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Multi-omic signatures identify pan-
cancer classes of tumors beyond 
tissue of origin
Agustín González-Reymúndez1,2 & Ana I. Vázquez1,2 ✉

Despite recent advances in treatment, cancer continues to be one of the most lethal human maladies. 
One of the challenges of cancer treatment is the diversity among similar tumors that exhibit different 
clinical outcomes. Most of this variability comes from wide-spread molecular alterations that can 
be summarized by omic integration. Here, we have identified eight novel tumor groups (C1-8) via 
omic integration, characterized by unique cancer signatures and clinical characteristics. C3 had the 
best clinical outcomes, while C2 and C5 had poorest. C1, C7, and C8 were upregulated for cellular and 
mitochondrial translation, and relatively low proliferation. C6 and C4 were also downregulated for 
cellular and mitochondrial translation, and had high proliferation rates. C4 was represented by copy 
losses on chromosome 6, and had the highest number of metastatic samples. C8 was characterized 
by copy losses on chromosome 11, having also the lowest lymphocytic infiltration rate. C6 had the 
lowest natural killer infiltration rate and was represented by copy gains of genes in chromosome 11. C7 
was represented by copy gains on chromosome 6, and had the highest upregulation in mitochondrial 
translation. We believe that, since molecularly alike tumors could respond similarly to treatment, our 
results could inform therapeutic action.

In spite of recent advances that have improved the treatment of cancer, it continues to reign as one of the most 
lethal human diseases. More than 1,700,000 new cancer cases and more than 60,000 deaths are estimated to occur 
in the year 2019, in the United States alone1. Cancer can be considered a highly heterogeneous set of diseases: 
while some tumors may have a good prognosis and are treatable, others are quite aggressive, lethal, or may not 
have a standard of care2–4. Cancer can also defy standard classification: a well classified tumor may not respond 
to standard therapy, as expected, and may behave as a different cancer type5–7. Fortunately, with the advances 
of sequencing technologies, data has become available for research as never before. The Cancer Genome Atlas 
(TCGA), for instance, offers clinical and omic (e.g. genomic, transcriptiomic, and epigenenomic data) informa-
tion from more than 10,000 tumors across 33 different cancer types8. Much of this omic data has the potential to 
enable us to classify tumors and to explain the striking variation observed in clinical phenotypes9–12.

Omic integration has been successfully applied in previous classification efforts13–16. These classifications have 
highlighted how molecular groups of tumors highly agree with human cell types. Alternatively, we hypothesize 
the existence of internal subtypes hidden by cell type and tissue characteristics influencing cell behavior. These 
subtypes could be distinguished by molecular alterations unlocking cancerous cell-transformation events. To 
test this hypothesis, we have developed a statistical framework that summarizes omic patterns in main axes of 
variation describing the molecular variability among tumors. Key features characterizing each axis (i.e. features 
contributing the most to inter-tumor variability) are retained, while irrelevant ones are filtered. Retained features 
are then used to cluster tumors by molecular similarities and find specific molecular features representing each 
group.

Here we show that, after removing all tissue-specific effects, the cancer signal immediately emerges. The new 
molecular aggrupation, emphasizing on shared tumor biology, has the potential of providing new insights of 
cancer phenotypes. We expect this novel classification to contribute to the treatment of tumors without a current 
standard of care, by for example, borrowing therapies from molecularly similar cases.
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Results
Signal coming from tissue and cell type strongly influence a naïve initial classification of tumors across cancer 
types. We performed omic integration based on penalized matrix factorization, in order to remove tissue effects, 
and seek out a re-classification of tumors based on subtler omic patterns. Our method can be illustrated in four 
steps (Fig. 1, Materials and Methods). Step 1 consists of applying sparse Singular Value Decomposition (sSVD) to 
an extended omic matrix X, obtained from concatenating a series of scaled and normalized omic blocks for the 
same subjects. Briefly, the major axes of variation across tumors (i.e. left principal components, or scores) and 
the matching features ‘activities’ (i.e. the right principal components, or loadings) of X are found. Sparsity is then 
imposed on the activity values, so features with minor influence over the variability among tumors, are removed. 
Step 2 consists of identifying what features (expression of genes, methylation intensities, copy gains/losses) influ-
ence these axes the most (i.e. features not removed by sSVD) and mapping them onto genes and functional classes 
(e.g. pathways, ontologies, targets of micro RNA). Step 3 involves the identification of local clusters of tumors, 
following Taskensen et al. (2016). Step 4 involves the characterization of clusters in terms of molecular (e.g. genes, 
pathways, complexes, etc.) and clinical (e.g. survival probability, immune infiltration, etc.) information, distin-
guishing each cluster from the rest.

Using samples from 33 different cancer types provided by The Cancer Genome Atlas (TCGA), and accompa-
nying information from whole genome profiles of gene expression (GE), DNA methylation (METH) and copy 
number variant alterations (CNV), we re-classified tumors based on molecular similarities between the three 
omics. This was done by first removing the non-cancer systematic effects of tissue via multiplication of X by a 
linear transformation (see Materials and Methods section).

Data description.  The data, including information of sample size and type of sample (i.e. from normal, met-
astatic, or primary tissue), demographics (age, sex, and ethnicity) and survival information (overall survival status 
and times), are summarized in Table 1. Omic data included information for gene expression (GE, as standardized 
log of RNAseq data for 20,319 genes), methylation (METH, as standardized M-values summarized at the level of 
28,241 CpG islands), and copy number variants (CNV, as standardized log of copy/gain intensity summarized at 
the level of 11,552 genes).

The first 50 main axes of variations of the extended omics matrix (selected by clear bend in the scree plot of 
Eigen-values – see Material and Methods) were retained  for further analysis. The projection of these 50 axes 
onto two dimensions is shown in Fig. S1. As expected, cell-of-origin effects dominated the clustering of tumors 

Figure 1.  Omic integration and features selection method. Step 1) Singular value decomposition of a 
concatenated list of omic blocks and identification of major axes of variation. Step 2) Identification of omic 
features (expression of genes, methylation intensities, copy gains/losses) influencing the axes and mapping them 
onto genes and functional classes (e.g. pathways, ontologies, targets of micro RNA). Step 3) Mapping major axes 
of variation via tSNE and cluster definition by DBSCAN. Step 4) Phenotypic characterization of each cluster of 
subjects.
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Code Cancer type n F%

Ethnicity %* TS%

AD W A Age N M Surv**

ACC Adrenocortical carcinoma 23 61 0 100 0 48 
(35–57) 0 0 6.6 (2.5–6.6)

BLCA Bladder urothelial carcinoma 271 99 13 80 7 58 
(49–66) 1 0 3.0 (1.2–3.0)

BRCA Breast invasive carcinoma 639 69 18 75 7 58 
(46–71) 7 0 10.2 (6.5–10.2)

CESC Cervical squamous cell carcinoma and 
endocervical adenocarcinoma 234 25 8 78 14 60 

(53–69) 1 1 11.2 (3.1–11.2)

CHOL Cholangiocarcinoma 12 36 0 100 0 55 
(46–67) 75 0 1.7 (0.7–5.3)

COAD Colon adenocarcinoma 264 36 12 79 9 58 
(41–66) 7 0 8.3 (3.6–8.3)

DLBC Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma 26 54 19 81 0 60 

(54–63) 0 0 17.6 (17.6–17.6)

ESCA Esophageal carcinoma 134 60 12 88 0 68 
(59–73) 2 0 2.3 (1.1–4.4)

GBM Glioblastoma multiforme 49 23 12 78 10 66 
(60–73) 0 0 0.9 (0.4–1.2)

HNSC Head and Neck squamous cell carcinoma 89 48 8 91 1 61 
(59–71) 1 0 5.9 (1.2–5.9)

KICH Kidney chromophobe 2 0 0 100 0 52 
(50–54) 0 0 —

KIRC Kidney renal clear cell carcinoma 43 51 2 91 7 67 
(62–75) 0 0 7.5 (7.5–7.5)

KIRP Kidney renal papillary cell carcinoma 37 62 20 80 0 65 
(59–72) 0 0 —

LAML Acute myeloid leukemia 28 0 0 94 6 60 
(57–67) 0 0 —

LGG Brain lower grade glioma 93 42 11 88 1 70 
(62–75) 0 0 9.5(3.1–12.2)

LIHC Liver hepatocellular carcinoma 62 25 8 92 0 69 
(61–74) 13 0 4.6 (1.6–8.6)

LUAD Lung adenocarcinoma 381 29 6 90 5 66 
(59–72) 4 0 4.2 (2.1–9.2)

LUSC Lung squamous cell carcinoma 289 28 9 89 2 57 
(46–64) 0 0 4.7 (1.8–10.5)

MESO Mesothelioma 68 0 7 93 0 60 
(53–66) 0 0 1.6 (0.9–2.4)

OV Ovarian serous cystadenocarcinoma 5 0 0 100 0 60 
(55–61) 0 0 2.9 (2.9–2.9)

PAAD Pancreatic adenocarcinoma 151 24 4 76 20 67 
(60–74) 3 0 1.6 (1.0–4.1)

PCPG Pheochromocytoma and paraganglioma 144 0 0 100 0 61 
(56–65) 0 1 —

PRAD Prostate adenocarcinoma 490 36 5 94 1 62 
(54–70) 6 0 9.6 (9.6–9.6)

READ Rectum adenocarcinoma 83 42 0 85 15 63 
(54–73) 2 0 3.9 (3.9–3.9)

SARC Sarcoma 181 41 0 100 0 58 
(46–69) 0 1 6.7 (3.1–6.7)

SKCM Skin cutaneous melanoma 378 85 15 83 2 61 
(50–70) 0 75 7.4 (2.6–20.1)

STAD Stomach adenocarcinoma 263 37 4 70 25 67 
(58–73) 0 0 4.6 (1.3–4.6)

TGCT Testicular germ cell tumors 134 0 4 92 4 31 
(26–37) 0 0 —

THCA Thyroid carcinoma 501 73 6 80 13 46 
(35–58) 8 1 —

THYM Thymoma 106 45 6 85 9 58 
(48–68) 1 0 9.6 (9.6–9.6)

UCEC Uterine corpus endometrial carcinoma 146 100 43 57 0 65 
(57–72) 14 0 9.2 (3.6–9.2)

UCS Uterine carcinosarcoma 4 100 0 75 25 63 
(54–74) 0 0 1.4 (0.3–2.2)

UVM Uveal melanoma 78 45 0 100 0 62 
(51–74) 0 0 3.8 (2.4–3.8)

Table 1.  Data description by cancer type after quality control. Tumor samples are described by cancer type 
(TCGA Codes and cancer name), in terms of relative sample size (n), percent of females (F%), ethnicities 
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at a pan-cancer level, with clusters enriched by previously reported pan-cancer clusters (e.g. collection of gastric 
cancer, gliomas, kidney and squamous tumors), types, and subtypes (e.g. Luminal and Basal breast tumors), and 
single cancer types (e.g. Thyroid carcinoma, Prostate adenocarcinoma, etc.).

Re-classification of pan-cancer tumors based on similarities between omics after removing 
tissue specific signals.  Once tissue signal was identified, it was removed from the extended omic matrix. 
Next, sparsity constraints were imposed on the omic features in order to zero-out the features with irrelevant 
contribution to axes of variation and cluster formation. The selected features (i.e. with non-zero effects) across the 
three omics corresponded with the 18th, 25th, 33th, and 38th axes (sorted from more to less variance explained) and 
mapped onto a total of 1200 genes. The cluster identification and projection onto two dimensions revealed eight 
classes (Fig. 2). As a consequence of removing the effects of tissue localization, all clusters were formed by sam-
ples coming from multiple cancer types. Some clusters differed statistically from their cancer types composition 
(Table 2). However, all cancer types overlapped with more than one cluster (Fig. 2; Table 2, bottom). Furthermore, 
this overlap was not influenced by previously reported subtypes (Fig. S2).

Clinical and demographical characterization of tumor clusters.  Clusters differed statistically in 
terms of patient age (with Cluster 3 and 8 containing samples from slightly younger patients) and sex (with 
Clusters 2 and 7 having significantly more females than Cluster 8, due to their slightly higher composition of 
gynecological cancers) (Table 2). None of the clusters were significantly associated with ethnicity (Table 2).

The most notorious distinctions between clusters were their differences in prognosis and severity traits 
(Fig. S3). Cluster 3 (the largest cluster in Fig. 2) was distinguished by better prognosis/less severity cancers 
than the remaining clusters, followed by Clusters 2, 5, 6 and 7. Clusters 4 and 8 were in general the ones with 
worst prognosis and more aggressive tumors (Table 2). Cluster 3 was also the one with fewest metastatic sam-
ples (Fig. S4), higher survival rates, highest tumor-free fraction, lowest stage, lowest intra-tumor heterogeneity 
(ITH, that estimates the fraction of subclonal and clonal genomes in each sample18), and lowest proliferation 
rates (Table 2, Fig S3). By comparison, Clusters 4 and 8 had significantly more metastatic samples than Cluster 3. 
Cluster 8 had also higher ITH rates than Cluster 3. The highest ITH rates were found in Cluster 5.

Cluster 3 had also the lowest rates of non-silent mutations, aneuploidies, and homologous recombination 
dysfunction (HRD). The remaining clusters were very similar in terms of genome instability indicators, except 
for Cluster 2. This cluster had significantly higher rates of HRD than Cluster 3, but significantly lower rates than 
every other cluster (Table 2). In terms of immune infiltration, Cluster 3 was characterized by the highest rates 
of tumor suppressive immune cells and tumor infiltrating lymphocytes (Table 2). In addition, Cluster 6 had the 
lowest infiltration of activated natural killer (ANK) cells. Cluster 8 had also the lowest lymphocytic and highest 
Th2 CD4+ infiltrations, respectively (Table 2).

Gene signatures characterizing tumor clusters.  The clusters were also characterized by distinct sets of 
omic features, significantly enriched for functions involved in cell cycle (DNA replication, DNA synthesis, and 
targets of hsa-mir-615-b, a micro RNA involved in cell proliferation) and mitochondrial translation (initiation, 
elongation, and termination) (Table 2). To study the pairwise differences across clusters, these gene sets were pro-
jected onto scores for each gene, as linear combinations between the features’ values mapping onto the gene (i.e. 
its expression, methylation, and copy number values) and their corresponding activities (i.e. the features effects 
arising from the sparsity constraints) (see Materials and Methods section). In general, Cluster 3 was characterized 
by intermediate values of these scores, while the remaining clusters were characterized by higher (i.e. gene set 
with higher expression than Cluster 3) or lower (gene sets with lower expression than in Cluster 3) gene set scores. 
Clusters 2, 4, and 6 had significantly higher scores for cell proliferation, and significantly lower for mitochondrial 
translation. Clusters 1, 7 and 8, on the other hand, had significantly lower scores of proliferation and higher for 
mitochondrial translation.

Sparse factorization of the extended omic matrix resulted in the selection of features mapping onto 1200 
genes. From this list, 441 genes were significantly different in at least one cluster. These results were obtained 
by a series of analyses of variance (ANOVAs), using the scores of each gene as response variables and clusters 
as explanatory variables. This list included 34 validated cancer genes, including oncogenes (ERC1, HSP90AB1, 
NUMA1, PPFIBP1, ZNF384, CHD4, KRAS, HIST1H3B, CCND1, CCND2, PIM1, CCND3, HMGA1, HOXC11, 
HOXC13, KDM5A, SRSF3, TFEB), tumor suppressors (FANCE, CDKN1B, ASXL1, ETNK1) and fusion-proteins 
(ERC1, HSP90AB1, NUMA1, PPFIBP1, ZNF384). Many of the genes additionally mapped onto known transcrip-
tion factors (including: KDM5A, RELA, SRF, CTBP2, FOXA2, NONOG, FOLSL1, TEAD4, and FOXM1) and some 
of their targets (Fig. S5). However, the expressions of TFs and their targets were not significantly correlated within 
or between clusters (Fig. S5), suggesting mechanisms of control of the gene expression other than TFs regulation.

We then interrogated all pair-wise comparisons between the scores of each one of the 441 significant genes 
using Tukey tests (Supplementary Table S2). We identified a subgroup of 123 significant genes that distinguished 

(percent of non-Hispanic Whites, Afro-descendants, and Asians), Age (at the moment of diagnosis, in years), 
type of sample (TS%, as percent of normal –N- and metastatic –M- samples), and survival (Surv, as expected 
time to 50% survival, in years). Age and Surv are represented by median values, with first and third quartiles 
as measurements of dispersion. Data corresponded to the alignment and intersection of all samples with 
information of gene expression (GE), methylation (METH), and copy number variants (CNV). *Only the three 
most abundant ethnicities in the data set were considered to calculate the percent. **Survival quantiles for 
cancer types with less than five death events were not calculated.
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each cluster from the rest (for example, POLH had significantly higher scores in Cluster 4 than in every other clus-
ter). The genes characterizing each individual cluster were then used to define signatures. With this criterion, only 
Clusters 1, 4, 6, 7, and 8 were characterized by distinct signatures of 57, 4, 23, 24, and 15 genes each, respectively. 
Since the gene scores are combinations of omic features, we looked at the gene expression in each signature and 
the potential role of copy numbers and methylation in regulating it (Figs. 3 and 4).

Cluster 1′s signature was composed by genes mapped on chromosome 20. A group of 56 of the 57 genes exhib-
ited significant copy loses in Cluster 1. Of this group, 50 genes (ATRN, AP5S1, TMEM230, MGME1, NDUFAF5, 
CENPB, CRLS1, CRNKL1, CSNK2A1, DDRGK1, DSTN, DTD1, ESF1, FAM110A, FASTKD5, FKBP1A, IDH3B, 
ITPA, SMIM26, MAVS, MCM8, MKKS, MRPS26, NAA20, NOP56, NRSN2, NSFL1C, PANK2, PCNA, POLR3F, 
PSMF1, PTPRA, RBBP9, RBCK1, RRBP1, SIRPA, SMOX, SNPH, SNRPB2, SNRPB, SNX5, SOX12, STK35, 
TBC1D20, TRMT6, UBOX 5, VPS16, ZCCHC3, ZNF133 and ZNF343) were also downregulated. From the group 
of genes with significant copy-losses and basal expression values (TGM6, SOX13, PROKR2, PRND, OXT, LRRN4 
and FERMT1), LRRN4 and FERMT1 were also significantly hyper- and hypo-methylated, respectively (Fig. 3).

Cluster 4′s signature was composed by four genes mapping onto chromosome 6: TDRD6, POLH, PAQR8 and 
GUCA1A. All these genes exhibited significant copy losses in Cluster 4, and all of them except GUCA1A, were 
also downregulated. Additionally, POLH was hypo-methylated, while PAQR8 was hyper-methylated (Fig. 3).

Cluster 6′s signature was composed by 23 genes mapping onto chromosome 11: ALDH3B1, ANKRD13D, 
ANO1, AQP11, ARRB1, EMSY, CCND1, CTTN, KRTAP5-10, LRP5, LRRC32, TESMIN, MYO7A, NUMA1, 
PAK1, PPFIA1, RBM4, RPS6KB2, RSF1, SHANK2, TMEM134, TPCN2 and USP35. Every one of these genes 
exhibited significant copy gains, and all of them were also significantly upregulated, except for three genes with 
basal expression in Cluster 6: MYO7A, LRRC32, and ALDH3B1. Genes USP35, SHANK2, MYO7A, LRRC32, 
CTTN, CCND1, ARRB1, and ALDH3B1 were additionally hypo-methylated, while genes RSF1 and PPFIA1 were 
hyper-methylated (Fig. 4).

Cluster 7′s signature was composed by 24 genes mapping onto chromosome 6. All of these genes (BTBD9, 
RRP36, CCND3, CNPY3, CUL7, FRS3, GUCA1A, BICRAL, KLC4, KLHDC3, LRFN2, MEA1, MED20, MRPL2, 
MRPS10, PEX6, PPP2R5D, RPL7L1, SRF, TAF8, TBCC, TOMM6, TRERF1, and UBR2) exhibited significant 
copy gains. All of them were significantly up-regulated, except by LRFN2, GUCA1A, BTBD9, that had basal 
levels in Cluster 7. Genes TRERF1, LRFN2, and FRS3 were additionally hypo-methylated, while GUCA1A was 
hyper-methylated (Fig. 4).

Cluster 8′s signature was composed by 15 genes mapping onto chromosome 11. All of these genes 
(ALDH3B1, ANO1, CCND1, CPT1A, CTTN, LRP5, MRPL21, NADSYN1, PPFIA1, RNF121, RSF1, SHANK2, 
TPCN2, UNC93B1, and USP35) exhibited significant copy losses. All of them except ANO1 (with basal levels 
in cluster 7) were significantly downregulated. Additionally, Genes USP35 and NADSYN1 were significantly 
hyper-methylated, while UNC93B1, RSF1, MRPL21 and ANO1 were hypo-methylated (Fig. 4).

Figure 2.  Pan-cancer clustering of tumor samples: tissue effects correction a selection of omic features. Tumor 
clusters were obtained by sequential application of tSNE and DBSCAN algorithm for 5,408 samples across 
33 cancer types. The contours reflect cluster membership, and the points’ colors and shapes represent similar 
anatomical site and cancer type, respectively. The two-dimensional tSNE projection was obtained from the four 
deep principal axes of the extended omic matrix projected outside the tissue specific effects, after performing 
sSVD and removing the first two axes. After re-classifying tumors, the few samples coming from Kidney 
chromophobe tumors (KICH) did not map in any of the eight clusters obtained.
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Clusters 1 2 3 4 5 6 7 8

Clinical 
information

Cancer type# bc c d ab ab ab bc a

Metastasis (%) 5c 4de 3e 17ab 5de 7 cd 12bc 21a

Survival time (years)* 2.2a 2.1a 2.8b 1.8a 1.5ab 1.8ab 2.2ab 2.0a

Stage (overall staging via TNM system17) IVab IVbc IIIc IVab IIIabc IIIab IIIabc IVab

Tumor-free fraction (%) 60a 70a 80b 60a 60a 60a 60a 60a

Intratumor heterogenity (%) 13ab 14ab 4d 10c 15a 12abc 14ab 9bc

Proliferation rate (norm. diff. between 
dividing and non-dividing cells) 0.4a 0.3a −0.4b 0.3a 0.3a 0.4a 0.4a 0.5a

Demographic information
Age (years) 61a 62a 57b 60ab 60ab 61ab 62a 57b

Sex (% of 
females) 52ab 54a 50ab 50ab 53ab 46b 58a 41b

Genome 
instability rates 
(as deviations 
from normal 
genome)

Non-silent mutation 1.8bc 2.2bc 0.7d 3.2a 2.0abc 1.7c 2.5ab 1.8bc

Aneuploidy 12a 12a 3b 10a 14a 11a 12a 10a

Homologous recombination defects 22ab 16c 8d 23ab 22abc 25a 27a 19bc

Immune 
infiltration 
(as deviations 
from leukocytes 
fraction)

Th1 CD4 + cells (x102) −5.9b −5.7b −3.1a −6.6b −8.0b −6.7b −5.6b −5.8b

Th2 CD4 + cells (x102) 2.6c 2.3c 1.6c 4.2ab 5.1abc 5.4ab 5.2ab 6.1a

Th17 CD4 + cells (x102) −8.8b −7.5b 5.4a −14.7c −5.4b −4.5b −8.5b −9.0b

Activated natural killer cells (x10−2) 2bc 0.2bc 0.3a 0.3ab 0.2bc 0.1c 0.2bc 0.2bc

Lymphocytes (x10−2) 4.7bc 5.9b 4.1a 4.4bc 4.6bc 3.1bc 4.9bc 3.0c

Tumor-infiltrating lymphocytes 1.7b 1.7b 1.9a 1.7b 1.8ab 1.6b 1.8b 1.6b

Functional 
Classes (such as 
pathways and 
ontologies) **

DNA replication&¶,(1) −0.6d 0.6a −0.1bc 0.6a 0.4ab 0.7a −0.3c −0.2bc

Mythochondrial translation&¶,(2) 0.4d −0.3b 0.0c −0.9a 0.3 cd −1.1a 1.9e 0.5d

mir-has-615b targets▯,(3) −1.1c 0.7a −0.1b 0.7a −0.2b 0.8a −1.1c −0.1b

S phase and DNA synthesis¶,(4) −1.5 f 1.0b −0.1d 0.5c 0.3c 1.3a −0.4e −0.4e

#Cluster composition in cancer types (%).

C1
COAD (14.2), LUAD (11.7), BRCA (10.7), SKCM (8.1), SARC (7.1), READ (6.4), PRAD (4.8), ESCA (4.6), CESC (4.1), LUSC 
(4.1), STAD (4.1), BLCA (3.8), PAAD (3.6), TGCT (2.5), ACC (2.3), MESO (2), LIHC (1.5), UCEC (1.5), PCPG (1), HNSC 
(0.8), KIRC (0.3), LGG (0.3), OV (0.3), and UVM (0.3).

C2
BRCA (11.1), COAD (11.1), STAD (9.6), LUSC (7.4), LUAD (7.1), SKCM (6.1), CESC (5.6), BLCA (5.4), SARC (5.4), READ 
(4), ESCA (3.1), KIRP (2.5), PAAD (2.5), PRAD (2.5), PCPG (2.2), HNSC (1.7), LIHC (1.5), UVM (1.5), MESO (1.4), UCEC 
(1.4), ACC (1.3), KIRC (1.1), GBM (1), THYM (1), LGG (0.8), THCA (0.7), TGCT (0.6), DLBC (0.1), and LAML (0.1).

C3
THCA (16.1), PRAD (13.2), BRCA (9.3), LUAD (6.3), SKCM (4.4), BLCA (4.3), LUSC (3.9), STAD (3.8), COAD (3.4), TGCT 
(3.4), UCEC (3.4), PAAD (3.3), CESC (3.2), THYM (3.2), PCPG (3.1), LGG (2.5), SARC (1.7), UVM (1.6), HNSC (1.3), LIHC 
(1.2), KIRC (1.1), MESO (1.1), ESCA (1), GBM (1), LAML (0.9), DLBC (0.7), READ (0.5), KIRP (0.4), CHOL (0.4), UCS 
(0.1), ACC (0.1), and OV (0.1).

C4
SKCM (21.7), BLCA (13), CESC (9.6), LUAD (9.6), LUSC (8.7), BRCA (7.8), ESCA (4.3), UVM (4.3), MESO (3.5), HNSC 
(2.6), SARC (2.6), GBM (1.7), LIHC (1.7), STAD (1.7), UCEC (1.7), COAD (0.9), KIRP (0.9), PRAD (0.9), READ (0.9), 
TGCT (0.9), and THYM (0.9).

C5 BLCA (18.4), LUAD (15.8), CESC (10.5), SKCM (10.5), PRAD (7.9), BRCA (5.3), ESCA (5.3), STAD (5.3), COAD (2.6), GBM 
(2.6), HNSC (2.6), LIHC (2.6), LUSC (2.6), PAAD (2.6), PCPG (2.6), and TGCT (2.6).

C6
BRCA (31.5), LUSC (9.7), ESCA (8.6), SKCM (8.6), BLCA (8.2), STAD (6.5), LUAD (5.7), PRAD (5.7), HNSC (3.9), CESC 
(2.5), SARC (2.2), PAAD (1.8), GBM (0.7), LGG (0.7), UCEC (0.7), UVM (0.7), CHOL (0.4), DLBC (0.4), MESO (0.4), PCPG 
(0.4), READ (0.4), and TGCT (0.4).

C7
SKCM (14.7), BRCA (11.5), LUSC (11), ESCA (8.4), STAD (7.3), SARC (6.8), CESC (5.8), LUAD (5.8), UVM (4.7), BLCA 
(4.2), PAAD (3.1), HNSC (2.6), COAD (2.1), PRAD (2.1), LIHC (1.6), MESO (1.6), READ (1.6), UCEC (1.6), TGCT (1), 
DLBC (0.5), GBM (0.5), LGG (0.5), OV (0.5), and THCA (0.5).

C8 SKCM (24.8), BRCA (23.9), CESC (12.8), PCPG (6.8), BLCA (5.1), SARC (5.1), LUSC (4.3), HNSC (3.4), UCEC (2.6), COAD 
(1.7), ESCA (1.7), MESO (1.7), READ (1.7), TGCT (1.7), LUAD (0.9), OV (0.9), and UVM (0.9).

Table 2.  Characterization of pan-cancer clusters of tumors after removing tissue effects. The clusters 
produced by integration of whole-genome profiles of gene expression (GE), copy number variants (CNV), 
and DNA methylation (METH) were characterized in terms of clinical, demographic, immune and molecular 
information. The table shows those variables with significant differences in at least one cluster. For each variable, 
different letters represent significant differences between clusters. *Values represent median survival times by 
cluster. Letters represent significant differences under the log-rank test to compare the entire survival curves 
of each cluster. **Databases: GO Biological process (&), miRTabrBase (▯), Reactome (¶). Functional classes 
significant at FDR adj. p-value < 0.05. Overlap between our selected group of genes and databases: (1)GINS1, 
POLD3, PRIM2, POLD4, PCNA, MCM8 and MCM3. (2)MRPS26, MRPL2, MRPL51, MRPS35, MRPL16, 
MRPS18A, MRPS10, MRPL14, MRPL48, MRPL21 and MRPL11. (3)PANK2, SF3B2, PCNA, HSP90AB1, NOP2, 
ATN1, CHD4, HOXC13, PRICKLE4, DPP3, C12ORF57, LDHB, CCND3, CCND2, STK35, RAB23, PPP6R3, 
IDH3B, RPS3, SIRPA, PSMF1, DNM1L, NKX2-5, PRNP, UVRAG, PPIL1, TPI1, DST, CSNK2A1, SMOX, YIPF3, 
DDX11, ENTPD6, MAD2L1BP, PPP2R5D, MUT, FBXL14, MRPL21, KLHL42, WNK1, RPL7L1, NCAPD2, 
FKBP4 and GAPDH. (4)GINS1, POLD3, PRIM2, POLD4, PCNA, CDKN1B, CCND1, MCM8, MCM3, PSMF1 and 
CDC25B.
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Discussion
Most pan-cancer classifications rely on molecular alterations that clearly discriminate between tissue of ori-
gin13,15,16,19,20. However, as soon as tissue effects were removed, we have found that the cancer signal immediately 
emerged. Distinct cancer classes were formed, containing tumors from different cancer types. These classes were 
also characterized by very specific functional groups of omic features. A SVD of the original matrix with inci-
dence of omics features can result on a multitude of axes of variation. Such axes have the potential of explaining 
different patterns of variability across subjects. In this study, we preceded our cluster analysis by selecting axes 
of variation (i.e. basis vectors spanning the features space of the concatenated omics) having features loadings 
different from zero (each axis of variation has an accompanying vector of loadings representing features activi-
ties). We have obtained the cluster display in Fig. 2 as a result of this selection criterion. Furthermore, most of the 
variability between clusters of tumors associates with canonical relationship between gene expression and copy 
number. According to this, the main source of co-variability among features seemed to be dominated by positive 
covariation of expression and copy number (i.e. copy losses match with lower expression levels, and vice versa, 
Supplementary Fig. S5). The expression of regulatory elements within the group of selected features (including 

Figure 3.  Gene signatures for Clusters 1 and 4 in terms of gene expression, copy number variation, and 
methylation. The genes significantly de-regulated exclusive of Clusters 1 and 4 were used to define signatures 
(y-axis). The features values (x-axis) of each gene are separated in gene expression (GE, first column of panels), 
copy number variants (CNV, second column of panels), and DNA methylation (METH, third column of 
panels), and summarized by Bonferroni confidence intervals (adjusting for all the 441 significant genes in at 
least one cluster). Dots represent the average of features values across samples.
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transcription factors and the micro RNA hsa-mir-615b) was, on the other hand, not associated with the expres-
sion of their predicted targets. These observations support the role of copy numbers as a major force affecting 
tumor progression21–23. Experimental evidence have shown large effects of methylation at characterizing both 
normal and tumor tissues24–27. Contrarily, epigenetics has an important role during tissue differentiation, as well 
as in cancer. However, our analysis might suggest a minor role in leading the cancer cluster differences. We believe 
that this minor role could be the result of an intense correction for tissue specific effects. Other possible explana-
tions include artifacts of data processing, such as summarizing methylation at the CpG island level. Although the 
map at the CGI level covered both genic and non-genic regions, and facilitated computations, this summary could 
have come at the cost of washing out CpG site specific effects on cancer. A third possibility is that the abnormal 
methylation patterns are important, but shared by two or more cancer clusters. Our features highlighted are the 
ones that differentiate clusters between them. Regardless, we still observed abnormal methylation patterns, that 
might suggest role in the expression of some genes characterizing tumor classes (e.g. expression of LRN4 and 
GUCA1A negatively correlated with promoter CpG islands average methylation).

The tumor clusters C1, C4, C6, C7, and C8 had exclusive signatures (i.e. different of every other cluster). 
Interestingly, the clusters without distinct individual signatures were the ones with more favorable outcomes (C3, 
C2, and C5). One possible explanation for this is the frequent correspondence between more dramatic molecular 
alterations and worse clinical outcomes28,29. To gain insights about possible biological interactions within each 

Figure 4.  Gene signatures for Clusters 6, 7 and 8 in terms of gene expression, copy number variation, and 
methylation. The genes significantly de-regulated exclusively in Clusters 6, 7 and 8 were used to define 
signatures (y-axis). The features values (x-axis) of each gene are separated in gene expression (GE, first column 
of panels), copy number variants (CNV, second column of panels), and DNA methylation (METH, third 
column of panels), and summarized by Bonferroni confidence intervals (adjusting for all the 441 significant 
genes in at least one cluster). Dots represent the average of features values across samples.
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signature, we used the accompanying bibliographic results provided by the STRING database30 (see Material 
and Methods section). The literature suggests a wide overlap between signatures in terms of gene functions 
(cell growth, division, small RNA metabolism, protein synthesis, maturation and transport, and mitochondrial 
dysfunction). In the case of signature C1 (most genes down-regulated), the literature suggested NOP56 (a core 
component of the small nucleolar ribonucleic protein) as a central element in the signature; interacting with 
MKKS, NAA20 and PTPRA (genes with roles on mitotic division); ESF1, SNRPB, SNRPB2, POLR3F and CRNKL1 
(involved in small RNA processing), PCNA and ITPA (involved correct DNA replication and repair), UBOX 5, 
RRBP1, RBCK1 and NRSN2 (protein synthesis, maturation and antigen presentation), RBBPP9 (resistance to 
growth inhibition of TGF); SIRPA and DSTN (cell adhesion)31–34. In the signature C1, NOP56 could be a candi-
date for future therapeutic intervention. Tumor suppressors NRSN2 and RBCK1 could also be considered.

The three downregulated genes from signature C4 were involved in small RNA maturation (TDRD6, micro 
RNA expression and maturation), cell proliferation (PAQR8, plasma membrane progesterone receptor), and DNA 
repair (POLH, DNA polymerase involved in DNA repair). From these groups, PAQR8 and TDRD6 could repre-
sent potential targets of therapy. Although neither of them has been directly related to cancer, other members of 
the PAQR family of progesterone receptors are known tumor suppressors, while TDRD6 has been reported as 
frequently down-regulated in breast cancer, suggesting its potential use as biomarker35. In the case of signature C6 
(most genes upregulated), the literature suggests CTTN as interacting with two groups of genes within the signa-
ture, either by co-expression or co-localization in amplicons. One group consisted of invasion and anti-apoptotic 
related genes (e.g. SHANK, PAK1, PPFIA1) and ion transport (ANO1 and TPCN2)36,37. The other group consisted 
of CCND1 (cell cycle check points), LRPS (protein synthesis), RSF1 (chromatin remodeling), and USP35 (protein 
turnover; through amplicon-mediated overexpression in breast and gynecological cancers)38,39. Patients with sig-
nature C6 could perhaps benefit by ANO1 inhibitory therapy37.

Signature C7 was characterized by multiple genes co-expressing with KLHDC3 (involved in homologous 
recombination): MEA1 (spermatogenesis), CNPY3 (protein folding, antigen presentation), PPP2R5D (direct cat-
alytic activity), RRP36 (small RNA synthesis), CCND3 (cyclin, cell cycle checks points), and MED20 (transcrip-
tion). KLHDC3 also belongs to the protein turnover and antigen presentation pathway, together with CUL7 and 
UBR2. The literature also suggests another group of co-expressing genes within signature C7, consisting of RPL7L 
(ribosome), MRPL2 and MRPS10 (mitochondrial ribosome). These genes have also been found to physically 
interact in cell culture40,41. Signature C8 genes remarkably overlapped with signature C6 genes, but exhibited 
opposite regulation (i.e. down- instead of up-regulated). Additionally, the literature suggests interaction between 
CCND1, NADSYN1 and MRPL20 in signature C842,43. NADSYN1 has been proposed as target of inhibitory ther-
apy in cancer44, while MRPL20 has been suggested as biomarker for gastric cancers45,46.

The molecular classification of tumors generated clusters with clear differences in prognosis and severity, with 
C3 exhibiting better outcomes than the remaining clusters. C3 also resembled a previously reported “inflamma-
tory” type, in terms of immune infiltration and cancer type composition (enriched for prostate adenocarcinoma, 
thyroid, and pancreatic carcinomas and having elevated values of markers for CD4 + Th17 and Th1 cells and low 
genomic instability)18. Although the remaining clusters were clearly distinguished in terms of altered molecular 
processes, they were highly similar in terms of clinical and demographic characteristics. C3 also differed from the 
remaining clusters by lacking large CNV. In C3 we do not observe drastic genome alterations been systematically 
linked with worse cancer outcomes, either by causing loss of tumor-suppressing activities (e.g. loss of mitotic 
check points, DNA instability sensing, pro-apoptotic activity, etc.), or gain of oncogenic function (e.g. duplication 
of mitotic factors). In either case, large CNV have been associated with worsen clinical outcomes, in contrast with 
the ones characterizing C3. This observation is somewhat supported by the fact that less aggressive cancers lying 
on C3 (e.g. high frequency of prostate and thyroid cancers), co-located with low severity cases of more aggressive 
tumor types. Another example of less aggressive tumors in C3 are Her2+ breast cancer, and proximal inflamma-
tory lung adenocarcinomas, tumors of less severe outcomes than their luminal/basal and proximal proliferative 
subtypes, respectively (Collisson et al. 2014)47. Since similar signaling deregulation can arise in different cancers 
(e.g. dysregulated PI3K/AKT/mTOR pathway in gynecologic cancer)48, further research on the link between 
shared molecular signatures within tumors in the same cluster could shade light on the development of novel 
therapies, or the repurpose and combination of existing ones. Given their small molecular weights, targeting 
oncogenes with common monoclonal antibodies and small molecule tyrosine kinase inhibitors could aid in the 
treatment of tumors with overexpressed oncogenes49. For instance, tumors with signature C6 could benefit of 
combined therapy with indirubin and Ani1, inhibitors of CCND1 and ANO150,51. On the other side of the spec-
trum, targeting tumor suppressor on signatures of downregulated genes also presents exciting opportunities. For 
instance, tumors with signature C1 could benefit of target therapy for tumor suppressors NRSN2 and RBCK1. 
Classic approaches for targeting of tumor suppressor genes include re-activation, by either re-introducing a func-
tional copy (e.g. gene therapy), or diminishing the repressive action of other players through small molecule 
inhibition52. Nevertheless, given the technical challenges of targeting loss of tumor-suppressing function, signa-
tures exhibiting up-regulation could have more pharmacological potential. Similarly, signatures could also rapidly 
address differences in tumor heterogeneity (e.g. C8 and C5 were notoriously more heterogeneous than the rest). 
Differences in immune infiltration (C6 with the lowest activated natural killers’ infiltration and C8 with the lowest 
lymphocytic one) could also imply the potential use of signatures to aid in immunotherapeutic decisions.

Given the possibility of unveiling different biological channels altered in tumors of similar clinical and molec-
ular characteristics, we believe this novel pan-cancer classification could aid in the identification of therapies for 
cancers without standard of care. Extrapolation of results herein should be exerted with the following caution. 
Although our data included information from multiple studies, sexes, ages, and ethnicity, our results could be 
strongly influenced by factors such as country of origin of each study and biased on demographic characteristics. 
Further application of our methods to tumors from different country of origin and/or participants from different 
ages would be essential for an effective generalization of our results.

https://doi.org/10.1038/s41598-020-65119-5


1 0Scientific Reports |         (2020) 10:8341  | https://doi.org/10.1038/s41598-020-65119-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Material and Methods
Pan-cancer data.  The TCGA offers a demographically diverse sample with comprehensive and modern mul-
ti-omic data. We retrieved data from 5,408 from 33 cancer types made available by the Genome Data Commons 
(GDC) repository53, via the TCG-Assembler R package54. Omic data consisted of curated level-three data of 
genome-wide gene expression (GE), DNA methylation (METH), and copy number variants (CNV) profiles by 
tumor sample. GE profiles by sample corresponded with the logarithm of RNA-Seq counts by gene (Illumina 
HiSeq RNA V2 platform). METH profiles corresponded with CpG sites B-values from the Illumina HM450 
platform, summarized at the CpG island level, using the maximum connectivity approach from the WGCNA 
R package55, and further transformed into M-values (M = β/(1-β);56). CNV profiles corresponded to gene-level 
copy number intensity derived from Affymetrix SNP Array 6.0 platform, using human genome V19 as reference. 
The quality-control filtering process included the exclusion of features with all zeros, or coefficient of variation 
less than 1%. Samples or features with a disproportion of missing data (>20%) and/or single-sample batches were 
also excluded. Within the remaining samples, missing values were imputed by k-near neighbors, with k = 3. Each 
omic block was adjusted by batch effects using ComBat57. Final sample size after retaining subjects with informa-
tion for all three omics was n = 5,408.

Demographic information included gender, self-reported race and ethnicity, and patient’s age at the moment 
diagnosis (Table 1). Clinical information consisted of overall survival time and vital status at the final follow up, 
type of sample (from primary tumor, metastases, or normal tissue), tumor free fraction. We also used previously 
information from “The Immune Landscape of Cancer”18 with significant differences between clusters addressed 
via Kruskal-Wallis tests58. These covariates included: intra-tumor heterogeneity fraction (as subclonal genome 
fraction), and rates of non-silent mutations, aneuploidy, homologous recombination defects (all three derived 
as deviations from the normal genome), proliferation (normalized difference between number of dividing and 
non-dividing cells), and information from immune infiltrations (including scores for CD4 + cells, macrophages, 
lymphocytes, and natural killers) (See supplementary material in18 for a detailed description of the scores calcula-
tion). Briefly, immune infiltration fractions in18 were derived by CIBERSORT59, assigned to different cell classes, 
and multiplied by the leukocyte fraction derived from methylation data18.

Omic integration, clustering and features selection.  Our method can be conceptually described by 
the following four steps.

(Step 1) Identification of major axes of variation and features selection.  Integrative methods should be able to 
capture combined effects across omic sites that could either span across omic layers (e.g. epigenetics, gene expres-
sion, etc.) or extend genome wide (e.g. considering concomitantly contiguous CpG sites or even separated away 
sites). Let,

= …X X X[ , , ]L1

where Xl l:{1,…,L} is a matrix representing the l-th omic, which row ith contains information representing a sample 
on one subject, and column jth represents an omic feature (e.g., a feature could be the expression of a specific gene, 
or the methylation level for a given CpG site). Each group of features coming from a different omic block is cen-
tered, standardized, and divided by pl , where pl is the number of features from the l-th omic block. This is done 
so larger groups of features do not dominate the data integration step. Next, we conduct a sparse Singular Value 
Decomposition (sSVD) of X to generate one factor that collapses the redundancies in the omics (by creating 
independent columns representing the independent signals across omic features) and one that collapses redun-
dancies across samples, grouping subjects with similar signaling. This linear factorization can be represented as 
X ZW= , where Z represents (linearly) independent axes of variability across subjects (i.e. a lower rank approxi-
mation), while W represents loadings representing the contribution of each omic feature to this variability. This 
representation is common to many unsupervised omic integration methods, but is independent of distributional 
assumptions on each element. In this formulation, Z and W can obtained by minimizing:

PX ZW W( ) (1)2
2

,− + λ α

To the left of the plus sign is the Frobenius norm (a matrix analogous of Euclidean distance) of the difference 
between X and the product of Z and W. To the right of the plus sign is a penalty on the elements of W to impose 
sparsity. The purpose of this penalty is to zero-out those features with minor contributions to the columns of Z. 
To remove the effect of tissues, or other covariates that can influence the selection of features, we pre-multiplied 
X by I – Q(Q’Q)−1Q’, where I is a diagonal matrix of ones, and Q is an indicator matrix to represent the member-
ship to a given organ or tissue.

(Step 2) Identification of omic features (expression of genes, methylation intensities, copy gains/losses) influencing the 
axes.  The linear decomposition achieved by SVD is an intuitive and straightforward way of integrating omics. 
However, the variability across omics can be governed by just a few features (i.e. highly sparse data) or by groups 
of interdependent features (i.e. very redundant data). To handle these limitations, we chose P W( ),λ α  to be the 
Elastic Net penalty60, λ α α+ −W W( (1 ) )1 2

2 , where α balances the regularization between LASSO and ridge 
regression types of regularization, and λ is associated with the degree of sparsity (i.e. how many features enter in 
the model?). Unlike LASSO, EN can select groups of correlated features, while zeroing out the irrelevant ones61. 
Equation 1 is solved by obtaining z1w1 (where z1 is the first column of Z and w1 is the first row of W) with coordi-
nate descent for given values of λ and α, following the algorithm of 62, as implemented in63, but with the following 
thresholding operator: sign(w1)| |w1 | − λα |+ / λ (1 α− ) (where | x | + represents the positive part x). Consecutive 
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layers are then obtained by subtracting the previous ones from X and repeating the same procedure, as many 
times as the number of desired axes of variation. The optimal value for λ was empirically determined, as suggested 
by62. We start by 1) calculating W over a dense grid of values for λ (lower λ yields less sparsity), 2) calculating the 
proportion of variance of X explained by ZW (PVX) for each λ, and 3) choosing the λ at which PVX has its min-
imum second derivative. Since PVX decreases monotonically with λ, this point represents a drastic drop on PVX, 
suggesting that the most relevant features accounting for the data variability are already incorporated62. The value 
α was fixed to 0.5 to have an equal contribution of LASSO and Ridge penalties. Once a subset of features was 
selected, we mapped them onto genes using annotation data of genomic position downloaded from the USCE 
web browser tool (GRCh3864). The enrichment of functional classes (ontologies, pathways, complexes, etc.) 
among these genes was tested using the Enrichr package65.

(Step 3) Mapping major axes of variation via tSNE and cluster definition by DBSCAN.  Additionally, SVD can be 
coupled with non-linear embedding methods to deal with highly heterogeneous data. Here, we applied t - 
Stochastic Neighbor Embedding (tSNE) on Z14. tSNE is a technique that efficiently takes on local neighborhoods 
present in high dimension (eventually representing clusters of data), and conserves them while projecting onto a 
lower dimensional display66. This makes tSNE a very powerful technique to reveal clusters, even in very heteroge-
neous and convoluted data settings67. The algorithm has two fundamental parameters: perplexity (which accounts 
for the effective number of local neighbors), and cost (related to the difference between the neighborhood’s dis-
tribution in the higher and lower dimensional spaces). Since low cost is an indication of displays more likely to 
reveal clusters, we selected the maps corresponding with the lowest costs among perplexities of 50 and 100, using 
100 thousand iterations to ensure convergence. We applied Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN68) to identify clusters. DBSCAN is one of the most powerful clustering techniques to delimit 
clusters of irregular shape, such as the ones tSNE produces69. Essentially, DBSCAN identifies groups of densely 
packed points, without the need of specifying the number of clusters a priori68. Neighborhoods of nearby points 
can then be tuned by evaluating different cluster partitions over a grid of possible neighborhood sizes. We tuned 
this parameter by maximizing the Silhouette score, as in Taskensen et al. 2016.

(Step 4) Molecular and clinical characterization of clusters.  The association between clusters and scores repre-
senting genes and functional classes selected, was studied to define the signatures representing each cluster. Scores 
were calculated by tacking the columns of X mapping onto a gene, or functional class, and post-multiplying it 
by the corresponding elements of W′. Due to the transformations of features values within each omic block 
(e.g. logarithm of standardized RPKM counts, Beta to M-values for CpG islands), scores can be considered to 
be approximately normal. Using the scores of each gene and functional class as response, and the clusters as 
explanatory variables, we then conducted a series of ANOVA tests to determine what genes or functional classes 
were significant in at least one cluster. All pairwise comparisons between significant genes and functional classes 
were studied via Tukey tests. Gene signatures were defined based on those genes significantly deregulated in a 
single cluster. For both types of tests, we used a Bonferroni multiple-test correction with P(type I –error) = 0.05 
/{#selected genes and functional classes}.

To discuss the possibility of physical or functional relationships between the genes in each signature, we used 
the STRING data base of protein-protein interactions30. We considered an interaction as biologically meaningful 
whenever it was backed up by empirical data, such as immune precipitation, microarrays, curated databases, 
etc. Interactions suggested by text-mining (two genes reported in the same scientific publication) were not con-
sidered, except in the cases when a publication’s results gave evidence of interaction (e.g. genes co-expressing, 
co-locating, etc.).

The association between clusters and phenotypes (e.g. clinical, demographic, and immunologic covariates) 
was evaluated via Kruskal-Wallis test58 (non-parametric analogous of ANOVA). All significant results were fur-
ther evaluated by Dunn test70 for pairwise differences (non-parametric analogous of Tukey tests). All steps of 
our method were implemented in the R programming language71, using irlba72, dbscan68, and Rtsne73 packages.

Data availability
Clinical and omic data used here can be retrieved from the International Cancer Genome Consortium repository 
(https://dcc.icgc.org/).

Received: 12 November 2019; Accepted: 7 April 2020;
Published: xx xx xxxx

References
	 1.	 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA. Cancer J. Clin. 69, 7–34 (2019).
	 2.	 Jamal-Hanjani, M., Quezada, S. A., Larkin, J. & Swanton, C. Translational Implications of Tumor Heterogeneity. Clin. Cancer Res. 

21, 1258–1266 (2015).
	 3.	 Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 

(2013).
	 4.	 Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. 

Nature 501, 338–45 (2013).
	 5.	 Langlands, F. E., Horgan, K., Dodwell, D. D. & Smith, L. Breast cancer subtypes: response to radiotherapy and potential 

radiosensitisation. Br. J. Radiol. 86, 20120601 (2013).
	 6.	 McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168, 613–628 (2017).
	 7.	 Abdullah, L. N. & Chow, E. K.-H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2, 3 (2013).
	 8.	 Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
	 9.	 Behring, M. et al. Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive 

ductal breast carcinoma. Oncotarget 9, 36836–36848 (2018).

https://doi.org/10.1038/s41598-020-65119-5
https://dcc.icgc.org/


1 2Scientific Reports |         (2020) 10:8341  | https://doi.org/10.1038/s41598-020-65119-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

	10.	 Vazquez, A. I. et al. Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with 
Use of Whole-Genome Multi-omic Profiles. Genetics genetics–115 (2016).

	11.	 Bernal Rubio, Y. L. et al. Whole-Genome Multi-omic Study of Survival in Patients with Glioblastoma Multiforme. G3 (Bethesda). 
g3.200391. 2018, https://doi.org/10.1534/g3.118.200391 (2018).

	12.	 González-Reymúndez, A., de los Campos, G., Gutiérrez, L., Lunt, S. Y. & Vazquez, A. I. Prediction of years of life after diagnosis of 
breast cancer using omics and omic-by-treatment interactions. Eur. J. Hum. Genet., https://doi.org/10.1038/ejhg.2017.12 (2017).

	13.	 Sánchez-Vega, F., Gotea, V., Margolin, G. & Elnitski, L. Pan-cancer stratification of solid human epithelial tumors and cancer cell 
lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype. Epigenetics Chromatin 8 (2015).

	14.	 Taskesen, E. et al. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular 
characteristics. Sci. Rep. 6, 24949 (2016).

	15.	 Hoadley, K. A., Yau, C., Stuart, J. M., Benz, C. C. & Correspondence, P. W. L. Cell-of-Origin Patterns Dominate the Molecular 
Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291–304 (2018).

	16.	 Hoadley, K. A. et al. Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of 
Origin. Cell 158, 929–944 (2014).

	17.	 Sobin, L. H., Gospodarowicz, M. K. (Mary K.., Wittekind, C. (Christian) & International Union against Cancer. TNM classification 
of malignant tumours. (Wiley-Blackwell, 2009).

	18.	 Thorsson, V. et al. The Immune Landscape of Cancer. Immunity 48(812–830), e14 (2018).
	19.	 Yang, X., Gao, L. & Zhang, S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. 

Brief. Bioinform. bbw063, https://doi.org/10.1093/bib/bbw063 (2016).
	20.	 Taskesen, E. et al. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular 

characteristics. Sci. Rep. 6, 24949 (2016).
	21.	 Mishra, S. & Whetstine, J. R. Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive. Mol. Cell. Biol. 36, 

1050–63 (2016).
	22.	 Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).
	23.	 Henrichsen, C. N., Chaignat, E. & Reymond, A. Copy number variants, diseases and gene expression. Hum. Mol. Genet. 18, R1–8 

(2009).
	24.	 Gao, Y., Widschwendter, M. & Teschendorff, A. E. DNA Methylation Patterns in Normal Tissue Correlate more Strongly with Breast 

Cancer Status than Copy-Number Variants. EBioMedicine 31, 243–252 (2018).
	25.	 Teschendorff, A. E. & Relton, C. L. Statistical and integrative system-level analysis of DNA methylation data. Nature Reviews Genetics 

19, 129–147 (2018).
	26.	 Maloney, R. et al. Tissue-specific DNA methylation patterns are frequent targets of epigenetic change in multiple cancer types. 

Cancer Res. 68, LB-256 (2008).
	27.	 Witte, T., Plass, C. & Gerhauser, C. Pan-cancer patterns of DNA methylation. Genome Med. 6, 66 (2014).
	28.	 Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
	29.	 Stephens, P. J. et al. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell 

144, 27–40 (2011).
	30.	 Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 

D447–D452 (2015).
	31.	 Shen, A. L. et al. Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and 

Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression. PLoS One 11, e0157577 (2016).
	32.	 Xu, M.-D. et al. Genomic characteristics of pancreatic squamous cell carcinoma, an investigation by using high throughput 

sequencing after in-solution hybrid capture. Oncotarget 8, 14620–14635 (2017).
	33.	 Pei, Y.-F. et al. Genomic variants at 20p11 associated with body fat mass in the European population. Obesity 25, 757–764 (2017).
	34.	 Ewing, R. M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007).
	35.	 Shah, M. A., Denton, E. L., Arrowsmith, C. H., Lupien, M. & Schapira, M. A global assessment of cancer genomic alterations in 

epigenetic mechanisms. Epigenetics Chromatin 7, 29 (2014).
	36.	 Wanitchakool, P. et al. Role of anoctamins in cancer and apoptosis. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130096 (2014).
	37.	 Ayoub, C. et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions 

in HNSCC cell lines. Br. J. Cancer 103, 715–726 (2010).
	38.	 Wang, X. et al. RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. BioMedicine 8, 4 (2018).
	39.	 Sircoulomb, F. et al. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer 10, 539 (2010).
	40.	 Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular 

localizations. Nat. Commun. 9, 1188 (2018).
	41.	 Li, X. et al. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol. Syst. Biol. 11, 

775–775 (2015).
	42.	 Peña-Chilet, M. et al. Genetic variants in PARP1 (rs3219090) and IRF4(rs12203592) genes associated with melanoma susceptibility 

in a Spanish population. BMC Cancer 13, 160 (2013).
	43.	 Hao, J.-J. et al. Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of 

M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors. BMC Cancer 12, 367 (2012).
	44.	 NAD Metabolic Dependency Determines Therapeutic Sensitivity in Cancer. Cancer Discov. 9, OF14 (2019).
	45.	 Kim, H.-J., Maiti, P. & Barrientos, A. Mitochondrial ribosomes in cancer. Semin. Cancer Biol. 47, 67–81 (2017).
	46.	 Sotgia, F., Lisanti, M. P., Sotgia, F. & Lisanti, M. P. Mitochondrial biomarkers predict tumor progression and poor overall survival in 

gastric cancers: Companion diagnostics for personalized medicine. Oncotarget 8, 67117–67128 (2017).
	47.	 Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network. 

Nature 511, 543–550 (2014).
	48.	 Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. 

Clin. Oncol. 30, 777–782 (2012).
	49.	 Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. 

Molecular. Oncology 6, 155–176 (2012).
	50.	 Bonelli, P., Tuccillo, F. M., Borrelli, A., Schiattarella, A. & Buonaguro, F. M. CDK/CCN and CDKI alterations for cancer prognosis 

and therapeutic predictivity. BioMed Research International 2014, (2014).
	51.	 Seo, M., Seo, M., Goldschmidt-clermont, P. J. & West, M. Of mice and men: Sparse statistical modelling in cardiovascular genomics. 

Ann. Appl. Stat.
	52.	 Guo, X., Ngo, B., Modrek, A. & Lee, W.-H. Targeting Tumor Suppressor Networks for Cancer Therapeutics. Curr. Drug Targets 15, 

2–16 (2014).
	53.	 Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 1109–1112 (2016).
	54.	 Zhu, Y., Qiu, P. & Ji, Y. TCGA-Assembler: open-source software for retrieving and processing TCGA data. Nat. Methods 11, 599–600 

(2014).
	55.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
	56.	 Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC 

Bioinformatics 11, 587 (2010).

https://doi.org/10.1038/s41598-020-65119-5
https://doi.org/10.1534/g3.118.200391
https://doi.org/10.1038/ejhg.2017.12
https://doi.org/10.1093/bib/bbw063


13Scientific Reports |         (2020) 10:8341  | https://doi.org/10.1038/s41598-020-65119-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

	57.	 Lazar, C. et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14, 469–490 
(2013).

	58.	 Kruskal, W. H. & Wallis, W. A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).
	59.	 Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling Tumor Infiltrating Immune Cells with 

CIBERSORT. Methods Mol. Biol. 1711, 243–259 (2018).
	60.	 Zou, H., Zou, H. & Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B. 301 67, 320 (2005).
	61.	 Waldmann, P., Mészáros, G., Gredler, B. & Fuerst, C. & Sölkner. J. Evaluation of the lasso and the elastic net in genome-wide 

association studies. Front. Genet. 4, 270 (2013).
	62.	 Shen, H. & Huang, J. Z. Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99, 

1015–1034 (2008).
	63.	 Baglama, J., Reichel, L. & Lewis, B. W. irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for 

Large Dense and Sparse Matrices. (2018).
	64.	 Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
	65.	 Jawaid, W. enrichr: Gene enrichment using Enrichr in enrichR: Provides an R Interface to ‘Enrichr’. (2017).
	66.	 van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
	67.	 Linderman, G. C. & Steinerberger, S. Clustering with t-SNE, provably. (2017).
	68.	 Hahsler, M. & Piekenbrock, M. dbscan: Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms. 

(2017).
	69.	 Linderman, G. C. & Steinerberger, S. Clustering with t-SNE, provably. (2017).
	70.	 Dunn, O. J. Multiple Comparisons Using Rank Sums. Technometrics 6, 241–252 (1964).
	71.	 R Core Team. R: A language and environment for statistical computing. (2017).
	72.	 Baglama, J., Reichel, L. & Lewis, B. W. irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for 

Large Dense and Sparse Matrices. (2018).
	73.	 Krijthe, J. H. Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut Implementation. (2015).

Acknowledgements
All results shown here are in whole or part based upon data generated by the TCGA Research Network: https://
www.cancer.gov/tcga.

Author contributions
Formal analysis, Data Curation, Methodology, and Conceptualization: A.G.R. and A.I.V. Writing-original draft 
preparation: A.G.R. and A.I.V. wrote the paper. Supervision: A.I.V.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-65119-5.
Correspondence and requests for materials should be addressed to A.I.V.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-65119-5
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41598-020-65119-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin

	Results

	Data description. 
	Re-classification of pan-cancer tumors based on similarities between omics after removing tissue specific signals. 
	Clinical and demographical characterization of tumor clusters. 
	Gene signatures characterizing tumor clusters. 

	Discussion

	Material and Methods

	Pan-cancer data. 
	Omic integration, clustering and features selection. 
	(Step 1) Identification of major axes of variation and features selection. 
	(Step 2) Identification of omic features (expression of genes, methylation intensities, copy gains/losses) influencing the  ...
	(Step 3) Mapping major axes of variation via tSNE and cluster definition by DBSCAN. 
	(Step 4) Molecular and clinical characterization of clusters. 


	Acknowledgements

	Figure 1 Omic integration and features selection method.
	Figure 2 Pan-cancer clustering of tumor samples: tissue effects correction a selection of omic features.
	Figure 3 Gene signatures for Clusters 1 and 4 in terms of gene expression, copy number variation, and methylation.
	Figure 4 Gene signatures for Clusters 6, 7 and 8 in terms of gene expression, copy number variation, and methylation.
	Table 1 Data description by cancer type after quality control.
	Table 2 Characterization of pan-cancer clusters of tumors after removing tissue effects.




