using
either a photo-peak window or a scatter window by performing image subtraction based on the
differences between the two images. Simulation calculations were performed to obtain the list data for
the Compton camera using a 171 and a 511 keV point source. In the images reconstructed using these
data, crosstalk artifacts were clearly observed in the images obtained using a 171 keV photo-peak
energy window. In the images obtained using a scatter window (176–186 keV), only crosstalk artifacts
were visible. The DEW method could eliminate the influence of high-energy sources on the images
obtained with a photo-peak window, thereby improving quantitative capability. This was also
observed when the DEW method was used on experimentally obtained images.

Keywords: Compton camera; dual energy window; crosstalk reduction; simultaneous imaging;
111In; 18F

1. Introduction

The Compton camera is the most promising device for the detection of gamma rays ranging from
tens of keV to several MeV; it can identify the direction of gamma rays originating from radioisotopes
based on the kinematics of Compton scattering. An elementary Compton camera consists of two types
of position-sensitive detectors. The first detector (scatterer) detects a series of Compton scattering events;
the second detector (absorber) detects absorption phenomena (Figure 1). Both detectors record the
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positions and deposited energies of the interaction (the Compton scattering and the photo-absorption).
The scattered angle in the scatterer, θ, can be calculated from:

cos θ = 1−
mec2E1

E2(E1 + E2)
, (1)

where mec2 is the rest mass of an electron, E1 is the energy loss of the incident photon in the scatterer,
and E2 is the energy deposited in the absorber.
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Figure 1. Schematic diagram of Compton imaging.

The Compton camera was originally developed in the field of astronomy [1,2]. However, in recent
years, various types of Compton cameras have been proposed for medical use [3–5]. Compton cameras
have several advantages in nuclear medicine and are consequently expected to be utilized as a new
medical instrument for various tasks. In particular, Compton cameras can simultaneously image
multi-tracers, including single-photon emission computed tomography (SPECT) and positron-emission
tomography (PET) tracers [5–10]. Simultaneous imaging has the potential for clinical and molecular
application in many areas [11–14]. For example, hypoxia would be observed more precisely if blood
flow and hypoxia could be observed simultaneously [15]. Some reports have also indicated that
multi-tracer SPECT is helpful in the differential diagnosis of parkinsonism [16]. When simultaneous
imaging is performed, high-energy gamma rays sometimes scatter in the sample; some of them
scatter in the first detector and scatter again in the second detector. In this case, they are detected
as low-energy gamma rays. When the detected energy is accidentally in a lower energy window,
crosstalk artifacts appear in the image. When this occurs, the detected energy is mistaken as an
accumulation or overestimated [17,18]. Thus, crosstalk artifacts have to be removed for true analysis,
because quantitative evaluation is important in nuclear diagnosis. Unfortunately, however, this aspect
of crosstalk reduction in Compton imaging has never been studied.

In conventional SPECT, a dual energy window (DEW) subtraction method is used to reduce
crosstalk artifacts [19,20]. In the DEW method, data are simultaneously acquired in two energy
windows, a photo-peak window and a scatter window, to collect the crosstalk effect and remove the
artifacts from the image. In this method, it is assumed that the number of events detected in the scatter
window is correlated with the scattered component of the number of events detected in the photo-peak
window. When the DEW method is used in SPECT imaging, the scattered component in the photo-peak
window can be subtracted easily before reconstruction. The DEW method improves the image quality
and quantitative performance [21,22]. In Compton imaging, however, list data (i.e., the energy and
position data of each event) are required to reconstruct the image, and the crosstalk elements cannot be
distinguished. Thus, in this study, we compared the reconstructed images produced using a photo-peak
window and those produced using a scatter window. The two images were reconstructed separately
and image subtraction was performed by identifying the differences between the two images.
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2. Materials and Methods

2.1. Simulation Setup

To emulate our Compton camera, Monte Carlo simulation was performed using the GEANT4
toolkit. The simulation code is well-defined in previous studies [23–25]. A water phantom was created
using a cube (200 × 200 × 200 mm3) and the Compton camera was placed under it at a distance of
60 mm from the bottom of the phantom. The direction perpendicular to the detector was set as the
z-axis. Gamma rays of 171 and 511 keV—the energy of the gamma rays produced by 111In and 18F,
respectively—were isotropically emitted from the locations (30, 0, 90) and (−30, 0, 90), respectively
(Figure 2). The number of 171 keV gamma rays ranged from 1 × 108–1 × 109 and that of 511 keV
gamma rays ranged from 1 × 109–2 × 1010.
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Figure 2. Schematic diagram of the simulation setup: (a) Lateral view; (b) top view. The red circles in
(b) represent the region of interest (ROI) for quantitative analysis mentioned in Section 2.6. FOV: field
of view.

2.2. Compton Camera

Our Compton camera consisted of one layer of a silicon scatterer detector and three layers of
cadmium telluride (CdTe) absorber detectors. The active area of each detector was 32 × 32 mm2.
The thicknesses of the scatterer and absorber were 0.5 and 0.75 mm, respectively. The typical energy
resolutions (full width at half-maximum (FWHM)) of the Si and CdTe detectors were 2.3 keV at 59.5 keV
and 3.8 keV at 81.0 keV, respectively. The detectors were cooled to −20 ◦C to improve their energy
resolution. The trigger threshold energy was set to 5 keV for all detectors. Further details are provided
elsewhere [26].

2.3. Event Selection

In this study, only two-hit events in which incident photons simultaneously interacted with the
Si detector and one of the CdTe detectors were investigated. Two-hit events whose total energies
deposited in the scatterer and the absorber were 166–176 keV for the photo-peak of 171 keV (111In),
176–186 keV for the scatter window, and 506–516 keV for the photo-peak of 511 keV (18F) were
selected. The energy windows were set based on the strength of the energy resolution of the Compton
camera (the FWHM was approximately 6.8 keV for 171 keV gamma rays). The events that deposited
20–35 keV in the Si detector and also deposited the remaining energy in the top CdTe detector were
eliminated because these are the typical energies of characteristic X-rays of cadmium and tellurium in
the absorbers.
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2.4. Image Reconstruction

The images were reconstructed using the backprojection (uniformly enlarged projection [27] with
a Voigt function) method and the list-mode maximum-likelihood expectation-maximization (ML-EM)
method [28]. In the backprojection of Compton imaging, a Compton cone is reconstructed from the
vector joining two interaction points and the scattering angle (calculated from the Compton kinematics
of Equation (1)). The pixel value λj at the jth pixel can then be expressed as follows:

λ j =
∑

i

V(θi;σ,γ), (2)

where i is the event index, V(θi;σ,γ) represents the Voigt profile, σ and γ are the parameters of
ARM determined by a point source imaging examination, and θi is the minimum angular difference
between the vector from the apex of the Compton cone to the reference point and the vector on the
surface of the Compton cone of the ith event. The ML-EM algorithm is widely used for Compton
image reconstruction, and the image is updated iteratively. For the kth iteration, the following step
is calculated:

λ
(k+1)
j =

λ
(k)
j

S j

∑
i

ti j∑
m timλ

(k)
m

, (3)

where λ(k)j is the pixel value in the image of the kth iteration, Sj is the detection efficiency vector, and tij
is the transition probability of the ith event at the reference point.

The size of the field of view was 200 × 200 mm2, and the pixel size was 1 mm/px. The imaging
plane was set at a distance of 90 mm from the scatterer. The number of ML-EM iterations was set to 30,
which was decided by considering sufficient convergence and calculation time.

2.5. DEW

The data collected from the 171 and the 511 keV sources during Compton camera simulation
were merged. A photo-peak window of 166–176 keV or a scatter window of 176–186 keV was
applied to the merged data. After event selection, the images were reconstructed using either of the
aforementioned energy windows and DEW images were produced by subtracting the scatter images
from the photo-peak images via pixel-by-pixel calculation.

2.6. Quantitative Analysis

The integrated intensity in the region of interest (ROI) was calculated in the images with various
combinations of 171 and 511 keV activities. ROIs were set around the point sources (red circles in
Figure 2b); the radius was set to 15 mm. Two evaluation methods were employed. In the first method,
the number of 171 keV gamma rays was fixed at 2 × 108 and the number of 511 keV gamma rays was
varied from 1 × 109 to 2 × 1010. In the second method, the number of 171 keV gamma rays was varied
from 1 × 108 to 1 × 109 and the number of 511 keV gamma rays was fixed at 1 × 1010.

2.7. Experimental Study

To evaluate the performance of the DEW method, a 17.3 MBq 111In point source (Indium(III)
chloride, Nihon Medi-Physics) and a 1.7 MBq 22Na point source (SKR8252, Eckert & Ziegler) were
placed in a cubic water tank above the Si/CdTe semiconductor Compton camera (22Na was used
as a positron source). The diameter of each point source was approximately 2 mm. The distance
from the Compton camera to the sources was 90 mm (same location as that in the simulation study).
The Compton camera consisted of a double-sided strip Si detector and three CdTe detectors. Further
details are provided elsewhere [26]. Measurement was carried out for five hours and one hour for 111In
and 22Na, respectively. The DEW images were reconstructed in the same manner as that described in
Section 2.5.
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3. Results

Figure 3 shows the energy spectra of the 171 and 511 keV point sources obtained via simulation
calculations; 2 × 108 and 1 × 1010 gamma rays were generated, respectively. Scattered photons of
511 keV gamma rays were observed in the photo-peak window of 171 keV. Thus, a large number of
scattered events were involved in the photo-peak window of 171 keV.
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Figure 3. Energy spectra of the detected photons from the 171 keV source (red), the 511 keV source
(green), and the summation of them (black). The numbers of generated 171 and 511 keV gamma rays
were 2 × 108 and 1 × 1010, respectively.

Figure 4 shows the reconstructed images for each combination of source energy and energy
window condition using the data of Figure 3. The color scale used represents an arbitrary unit—that is,
the scale correlates with radiation activity but was not calibrated. The numbers of generated 171 and
511 keV gamma rays were 2 × 108 and 1 × 1010, respectively. Crosstalk artifacts were present in the
images obtained using the 511 keV point source data (middle and lower lines in Figure 4).

Using the images of Figure 4, DEW images were obtained (Figure 5). Compared with the control
images (the lowest row of Figure 4a,b), the crosstalk is considerably suppressed. In the DEW image of
backprojection, the FWHM is smaller. Figures 6 and 7 represent the integration of pixel values in the
ROIs. In Figure 6, the number of gamma rays of 171 keV generated was fixed and that of 511 keV was
increased from zero to 100 times that of 171 keV. By contrast, the activity of 511 keV was fixed and
that of 171 keV was varied from 0% to 10% that of 511 keV (please note that the numerator and the
denominator of the fractions are reversed). In both cases, the crosstalk artifacts were suppressed in the
DEW images.

Finally, we determined the efficacy of the DEW method by conducting an experimental study
(Figure 8). The DEW method could also successfully suppress the crosstalk and hence is effective in
experimental studies as well.
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Figure 6. Integrated intensity in the ROI: (a) Backprojection; (b) ML-EM. The number of 171 keV
gamma rays (generated in the right ROI) was fixed, and the number of 511 keV gamma rays (generated
in the left ROI) was varied from 0 to 100 times the number of 171 keV gamma rays. The x-axis represents
the ratio of number of generated 511 keV gamma rays to number of generated 171 keV gamma rays.
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4. Discussion

Multi-tracer imaging is still at an early stage of development; however, it has the potential for
clinical and molecular application in many areas [11–14]. In simultaneous imaging, crosstalk artifacts
reduce the power of the test and quantitative capability [17,18]. The DEW method is a scattering



Sensors 2020, 20, 2453 9 of 12

correction technique for SPECT and can be also applied to reduce crosstalk in simultaneous imaging [20].
If crosstalk artifacts could be suppressed, the dose of tracer would be reduced, and Compton cameras
with fewer requirements could be used.

In this study, we performed simultaneous imaging with 171 and 511 keV gamma-ray sources;
gamma rays of 171 keV are emitted from 111In, which is one of the most commonly used isotopes
for SPECT, and 511 keV is the annihilation energy of the gamma rays used for positron-emission
tomography (PET). As the backscatter energy of 511 keV gamma rays is 170 keV, crosstalk is significant
in this combination (Figure 3).

In the images obtained using a photo-peak energy window of 171 keV, presented in Figure 4, there
are recognizable crosstalk artifacts of 511 keV gamma rays. However, in the DEW images (Figure 5),
these crosstalk artifacts have disappeared. To perform quantitative analysis, we evaluated the pixel
value around the source position (Figures 6 and 7). Referring to Figure 6, the activity of the 171 keV
source was fixed, and the activity of the 511 keV source was varied from zero to 100 times that of the
171 keV source. The integrated intensity for the left ROI should be zero; however, the pixels on the left
ROI present a small intensity according to the point spread function of the 171 keV point source image.
Regardless of the case, the intensity must be constant and not be affected by the 511 keV source activity.
However, the pixel values of the control images were proportional to the activity of the 511 keV source
(solid green line in Figure 6). By means of the DEW method, the influence of the 511 keV source activity
in the left ROI is reduced (the gradient of the dashed green line is smaller than that of the solid green
line). On the other hand, the integrated intensity of the right ROI was supposed to be constant if the
511 keV had no impact. The DEW method eliminates the influence of the 511 keV source and reduces
it to a proper value. In the ML-EM images, the ratio of integrated intensity of the left ROI to that of
the right ROI is small because the point spread function (PSF) is smaller than that of backprojection.
In Figure 7, the number of generated gamma rays of 511 keV was fixed, and that of 171 keV was varied
from 0% to 10% the number of generated 511 keV gamma rays. Under this condition, crosstalk was
suppressed (green lines), and the integrated values in the right ROI (solid orange lines in Figure 6)
were proportional to the activity of the 171 keV source (the constant component was reduced to
approximately zero); this was particularly observed in the backprojection images.

In this study, the DEW method could not completely remove the crosstalk effect from the images.
This occurred because the number of detected events from the 511 keV primary photons in the
photo-peak window (166–176 keV) was larger than that in the scatter window (176–186 keV). From the
detected spectrum of the 511 keV source, the ratio of the number of events in the photo-peak window to
that of the scatter window was 106%. In the DEW method for SPECT imaging, the crosstalk component
in the photo-peak window is assumed from the scatter window component and corrected by a factor
k [29]; a k value of 106% would reduce crosstalk artifacts effectively. The appropriate value of k depends
on the source distribution, shape of the subject, and the primary source energy [30,31]. Thus, k should
be estimated from the gradient of the spectra or simulation calculations [32–34]. An adequate k-value
estimation method should be investigated in future work. As an alternative approach, the triple energy
window (TEW) method, which employs a main photo-peak window and two sub-windows (an upper
sub-window and a lower sub-window), can be used. When the energy spectrum is uniform around
the photo-peak energy window, depending on the combination of probe radioisotopes (RIs), the TEW
method can be applied, and k-value estimation should not be required [35,36].

There are also many scattered events around 110 keV in the spectra of the 511 keV source (green
line in Figure 3). Thus, crosstalk artifacts would appear not only for the combination of 18F and 111In,
but also for that of 18F and 99mTc (141 keV). The number of scattered gamma rays increases with the
depth of the accumulation position. In this study, the water depth of the point source was 30 mm. If the
depth is increased, the number of scattered events may increase, the photo-peak signal may decrease in
the opposite direction, and crosstalk artifacts could present a significantly greater impact on the image.

In our previous study, the crosstalk effect on the Compton camera was smaller than that on
conventional SPECT images [6]. It is assumed that one of the reasons for this phenomenon is that the
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energy resolution of the Compton camera is superior to that of the conventional detector (scintillation
camera). Thus, crosstalk is expected to be significant on images taken by a Compton camera with
low-energy resolution.

The crosstalk artifacts appeared blurred around the 511 keV point source (Figure 4). In the
case of a source with complex distribution, crosstalk artifacts would be produced similarly. Thus,
the DEW methods would be applied to sources with complex distributions. Although it is difficult
to confirm every shape and combination of sources, naturally some distributed sources (e.g., the
Shepp–Logan phantom and the National Electrical Manufacturers Association (NEMA) phantom)
should be confirmed in future studies. The DEW method can easily calculate the difference of two
images without applying an excessive load onto a computer, although the load on the computer could
be large when a Compton image of a distributed source is reconstructed with the ML-EM method.

Compton imaging is applied to range estimation in particle therapy [37–39] and to environmental
measurements [40–42]. In these applications, the scattered noise component is larger than that in
nuclear medicine imaging, because the number of high-energy radiations significantly exceeds that
of signals radiations. The DEW method could also improve the quantitative analyses performed in
these fields.

In summary, the DEW scatter correction method could be performed via pixel-by-pixel subtraction,
can suppress crosstalk artifacts, and can improve the quantitative capability of Compton imaging.
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