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Objectives:Newborn screening in the United States and Europe allows early identification
of congenital disorders but does not yet exist in most low-resource settings, especially in
sub-Saharan Africa. Newborn screening can identify multiple inherited hematological
disorders, but feasibility and effectiveness for Africa are not fully determined.

Methods: Surplus dried blood spot collected in Central Malawi through the HIV Early
Infant Diagnosis surveillance program were repurposed and tested by isoelectric focusing
for sickle cell disease and trait. Additional genetic testing identified G6PD deficiency and
alpha thalassemia.

Results: Testing of 10,529 cards revealed an overall sickle cell trait prevalence of 7.0%
(range 3.9–9.7% by district); 10 of 14 infants identified with sickle cell disease (prevalence
0.1%) were located and received care at a specialized clinic. Subsequent testing of 1,329
randomly selected cards identified alpha thalassemia trait in 45.7% of samples, and G6PD
deficiency in 20.4% of males and 3.4% of females, with 29.0% of females as heterozygous
carriers.

Conclusion: Inherited hematological disorders are common in Central Malawi; early
identification through newborn screening can improve clinical outcomes and should be
supported throughout Africa.
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INTRODUCTION

In high-income countries, newborn screening occurs for over 50
congenital health conditions, supported by government funding,
public education, and trained health care workers [1]. However,
in sub-Saharan Africa, newborn screening programs are limited
in scope and may only screen for a single disease within restricted
populations who have access to health care [2]. For conditions
such as sickle cell disease (SCD), the global disparity in newborn
screening neglects populations that are most at risk; 85% of SCD
cases occur in Africa [3] where early-life mortality estimates
range between 50 and 90%, especially in areas where there is
limited clinical awareness of signs and symptoms, and where SCD
diagnosis and treatment are scant or nonexistent [4]. In some
developed countries, newborn screening for SCD is included in
formal recommendations and national guidelines [5,6]; these
national newborn screening programs have been developed
through pilot programs which have compiled enough evidence
to show that newborn screening is necessary for better health
outcomes [7]. In Africa, standardized guidelines are not available,
but an effort has been made in recent years to report the results of
ongoing programs and to increase international collaboration
[2,8], contributing to heightened awareness of SCD screening
among decision makers in Ministries of Health.

In Malawi, the national prevalence of SCD was recently
estimated to be 0.1% and the prevalence of sickle cell trait
(SCT) to be 9.1% [9] with estimates varying by geographic
area. Children in Malawi with SCD likely constitute a large
proportion of deaths attributed to other leading causes of
mortality such as malaria, anemia, acute respiratory infection,
prematurity, bacteremia, andHIV/AIDS. The true burden of SCD
is not known due to a lack of awareness and diagnostic testing,
and small sample sizes limit the accuracy and generalizability of
current and historical estimates. Since deaths due to SCD mostly
occur in children under five years old, efforts to save lives must
include early diagnosis and treatment. Many affected children are
only diagnosed after they develop severe symptoms or may never
reach a hospital setting before death; presumably, many die
without ever having the proper diagnosis established.

In addition to SCD and SCT, α-thalassemia and glucose-6-
phosphate dehydrogenase (G6PD) deficiency are inherited blood
disorders that are common among Malawian children; a recent
country-wide survey revealed that over 40% of children under five
years have deletion of one or two α-globin genes (α-thalassemia
trait) and 20% of males have G6PD deficiency [9]. Inherited
hemoglobinopathies are associated with early death, as well as
acute and chronic health conditions and loss of productivity [10].
However, no research has assessed the practicality of prospective
newborn screening for SCD and other inherited blood disorders
in Malawi, or demonstrated the feasibility of finding affected
babies with subsequent linkage to clinical care [9,11,12].

Malawi has a well-established regionalized HIV Early Infant
Diagnosis (EID) program that conducts DNA and/or RNA PCR
analysis on dried blood spots (DBS) collected within 6 weeks of
birth from HIV-exposed infants born to HIV positive mothers
[13]. The objective of this study was to repurpose existing DBS
from EID programs to conduct the first ever regional SCD

surveillance study in Malawi, to estimate the prevalence of
SCD and SCT across the Central region. We explore
associations between SCT, SCD, and malaria, and further
identify G6PD deficiency and α-thalassemia trait among our
study population using genetic testing methods. Determining
the prevalence and distribution of inherited blood disorders
represents the first step toward designing and targeting
interventions to screen, diagnose, and manage these diseases
in at-risk populations.

METHODS

Study Design and Population
The Central region of Malawi is home to 7.5 million people,
representing 43% of the country’s total population. As part of the
Malawi EID program, HIV-exposed infants are tested for HIV at
their first postnatal visit, usually at approximately 6 weeks of age,
as part of the prevention of mother-to-child transmission
program. The current study used existing, surplus DBS that
were collected from children <24 months of age and tested for
HIV at the Kamuzu Central Hospital (KCH), Partners in Hope,
and Mzimba District Hospital Molecular Laboratories between
May 2018 and December 2018. The study was approved by the
National Health Sciences Research Committee at the Malawi
Ministry of Health, the University of North Carolina at Chapel
Hill (UNC) Institutional Review Board, and the Cincinnati
Children’s Hospital Institutional Review Board.

Most SCD testing and care in the Central region takes place at
KCH, a 1,000-bed, public tertiary care hospital operated by the
Malawi Ministry of Health that serves a population of nearly 4
million people. A SCD clinic is held at KCH one day each week
where approximately 500 children with SCD are enrolled in
treatment and follow-up [14].

Sample Collection
Clinicians, nurses, and laboratory managers from nine district
hospitals, one tertiary hospital, and one private hospital in the
Central Region were trained with instructions and educational
materials to inform EID families that their children would be
tested for SCD alongside HIV and notified and referred to clinical
services if results were SCD positive. Parents of children with SCT
were not notified, as those with a single abnormal HbS gene are
largely asymptomatic carriers and are relatively protected from
malaria infection, compared to normal children [15]. Five
laboratory technicians completed on-site training for
isoelectric focusing (IEF) operation and interpretation
throughout the course of the study, and 33 selected clinicians
and nurses from 11 health facilities in the catchment area were
trained in SCD management for positive cases.

To test for HIV in the EID program, several drops of whole
blood were collected from the infant’s heel onto Whatman 903
DBS protein saver filter paper. DBS cards were labeled with the
date of collection and a unique identifying number, and
demographic information was collected into an electronic data
system. The specimens were air dried for a minimum of 4 h at
room temperature. DBS from local health facilities were sent to

Int J Public Health | Owned by SSPH+ | Published by Frontiers June 2021 | Volume 66 | Article 6293382

Tegha et al. Newborn Screening Sickle Cell Malawi



dispatch hubs, where they were collated and forwarded to one of
the three molecular laboratories participating in the study. Once
DBS were tested for HIV, the cards were then sent to the UNC
Project laboratory and repurposed for SCD testing. Each infant
was linked to his/her accompanying DBS sample using unique
identifying numbers and the demographic data from the EID
electronic laboratory record.

Laboratory Procedures
A small (∼3 mm) punch was removed from each DBS for the
purpose of hemoglobin analysis using IEF gel analysis
(PerkinElmer, Inc.) to test for HbS and other variant
hemoglobins. Each punch was placed into a 96-well plate,
followed by elution of hemoglobin using Resolve systems Hb
Elution solution and electrophoresis using pre-cast agarose gels.
IEF equipment and supplies were provided by PerkinElmer, Inc.,
and training was conducted by experienced technicians from
Cincinnati Children’s Hospital. IEF gel bands were read and
interpreted by trained laboratory technicians and reviewed by
supervisory personnel. Children with SCD were traced by
obtaining a parent’s contact information through registers at
the testing health facilities and children were subsequently
referred for management and care at KCH. Further testing of
family members was not conducted.

After hemoglobin analysis, a subset of samples was sent to
Cincinnati Children’s Hospital for testing of G6PD deficiency and
α-thalassemia trait. The subset included all SCD cases and a
random selection of up to 50 SCT and 50 normal samples within
each stratum of sex and district. Samples were shipped on dry ice
and kept frozen at −80°C until use. Genomic DNA analysis was
performed as previously described [16,17] with accurate PCR-
based techniques used to identify the presence of one-gene or
two-gene deletional α-thalassemia (3.7 kb rightward deletion), as
well as the presence of the G6PD A− variant that is common in
African settings.

Statistical Analysis
Prevalence measures were calculated by dividing SCD, SCT,
α-thalassemia trait, and G6PD deficiency case numbers over
the total sample size within each district. Significance tests
were computed using Pearson’s chi-square tests at α � 0.05.
Historical malaria prevalence estimates, (Plasmodium falciparum
in children ages 1–10 years) were taken from modeled
population-based, community-level data collected from 1970
to 2001 at 73 survey locations across Malawi [18].

All analyses were conducted in SAS 9.4 (SAS Institute Inc.,
Cary, NC, United States), R 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria), and QGIS 3.4.0 (Open Source
Geospatial Foundation Project).

RESULTS

A total of 10,529 DBS samples were analyzed and linked to
clinical and demographic data. Samples were evenly distributed
by sex with 5,177 (49.2%) female and 5,082 (48.3%) male
participants, and 270 (2.5%) with unknown sex. Among the T
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10,529 DBS, 14 (0.1%) were classified as SCD, 741 (7.0%) as SCT,
and 9,774 (92.8%) as normal (Table 1). There were no significant
differences in the prevalence of either SCD or SCT by sex. The
vast majority (9,615/10,529, 91.3%) of samples were HIV negative
and all 14 SCD samples were HIV negative. Of the 1,329 samples
tested for α-thalassemia, 506 (38.1%) had deletion of one α-globin
gene, -α/αα, and 102 (7.7%) had deletion of two α-globin genes,
-α/-α. About one-fifth of the males (134/657, 20.4%) were G6PD
deficient, as were a smaller number (23/683, 3.4%) of females.
Almost one-third of females (198/683, 29.0%) were heterozygous
carriers of G6PD deficiency.

SCT prevalence was highest in the Northwest and lowest in
the Southern part of Central region, ranging from 3.9% in Dedza
to 9.7% in Kasungu (Figure 1). The highest SCT prevalence
districts did not correspond closely with districts reporting
the highest malaria prevalence in children, using historical
data. However, malaria data were only available within the
last few decades, limiting the extent of inference to selective
genetic pressures. Of the 14 SCD cases, 12 were from Lilongwe
(0.3% of Lilongwe samples), one was from Mchinji, and one
from Ntcheu (Table 2). The prevalence of α-thalassemia trait
(-α/-α or -α/αα) ranged from 41.2% (56/136) in Ntcheu to 51.1%
(94/184) in Salima. G6PD deficiency prevalence among males
ranged from 14.0% (15/107) in Lilongwe to 26.2% (16/61) in
Dowa. G6PD deficiency or G6PD heterozygous carrier status was
lowest in Ntchisi (13/57; 22.8%) and highest in Salima (42/
92, 45.7%).

The presence of SCT appeared to be inversely associated with
G6PD trait in males; 22.1% (97/439) of male infants without SCT
had G6PD deficiency, while 16.7% (35/209) of SCT males were
G6PD deficient, however, these estimates did not reach statistical
significance (p � 0.1) (Table 3).

Of the 14 cases of SCD, 10 babies were successfully traced and
brought for management and care at the KCH SCD Clinic. This
included verification of disease by repeat isoelectric hemoglobin
electrophoresis for SCD, initiation of folic acid supplements,
penicillin prophylaxis, pneumococcal vaccination, malaria

prophylaxis with sulfadoxine-pyrimethamine, and the
opportunity to receive disease-modifying treatment with
hydroxyurea. The four remaining cases of SCD were unable to
be traced; one relocated to Blantyre, and three could not be
reached due to a missing register log at one of the clinics that
contained the patients’ contact information.

DISCUSSION

Newborn screening for SCD and other hemoglobin disorders is
now universal in the United States, with excellent results and
outcomes [19]. Despite infrastructure limitations, small urban
newborn screening programs for SCD have proven to be feasible
in Ghana [20], Benin [21], Nigeria [22], and the Democratic
Republic of Congo [23]. Comparable to resource-rich countries,
early diagnosis followed by active management of affected
children has also shown decreased mortality in Benin and
Jamaica [24]. Pilot data from the Republic of Angola
documented a high SCD incidence, with successful location
and retrieval of affected babies allowing initiation of early life-
saving interventions including penicillin prophylaxis,
pneumococcal vaccines, insecticide-treated bed nets, and
parental education [25]. Hydroxyurea has recently been shown
to have efficacy for children with SCD living in sub-Saharan
Africa [26,27], and should also become part of the clinical
management of children identified with SCD through newborn
screening programs.

We documented the prevalence of inherited hematological
disorders in the Central region as follows: 0.1% SCD, 7.0% SCT,
45.7% α-thalassemia trait, 20.4% G6PD deficiency in males, and
29.0% G6PD female carriers. Within the region, SCT prevalence
varied by district, ranging from to 3.9–9.7%, with the highest
prevalence on the western border with Zambia and the southern
border with Mozambique. Variation within the region is similar
to that observed in Uganda, where the prevalence of SCT varied
3–5 fold across the country [28].

FIGURE 1 | Malawi Sickle Surveillance Study prevalence estimates for sickle cell trait, historical malaria, α-thalassemia trait (-α/-α or -α/αα), G6PD deficiency in
males, and G6PD deficiency/carrier status in females by district in the Central region of Malawi, 2018. Historical malaria prevalence estimates, (Plasmodium falciparum in
children ages 1–10) are taken from data from 1970 to 2001 at 73 survey locations across Malawi [18]. Stars represent the location of Early Infant Diagnosis laboratory
collaborators (Partners in Hope and Kamuzu Central Hospital in Lilongwe and Mzimba District Hospital in the North).
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TABLE 2 | Prevalence of inherited hematological disorders in theMalawi Sickle Surveillance Study, stratified by district in the Central region of Malawi, 2018. Historical malaria prevalence estimates, (Plasmodium falciparum in
children ages 1–10) are taken from data from 1970 to 2001 at 73 survey locations across Malawi [18]. Bold values are absolute number of infants and percentage in brackets.

Malaria Sickle cell α-thalassemiaa G6PD malesb G6PD femalesc

District Prevalence

1970–2001

SCD n

(%)

SCT n

(%)

Normal

n (%)

Total

n (%)

2 copies

-α/-α

n (%)

3 copies

-α/αα

n (%)

4 copies

αα/αα

n (%)

Total

n (%)

Deficient:

A n (%)

Normal:

G n (%)

Total

n (%)

Deficient:

A n (%)

Carriers:

AG n (%)

Normal:

G n (%)

Total

n (%)

1 Dedza 0.50 0 (0.0) 28 (3.9) 684 (96.1) 712 (6.8) 12 (9.6) 45 (36.0) 68 (54.4) 125 (9.4) 12 (21.4) 44 (78.6) 56 (8.5) 1 (1.4) 17 (24.6) 51 (73.9) 69 (10.1)

2 Dowa 0.87 0 (0.0) 24 (6.6) 341 (93.4) 365 (3.5) 6 (5.0) 46 (38.7) 67 (56.3) 119 (9.0) 16 (26.2) 45 (73.8) 61 (9.3) 2 (3.4) 13 (22.0) 44 (74.6) 59 (8.6)

3 Kasungu 0.53 0 (0.0) 70 (9.7) 650 (90.3) 720 (6.8) 14 (9.6) 49 (33.6) 83 (56.8) 146 (11.0) 12 (17.6) 56 (82.4) 68 (10.4) 4 (5.1) 17 (21.5) 58 (73.4) 79 (11.6)

4 Lilongwe 0.59 12 (0.3) 318 (6.7) 4,427 (93.1) 4,757 (45.2) 18 (8.6) 82 (39.2) 109 (52.2) 209 (15.7) 15 (14.0) 92 (86.0) 107 (16.3) 3 (2.9) 29 (28.2) 71 (68.9) 103 (15.1)

5 Mchinji 0.50 1 (0.1) 110 (9.6) 1,039 (90.3) 1,150 (10.9) 14 (7.6) 69 (37.5) 101 (54.9) 184 (13.8) 17 (19.5) 70 (80.5) 87 (13.2) 3 (3.1) 30 (30.6) 65 (66.3) 98 (14.3)

6 Nkhotakota 0.44 0 (0.0) 29 (7.3) 366 (92.7) 395 (3.8) 6 (5.3) 44 (38.9) 63 (55.8) 113 (8.5) 14 (24.6) 43 (75.4) 57 (8.7) 1 (1.8) 20 (35.1) 36 (63.2) 57 (8.3)

7 Ntcheu 0.43 1 (0.1) 42 (4.4) 906 (95.5) 949 (9.0) 9 (6.6) 47 (34.6) 80 (58.8) 136 (10.2) 11 (15.9) 58 (84.1) 69 (10.5) 2 (2.9) 24 (34.8) 43 (62.3) 69 (10.1)

8 Ntchisi NA 0 (0.0) 14 (8.9) 143 (91.1) 157 (1.5) 11 (9.7) 42 (37.2) 60 (53.1) 113 (8.5) 14 (25.0) 42 (75.0) 56 (8.5) 1 (1.8) 12 (21.1) 44 (77.2) 57 (8.3)

9 Salima 0.87 0 (0.0) 106 (8.0) 1,218 (92.0) 1,324 (12.6) 12 (6.5) 82 (44.6) 90 (48.9) 184 (13.8) 23 (24.0) 73 (76.0) 96 (14.6) 6 (6.5) 36 (39.1) 50 (54.3) 92 (13.5)

an tested � 1,329.
bn tested � 657.
cn tested � 683.

TABLE 3 | Sickle cell disease, sickle cell trait, α-thalassemia deficiency, and G6PD deficiency and carrier status prevalence estimates among Malawi Sickle Surveillance study participants, 2018, stratified by genotype.

α-thalassemiaa G6PD malesb G6PD femalesc

2 copies
-α/-α
n (%)

3 copies
-α/αα
n (%)

4 copies
αα/αα
n (%)

Total
n (%)

Deficient:
A n (%)

Normal:
G n (%)

Total
n (%)

Deficient:
A n (%)

Carrier:
AG n (%)

Normal:
G n (%)

Total
n (%)

Sickle cell Disease 1 (7.7) 3 (23.1) 9 (69.2) 13 (1.0) 2 (22.2) 7 (77.8) 9 (1.4) — — 4 (100.0) 4 (0.6)
Trait 32 (7.3) 167 (38.2) 238 (54.5) 437 (32.9) 35 (16.7) 174 (83.3) 209 (31.8) 9 (3.8) 68 (29.1) 157 (67.1) 234 (34.3)

Normal 69 (7.8) 336 (38.2) 474 (53.9) 879 (66.1) 97 (22.1) 342 (77.9) 439 (66.8) 14 (3.1) 130 (29.2) 301 (67.6) 445 (65.2)
α-thalassemia -α/-α — — — — 9 (19.1) 38 (80.9) 47 (7.2) 3 (5.5) 17 (30.9) 35 (63.6) 55 (8.1)

-α /αα — — — — 45 (18.6) 197 (81.4) 242 (36.8) 10 (3.8) 75 (28.4) 179 (67.8) 264 (38.7)
αα/αα — — — — 80 (22.1) 282 (77.9) 362 (55.1) 10 (2.8) 102 (28.4) 247 (68.8) 359 (52.6)

No score — — — — — 6 (100.0) 6 (0.9) — 4 (80.0) 1 (20.0) 5 (0.7)

an tested � 1,329.
bn tested � 657.
cn tested � 683.
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The prevalence of SCD among our study population, 0.1%, is
within the lower bound of prior estimates found among infants
and preschool children in Malawi, which range from 0.04 to 2.5%
[9,11,12]. Our SCT prevalence of 7.0% is slightly lower than that
the 9.1% SCT figure recently cited in a national secondary
analysis of children under the age of five in Malawi, and
prevalence of α-thalassemia and G6PD deficiency were similar
[9]. The burden of SCD inMalawi has been underappreciated as a
source of childhood morbidity and mortality, but is also lower
than estimates found in the neighboring countries of Tanzania
(0.6%) and Zambia (0.9%) [2,29]. However, prevalence measures
in Tanzania are also known to vary geographically; preliminary
data using EID samples from Northern Tanzania found a 20.8%
prevalence of SCT [30], while lower estimates of SCT down to
9.6% have been found in areas in and around Dar es Salaam [31].

α-thalassemia trait in our study cohort also varied
geographically, from 41.2% to 51.1% by district, confirming a
high allele frequency of the 3.7 kb rightward deletion in Eastern
Africa. A prior analysis of Malawian children tested in a smaller
country-wide anemia survey [9] documented a 43% prevalence of
α- thalassemia trait (33% -α/αα and 10% -α/-α), which is similar
to our findings in the Central region.We noted substantial variation
within the region with higher prevalence in the south, analogous to
observations in Uganda where the prevalence of α-thalassemia trait
increased toward the eastern part of the country [17].

Similarly, the prevalence of G6PD deficiency was high in the
Central region of Malawi, with one-fifth of males affected and
almost one-third of females (29.0% carriers, 3.4% affected). As
with the other hematological disorders, the prevalence varied
across the Central region, with district prevalence ranging from
14.0% to 26.2% among males. The prevalence of G6PD deficiency
is higher than published values for Uganda, where 14% of males
were affected overall, and an increasing prevalence toward the
southern portion of the country [17].

Decades ago, Haldane posited his malaria hypothesis that
maintaining a high frequency of genetic hematological
disorders is the advantage gained by the affected individual for
malaria survival [32]. Especially for SCT, varying geographical
differences relates to the distribution of P. falciparum malaria;
persons with SCT have been shown to be less likely to acquire
malaria infection and even less likely to die of severe malaria
[33–35]. However, the SCT prevalence within the Central region
of Malawi did not correlate with historical patterns of malaria
prevalence from 1970 to 2001 (Figure 1), perhaps because of
advances inmalaria diagnosis and treatment; strong genetic selection
pressure has likely been superseded by migration patterns and
malaria control measures over the past 20 years [36]. A smaller
national survey inMalawi showed similar results; SCT prevalence by
region did not align with malaria prevalence either by rapid
diagnostic test or by self-report of recent infection [9].

Importantly, the prevalence of these three hematological
conditions that confer protection against malaria were not well
correlated across the Central region of Malawi, and the highest
prevalence of each trait was found in different districts. This lack
of correlated prevalence reflects the tendency for individual
protective traits to negate the effects of another. Such negative
epistasis has been reported between SCT and α-thalassemia in

Kenya [37], and between SCT and G6PD deficiency in Mali [38],
with no additive protection and even loss of protection against
malaria infection. To our knowledge, this is the first report of all
three protective traits plotted with the same geographical
distribution, which supports the concept of negative epistasis
for malaria in Central Malawi.

α-HIV EID programs, which exist in all 46 PEPFAR countries,
should be considered an available and feasible mechanism for
introducing newborn screening to determine SCD prevalence,
while simultaneously acting as a physical infrastructure platform
for treatment services. SCD is a lifelong chronic condition
requiring consistent treatment with penicillin, hydroxyurea,
and intermittent acute care for severe events such as blood
transfusions, and using existing systems such as immunization
and HIV early care programs can be a sustainable and essential
way to retain young adults and children in care [2,39]. While
screening is the first step in understanding the burden of disease,
treatment is necessary to reduce morbidity and mortality from
SCD. A recent study reporting on baseline clinical and laboratory
characteristics of children confirmed with SCD at KCH in Central
Malawi found that patients had substantial morbidity, with a
large percent reporting histories of anemia (71.8%), jaundice
(52.1%), joint pain (56.4%), and pain episodes (49.6%) [40]. A
remarkable 74.4% had received at least one previous blood
transfusion, which stresses the need for improving and
standardizing approaches to transfusion therapy for children
with SCD, especially in a setting with limited blood supply.
Implementation of hydroxyurea has already been shown to be
safe and effective, with clinical benefits for high-risk children with
SCD in our setting [14]. Currently, KCH is the only clinic in the
Central region that has specific SCDmanagement, and transportation
and distance are barriers to patient referral. Education for district
clinicians on SCD treatment andmanagement are key components of
a scale-up of a national screening program, incorporating training to
identify and test anemic hospitalized children to locate those at high-
risk of underlying SCD.

A major strength of this study is the use of existing DBS and a
centralized laboratory testing system, demonstrating a
mechanism that could be scaled-up to create a national testing
program. Additionally, this is the first regional SCD surveillance
study in Malawi, collecting samples from all districts in the
Central region, and showing variation in the prevalence of
SCD, SCT, α-thalassemia trait, and G6PD deficiency over a
broad geographical area. Distribution patterns of genetic factors
of disease provide justification for improved laboratory capacity
and for the expansion of both newborn screening programs and
SCD diagnosis and treatment infrastructure. A broader scale-up of
our methods could successfully connect infants to care, potentially
leading to better health outcomes and lower mortality.

This study was limited by the small number of SCD cases.
Testing of over 10,000 samples only yielded 14 SCD cases,
however our sample size is much larger than previous
surveillance studies showing the effectiveness of newborn
screening programs elsewhere in sub-Saharan Africa [31,41].
Limitations to generalizability in a broader population could
include selection bias stemming from our sampling of HIV-
exposed infants through Malawi’s EID program. Mothers may
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bemore likely to bring infants to be tested who are sicker, whether
from HIV or SCD related symptoms. Despite this potential bias,
EID programs are a good starting point for SCD screening, given
the hypothesized increased morbidity of SCD in HIV infected
infants [17]. Children with SCD were followed up, but parents of
children with other inherited blood disorders were not contacted,
as α-thalassemia trait does not require specific medical
intervention, and primaquine, the main source of morbidity
for G6PD deficient children, is not commonly used in Malawi.

A final consideration relates to the burden of disease and the
likelihood of creating a feasible and cost-effective newborn
screening programs in sub-Saharan Africa. The Central region
of Malawi has an approximate crude birth rate of 32.5 births per
1,000 population, with an estimated 244,600 children born to
mothers in the Central region during the 12 months prior to the
2018 census [42]. Using the disease rates detected in our study, we
would expect approximately 325 children in the Central region to
be born each year with SCD and 17,214 children to be born each
year with SCT. The high prevalence of the HbS allele in sub-
Saharan Africa, where overall under-5 mortality from other
causes is improving, suggests that the relative contribution of
SCD to under-5 mortality is likely to increase significantly and
steadily over the coming years [43]. Affected babies with SCD,
who would previously have died early in life from other causes,
may now be surviving long enough to present for diagnosis and
develop serious morbidity that requires care and treatment [44].
The results from our study indicate that developing a newborn
screening program is feasible in Malawi, both to conduct disease
surveillance, and to locate children with SCD and integrate them
into care. Newborn screening is the first step to improving existing
care and treatment programs to incorporate SCD management
based on the geographic burden of disease, targeting highly affected
districts for introduction of an integrated community-based
diagnosis, care, and treatment program.
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