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Impaired biomolecules and cellular organelles are gradually built up during

the development and aging of organisms, and this deteriorating process is

expedited under stress conditions. As a major lysosome-mediated catabolic

process, autophagy has evolved to eradicate these damaged cellular

components and recycle nutrients to restore cellular homeostasis and fitness.

The autophagic activities are altered under various disease conditions such

as ischemia-reperfusion cardiac injury, sarcopenia, and genetic myopathies,

which impact multiple cellular processes related to cellular growth and

survival in cardiac and skeletal muscles. Thus, autophagy has been the focus

for therapeutic development to treat these muscle diseases. To develop

the specific and effective interventions targeting autophagy, it is essential

to understand the molecular mechanisms by which autophagy is altered in

heart and skeletal muscle disorders. Herein, we summarize how autophagy

alterations are linked to cardiac and skeletal muscle defects and how these

alterations occur. We further discuss potential pharmacological and genetic

interventions to regulate autophagy activities and their applications in cardiac

and skeletal muscle diseases.

KEYWORDS
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Introduction

Autophagy is an evolutionarily conserved, catabolic process that digests undesirable
cytoplasmic components and organelles in the lysosomes, allowing the cell to reuse the
materials and maintain cellular homeostasis. Numerous studies have demonstrated the
crucial roles of autophagy in many biological processes, such as development, aging, and
immune responses (1–5). Emerging evidence has linked aberrant autophagy execution
to many human diseases, such as cardiomyopathies and muscular dystrophies (1–5).

Based on the cargo sequestration methods, autophagy can be classified into three
primary types: microautophagy, macroautophagy, and chaperone-mediated autophagy.
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Macroautophagy (henceforth termed autophagy) is well
characterized among these types. Cells can sequester
cytosolic materials into double-membrane vesicles (known
as autophagosomes), and degrade these cargos by fusing with
lysosomes during this process (6) (Figure 1). Based on the
cargos, autophagy can be separated into bulk autophagy and
selective autophagy such as ER-phagy, aggrephagy (7), and
PINK1 (PTEN-induced kinase 1)/PRAK2 (parkin RBR E3
ubiquitin protein ligase)-mediated mitophagy (8) (Figure 2).
This review mainly focuses on bulk autophagy and mitophagy
in striated muscle diseases.

As indicated in Figure 1, autophagy is a multiphasic
process that involves the sequential and selective recruitment of
autophagy-related (ATG) proteins. The complex process
includes initiation/nucleation, phagophore formation,
autophagosome formation, autophagosome-lysosome fusion,
cargo degradation, and autophagic lysosome reformation
(ALR) or emerging autophagosomal components recycling
(ACR) (9). Different ATG proteins or complexes are involved
in these steps. As shown in Figure 3, key upstream regulators
of this process include the major inhibitor mammalian target of
rapamycin (mTOR) and the primary activator AMP-activated
kinase (AMPK). The main downstream phosphorylation
substrates of AMPK are Unc-51-like kinase (ULK1) (10) and
Forkhead box protein O (FoxO) (11, 12), in which the former
is a crucial initiator of autophagy and the latter regulates
the transcription of genes related to autophagy. Moreover,
mTOR, particularly mTOCR1, suppresses autophagy through
phosphorylating ULK1 at different sites (10) and transcription
factor EB (TFEB)/transcription factor E3 (TFE3), two key
proteins of lysosome biosynthesis (13, 14). The details of the
autophagy process have been well reviewed in other studies (4,
15).

The role of autophagy in various pathophysiological
processes has spurred great efforts toward identifying clinically
druggable autophagic targets to prevent or cure human
diseases, including cardiac and skeletal myopathies. Here, we
systematically summarize the current insights into the role of
autophagy in human diseases related to striated muscle and
therapeutic strategies in preclinical development.

Aberrant autophagy in heart
diseases

Heart disease is the leading cause of morbidity and death
worldwide (16). Adult cardiomyocytes, the essential cellular
component of cardiovascular system, are mostly long-lived
and rarely renewed, implying that these cells heavily rely on
intact autophagy to remove impaired proteins and organelles
during their long life (5). Aberrant autophagy can lead to
various heart defects.

Bulk autophagy in heart diseases

As illustrated by the genetic models of several essential
or ancillary genes related to autophagy (Table 1), autophagy
aberration predisposes the organisms to develop heart disorders
under either basal or stress conditions (1, 17). For instance, three
different cardiomyocyte-specific ATG5 conditional knockout
(KO) mouse models display left ventricular dilatation and
cardiac dysfunction without or with pressure overload (18, 19).
Vacuolar protein sorting 34 (Vps34) negatively correlates with
human hypertrophic cardiomyopathy (HCM) characterized
by thickening of the heart muscle, in consistence with
the observation that disruption of Vps34 causes cardiac
hypertrophy in mice by accumulating ubiquitinated Crystallin
Alpha B (CryAB) (20). Muscle-specific conditional KO
of ATG14 causes early death and HCM with abnormal
accumulation of autophagic cargoes in heart (21). Moreover,
other core autophagy factors such as Beclin-1 (22), mTORC1
(23–25), and PLEKHM2 (Pleckstrin Homology and RUN
Domain Containing M2) (26) are also essential for cardiac
homeostasis, and their ectopic activity can cause heart
defects.

A large body of evidence has shown that alterations in
regulatory proteins related to autophagy compromise cardiac
function by modulating the core autophagy machinery. For
example, mice with a disruption in lysosomal-associated
transmembrane protein 4B (LAPTM4B) are susceptible to
ischemia-reperfusion (I/R) injury by repressing mTORC1-
mediated TFEB transcription (27). Upregulation of
immunoproteasome catalytic subunit β5i leads to cardiac
hypertrophy and heart failure (HF) by promoting ATG5
degradation (28), while Nrf2 ablation slows the progression of
diabetic cardiomyopathy (DC) in cardiomyocyte-specific ATG5
KO mice (29). G protein-coupled receptor kinase 4 (GRK4)
aggravates cardiomyocyte injury during myocardial infarction
(MI) by inhibiting histone deacetylase 4 (HDAC4)-mediated
Beclin-1 transcription, while MI-induced cardiac dysfunction
and remodeling are improved by deleting cardiomyocyte-
specific GRK4 (30). Moreover, other regulatory factors of
autophagy, including KAT8 Regulatory NSL complex subunit
1 (KANSL1) (31), Lysosome-associated membrane protein
2 (LAMP2) (32–34), insulin-like growth factor 1 receptor
(IGF1R) (35) and HDAC (36, 37), also play imperative
roles in maintaining cardiac fitness, and their abnormality
leads to heart diseases. These findings demonstrate that
autophagy is important for cardiac function. However, in
some cases, overactivation of autophagy can compromise
cardiac fitness. For example, cardiac-specific knockout
of the genes encoding the lysosomal proteins Rag family
protein A/B (RagA/B) causes lysosomal storage disorder
characterized by increased autophagosome accumulation due
to the activation of yes-associated protein 1 (YAP1)-TFEB
transcription (38). Furthermore, cardiomyocyte-specific
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FIGURE 1

Autophagy process in mammalian cells. For autophagy initiation, environmental factors and metabolic stimuli are sensed by AMPK or mTORC1.
The autophagic cargo undergoes a serial of processes, including the phagophore and autophagosome formation, autolysosome development
before the cargo is degraded, concomitant with lysosome and autophagosome recycling. Once autophagy is induced, ULK1 is activated and
then associated with the class III PI3K complex, eliciting the production of PI3P on the phagophore membrane, which further recruits WD
repeat domain phosphoinositide-interacting protein 2 (WIPI2) and double FYVE domain-containing protein 1 (DFCP1). Next, the
ATG12-ATG5-ATG16L1 complex binding to WIPI2 is responsible for providing membranes from other organelles, including the plasma
membrane, mitochondria, recycling endosomes, and Golgi complex. Then, ATG9 drives membrane expansion by delivering phospholipids.
Moreover, the ATG12-ATG5-ATG16L1 complex promotes the conjugation of LC3, in which ATG4 cleaves LC3 to generate LC3-I, which further
covalently bonds with phosphatidylethanolamine for LC3-II formation. LC3-II is a specific marker of autophagy where autophagosome-residing
LC3-II can specifically associate with autophagy receptors with LC3-interacting motifs like p62. Finally, autophagosome-lysosome fusion is
commonly mediated by UV radiation resistance-associated gene protein (UVRAG), homotypic fusion and protein sorting (HOPS), syntaxin-17
(STX17), vesicle-associated membrane protein 7/8 (VAMP7/8), synaptosome associated protein 29 (SNAP29), PLEKHM1, and the trafficking
protein Rab-7. Concomitant with cargo removal, autophagosome effector proteins are either degraded or recycled by the Sorting Nexin 4/5/17
(SNX4/5/17) complex, and lysosomes maybe undergo the INPP5K-mediated ALR process.

transgenic thrombospondin-1 (Thbs1) mice develop lethal
cardiac atrophy due to overactivation of PERK/ATF4-mediated
autophagy (39).

MicroRNAs (miRNAs) and long non-coding RNAs
(lncRNAs) can modulate the expression of autophagy-related
proteins and pathways (40) and are potential druggable
targets for heart disease treatment (41). miR-221 induces HF
by inhibiting mTOR-mediated autophagy, while rapamycin
treatment abolishes the miR-221-induced suppression of
autophagy and cardiac remodeling (42). The defective
autophagic response and HF are caused when FoxO3 is inhibited
by cardiomyocyte-specific overexpression of miR-212/132 (43)
or mTORC1 is activated by miR-199a (44). Moreover, the
suppression of lncRNA Gm15834 mitigates autophagy-
mediated myocardial hypertrophy by downregulating ULK1 in
mice (45).

Chaperone-assisted selective
autophagy in heart diseases

The chaperone-assisted selective autophagy (CASA)
machinery consists of the chaperones heat shock protein 70
(HSC70), heat shock protein beta-8 (HSPB8), co-chaperone
Bcl2-associated athanogene 3 (BAG3), STIP1 homology and
U-Box containing protein 1 (STUB1), and autophagic receptor
sequestosome-1 (SQSTM1, also known as p62). CASA primarily
mediates the autophagic degradation of filamin C, which is
involved in actin–actin and actin–integrin interactions in
muscle tissues (46, 47). Emerging evidence has demonstrated
that BAG3 plays an essential role in maintaining cardiac
function (46, 47). Human BAG3P209L-eGFP expression in
mice causes the disintegration of Z-disc, accumulation of
protein aggregates and development of early-onset restrictive
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FIGURE 2

Selective autophagy. Selective autophagy delivers specific
cargos for degradation and recycling, such as protein
aggregates, mitochondria, and endoplasmic reticulum. The
recognition of these cargoes requires selective autophagy
receptors specifically binding LC3-II of autophagosomes and
are thereby removed by lysosomes. CASA is a selective
tension-induced autophagy pathway mediated by BAG3.
Moreover, mitophagy is divided into two branches: the classical
PINK1/PRAK2-mediated process and alternative mitophagy
mediated by Rab9. Other types of selective autophagy include
aggrephagy, ER-phagy, lipophagy et al.

FIGURE 3

The regulatory signaling pathways of autophagy. AMPK and
mTOR are the major positive and negative regulatory signaling
pathways of autophagy, respectively. Once AMPK is activated,
the downstream substrate ULK1 is phosphorylated, and FoxO
transcription factors are translocated into the nucleus to
promote the expression of autophagic genes. Conversely, mTOR
blocks autophagic initiation by negatively phosphorylating ULK1
and inhibits lysosome biosynthesis by blocking TFEB/TFE3
translocation into the nucleus.

cardiomyopathy with increased mortality, in line with the
observation in BAG3P209L patients (48, 49). Histological
and biochemical assays revealed the alterations in protein
quality control system and autophagy in heart tissues from
BAG3P209L-eGFP transgenic mice and patients (48, 49).
Similarly, compromised CASA impairs cardiomyocyte
contractility and leads to HF in BAG3 heterozygous KO
mice (50). A recent study showed that loss-of-function

of BAG5 (one of the BAG3 paralogs) also led to dilated
cardiomyopathy (DCM), which is characterized by enlargement
and dilation of the ventricles along with impaired contractility,
in mice and humans partly by disrupting the interaction with
HSC70 (51).

Mitophagy in heart diseases

Defects in mitophagy, a selective autophagy targeting
mitochondria, have been closely linked to cardiac disorders
(1). The classic PINK1/PRAK2-mediated mitophagy is essential
for cardiac mitochondrial fitness and protects the heart from
cardiomyopathy (52). Once mitochondria are damaged, PINK1
is increased and activated by autophosphorylation on the outer
mitochondrial membrane (OMM). Activated PINK1 further
phosphorylates ubiquitin, promoting the ubiquitin E3 ligase
PRAK2 recruitment to mitochondria. Meanwhile, phospho-
ubiquitin recruits and binds with autophagy receptors to
initiate autophagosome formation. Parkin functions as an
amplifier of mitophagy through further ubiquitination of
mitochondrial proteins.

Park2 global knockout mice display a decrease in survival
and develop larger infarcts than wild-type (WT) mice after
MI (53), and cardiomyocyte-specific deletion of Park2
manifests cardiac hypertrophy at birth and early lethality (54).
Systematic knockout of Pink1 leads to left ventricular defects
and age-dependent cardiac hypertrophy by compromising
mitochondrial fitness and increasing oxidative stress (55).
Additionally, heart defects are also observed in the mouse
models related to other key mitophagy factors, such as
double KO of Bcl2 interacting protein 3 (BNIP3) and Bcl2
interacting protein 3 (Nix/BNIP3L) (56), cardiomyocyte-
specific KO of mitophagy receptor Mitofusin 2 (Mfn2)
(57), and inducible double KO of cardiac Mfn1/2 (58). As
expected, the impairment in classic autophagy machinery
including ATG5 (59, 60), ATG7 (61) as well as AMPKα2 (62)
causes heart defects by altering mitophagy. In addition to
the core components, the maintenance of heart fitness also
requires the involvement of some other regulatory proteins
of PINK1/PRAK2-mediated mitophagy such as TAM41
Mitochondrial Translocator Assembly and Maintenance
Homolog (TAMM41) (63), acetyl-CoA carboxylase 2 (ACC2)
(64), tumor protein p53 (p53) (65), Ras homolog family
member A (RhoA) (66), and succinate dehydrogenase assembly
factor 4 (SDHAF4) (67).

Mitophagy also plays a crucial role in preventing diabetes-
induced cardiomyopathy (68), particularly for ULK1/Rab9
(Ras-related protein 9)-mediated mitophagy (69). As an
alternative mitophagy, energy stress activates AMPK-mediated
phosphorylation of Ulk1. Phosphorylated Ulk1 interacts with
and further phosphorylates the Golgi-derived membrane-
associated Rab9. Phosphorylated Rab9 forms a complex with
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receptor interacting protein kinase-1 (Rip1) and dynamin-
related Protein 1 (Drp1), thereby catalyzing the phosphorylation
of Drp1 by Rip1. Mitochondria with phosphorylated Drp1
are recognized and engulfed by Rab9-associated membranes,
and finally degraded by lysosomes. Recent studies showed that
Ulk1/Rab9-mediated mitophagy protected the heart against
ischemic damage (70) and obesity-associated cardiomyopathy
(71) in mice.

Targeting autophagy for the
treatment of heart diseases

The abovementioned evidence indicates that autophagy is
essential for cardiac homeostasis and function. Stimulation of
autophagy can protect against cardiac defects, as supported by
the fact that several autophagy activators manifest a potent
therapeutic potential for cardiac disorders (72) (Figure 4 and
Table 2).

The autophagy agonist spermidine, a natural polyamine
usually found in mammals, exerts cardioprotective effects
including a decrease in cardiac hypertrophy and maintenance
of diastolic function in mice and rats (73). Trehalose,
a natural non-reducing disaccharide, significantly reduces
ischemic remodeling, cardiac dysfunction, and HF in a chronic
MI mouse model by activating TFEB-mediated autophagy
(74). Anthracycline, including doxorubicin (DOX), is an
effective antitumor drug, but the dose-dependent cardiotoxicity
limits its application. Recent findings have revealed that
anthracycline-induced cardiotoxicity (AIC) was associated
with autophagy suppression (75). The Food and Drug
Administration (FDA)-approved autophagy activators such as
spironolactone, pravastatin, and minoxidil can mitigate AIC
by activating ATG7-dependent autophagy (75). Moreover, the
beneficial effects of treating autophagy-related heart diseases
are also observed with other reagents, like rapamycin for
cardiac hypertrophy (44), a rapamycin analog temsirolimus
for LMNA-related heart defects (76), an FDA-approved HDAC
inhibitor SAHA for MI (77), and a DNA demethylating agent
5-aza-2′-deoxycytidine for the heart defects related with Danon
disease (78).

Emerging studies have shown that gene therapy may offer a
promising approach for heart disease treatment. AAV9-Ghrelin
preserves cardiac function and reduces infarct size after MI, via
activating autophagy and eradicating damaged mitochondria
after MI (79). The overexpression of rAAV9-BAG3 decreases
infarct size and improves left ventricular function after I/R
injury by activating autophagy and apoptosis (80). Moreover,
similar improvements are also observed in AAV9-BAG3 for HF
(48), AAV9-BAG5 for DCM (51), AAV9-LAMP2 for Danon
disease (81), AAV9-AMPK α2 for transverse aortic constriction
(TAC)-induced chronic HF (62), a cell-permeable Tat-Beclin-1
peptide for LPS-induced heart defects (22) and I/R injury (82).

Almost all aspects of cardiac cell function are regulated
by a massive series of non-coding RNAs, including miRNAs
and lncRNAs (41). Targeting non-coding RNAs of interest
provides innovative therapeutic approaches for heart disease
treatment by delivering short, antisense oligonucleotides
(ASOs). Specific antagomirs against miR-132 safeguard against
pressure-overload-induced HF by modulating FoxO3-mediated
autophagy (43). As antimiR-132 (also known as CDR132L)
shows high therapeutic efficacy in the mouse and pig models
of HF (83, 84), this compound has recently entered the
clinical trial stage in HF patients (85). LncRNA Chast induces
cardiomyocyte hypertrophy and pathological heart remodeling
in mice, as Chast impedes cardiomyocyte autophagy by
negatively regulating the expression of the autophagy regulator
PLEKHM1. Silencing of LncRNA Chast with ASO prevents
and improves TAC-induced adverse cardiac remodeling without
early signs of toxicity (86). Moreover, silencing of LncRNA
2810403D21Rik/Mirf mitigates cardiac injury and improves
heart function in MI mice by promoting miR26a/USP15-
mediated autophagy (87).

Aberrant autophagy in skeletal
muscle diseases

Appropriate autophagy is not only essential for cardiac
muscle homeostasis and function, but also for maintaining
skeletal muscle structure and fitness under basal and stress
conditions (88, 89). Autophagy defects lead to various skeletal
muscle diseases, as shown in Table 3. Mutations in the core
genes related to the autophagy process lead to muscle diseases, as
evidenced by the fact that muscle-specific ATG7 deletion results
in severe muscle atrophy and an age-dependent decline of force
in mice (90) and muscle weakness in human patients (91).
Similarly, mice with conditional knockout of ATG5 in skeletal
muscle exhibit pronounced muscle wasting, kyphosis, and
growth retardation (92). Interestingly, muscle-specific knockout
of Vps15 causes the symptoms of autophagic vacuolar myopathy
(AVM) with remarkable glycogen accumulation (93). Moreover,
skeletal muscle defects are also caused by the mutations
of other key autophagic genes, like Pik3c3 (also known as
Vps34) (94), Atg14 (21), Ulk1, and Ulk2 (95). This notion that
autophagy is required for muscle fitness is further substantiated
by human skeletal muscle diseases with aberrant autophagy
and/or accumulation of damaged organelles, such as sarcopenia,
muscular dystrophies, and other myopathies (2, 4, 89, 96).

Autophagy in sarcopenia

Sarcopenia, which commonly occurs in elders, is a
progressive skeletal muscle disorder characterized by the
accelerated loss of muscle mass and function closely linked to

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.100006{7}
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1000067 October 7, 2022 Time: 14:11 # 6

Li et al. 10.3389/fcvm.2022.1000067

TABLE 1 Autophagy in heart diseases.

Disease Target Model Main conclusions References

Sepsis Beclin-1 WT, Becn+/− and TG mice Beclin-1 promotes autophagy, suppresses mTOR signaling, improves
cardiac function, and alleviates inflammation and fibrosis

(22)

HF AMPKα2 Ampkα2 KO mice AMPKα2-/- mice exhibits an exacerbation of early TAC-induced HF by
suppressing cardiac mitophagy

(62)

HF ATG5 Atg5 cKO mice The defect in cardiac Atg5-dependent autophagy reduces mitochondrial
number and alters subcellular Ca2+ cycling

(60)

AVSD TAMM41 Tamm41 KO zebrafish TAMM41 deficient causes heart valve abnormalities by impairing
PINK1-PARK2 dependent mitophagy

(63)

CM LAMP2 Lamp2 KO mice, patients Heart contractility is severely reduced along with accumulation of
autophagic material in striated myocytes

(32, 33)

CM LAMP2 Lamp2-KO iPSC-CMs Impaired fusion of lysosomes with autophagosomes in Lamp2-KO
iPSC-CMs

(34)

CM ATG5 Atg5-cKO mice Loss of Atg5 causes cardiac hypertrophy, left ventricular dilatation, and
contractile dysfunction

(18)

CM ATG5 Atg5-cKO mice Loss of Atg5 increases in left ventricular dimension and decrease in
fractional shortening

(19)

HF PSMB8 Psmb8 KO mice Loss of PSMB8 attenuates pressure overload–induced cardiac
hypertrophy

(28)

DC Nrf2 Nrf2 KO, Nrf2 TG, Atg5 cKO mice Loss of ATG5 causes early onset and accelerated development of
cardiomyopathy in T1D, and Nrf2 deficient can rescue these adverse
phenotypes

(29)

HF GRK4 Grk4 A486V TG mice, Grk4-cKO mice GRK4 enhances MI-induced cardiac injury by decreasing Beclin-1
expression, repressing autophagy, and enhancing apoptosis

(30)

Hypertrophy Vps34 Vps34-cKO mice Vps34-cKO mice develop cardiomyopathy by suppressing autophagy (20)

HF miR-212/132 miR-212/132 TG and KO mice Both miR-212 and miR-132 leads to hyperactivation of pro-hypertrophic
calcineurin/NFAT signaling by FoxO3 and an impaired autophagic
response

(43)

Hypertrophy miR-199a miR-199a TG mice miR-199a impairs cardiomyocyte autophagy by regulating
GSK3β/mTOR signaling

(44)

CM BAG3 hBag3P209L-eGFP mice hBAG3P209L leads to sarcomere disruption by sequestering autophagy
machinery

(48)

HF BAG3 Bag3-cKO mice BAG3 haploinsufficient mice display reduced maximum
force-generating capacity and increased myofilament ubiquitination

(50)

Hypertrophy TSC2 Tsc2-cKO mice TSC2-/- mice show cardiac dysfunction and cardiomyocyte hypertrophy
by inhibiting autophagic flux

(23)

Hypertrophy TSC2 Tsc2S1365A KI, Tsc2S1365E KI mice TSC2S1365A KI mice develop worse heart disease and have higher
mortality after sustained pressure overload of the heart, owing to
mTORC1 hyperactivity

(24)

HCM PKG1α Pkg1αC42S , Tsc2S1365A KI mice Oxidation of PKG1α at C42 results in amplified PO-stimulated mTORC1
activity and cardiac hypertrophy

(25)

MI LAPTM4B Laptm4b KO mice LAPTM4B-/- mice has a significantly increased infarct size (27)

Atrophy Thbs1 Thbs1 TG mice, Thbs1 KO mice Thbs1 TG mice display lethal cardiac atrophy via activating
PERK-eIF2α-ATF4-mediated autophagy, Thbs1-/- mice develop cardiac
hypertrophy

(39)

CM RagA/B RagA/B-cKO mice RagA/B-cKO mice exhibits enlargement of the LV and contractile
dysfunction

(38)

DCM PLEKHM2 Patients PLEKHM2 mutation causes aberrant localization of lysosomes and
defective autophagy flux

(26)

HF MiR-221 miR-221 TG mice miR-221 induces HF by activating mTOR and inhibiting autophagy (42)

HCM ATG14 Atg14-cKO mice Atg14 deficient causes abnormal accumulation of autophagic cargoes in
heart

(21)

HF Kansl1 Kansl1+/− mice Kansl1 insufficiency results in defective cardiac functions (31)

HCM LncRNA
Gm15834

TAC, Ang-II mice model Gm15834 enhances autophagic activity and promotes myocardial
hypertrophy

(45)

(Continued)
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TABLE 1 (Continued)

Disease Target Model Main conclusions References

DC Rab9 Ulk1-cKO mice, Rab9S179A KI mice Ulk1-Rab9-dependent alternative mitophagy and upregulation of TFE3
safeguards the heart against obesity cardiomyopathy

(71)

I/R injury Rab9 Atg7-cKO, Ulk1-cKO, Park2 KO,
Rab9-KI mice

Ulk1/Rab9/Rip1/Drp1 pathway protected the heart against ischemia
damage by activating autophagy

(70)

DC ACC2 Acc2 KO mice Increasing cardiac FAO protects against cardiomyopathy in chronically
obese mice

(64)

HF p53 p53-Park2 dKO mice Cytosolic p53 impairs mitophagy and facilitates mitochondrial
dysfunction and heart failure in mice

(65)

MI PARK2 Park2 KO mice KO mice reduces survival and develops larger infarcts after MI (53)

HCM PINK1 Pink1 KO mice KO mice develop left ventricular dysfunction and cardiac hypertrophy
through the impairment of mitochondrial function and the increase in
ROS

(55)

DCM BNIP3 Bnip3 KO, Nix-cKO mice Bnip3 and Nix is sufficient for cardiomyopathy development and
essential for cardiac remodeling

(56)

DCM Mfn2 Mfn2 cKO mice Mfn2 deficiency causes dilated cardiomyopathy due to the suppression
of mitophagy

(57)

MI Mfn1/2 Mfn1/2 dKO mice dKO mice are protected against acute MI due to impaired
mitochondria/SR tethering

(58)

CM DMD mdx mice The defect in PINK1/PRKN-mediated mitophagy contributes to
dystrophic cardiomyopathy

(108)

DC ATG7, PARK2 Atg7 cKO mice, Park2 KO mice Atg7-dependent mitophagy protects against hypertrophy and diastolic
dysfunction

(61)

MI RhoA WT mice RhoA protects MI through activating PINK1/PRKN-mediated
mitophagy

(66)

DCM SDHAF4 Sdhaf4-cKO mice SDHAF4 deficient impairs complex II assembly and activates mitophagy,
thereby causing progressive DCM

(67)

CM, cardiomyopathy; HF, heart failure; HCM, hypertrophic cardiomyopathy; MI, myocardial infarction; DCM, dilated cardiomyopathy; DC, diabetic cardiomyopathy; WT, wild-type;
KO, knock-out; KI, knock-in; TG, transgenic; cKO, conditional knock-out; dKO, double knock-out; T1D, type 1 diabetes; iPSC-CMs, human induced pluripotent stem cell-derived
cardiomyocytes; AVSD, sporadic atrioventricular septal defect; LV, left ventricle; Ang-II model, angiotensin-II-induced cardiac hypertrophy model; TAC, transverse aortic constriction;
I/R injury, ischemia-reperfusion injury.

increased health concerns, including falls, functional decline,
frailty, and even mortality (96). The etiology of sarcopenia is
associated with multiple factors, including defective autophagy,
where a time-dependent decline in autophagy activity causes
stemness impairment in muscle satellite stem cells (96,
97). This tenet is further supported by recent findings
demonstrating that suppression of the prostaglandin-degrading
enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH or
HPGD) slowed sarcopenia progression partly through activating
autophagy (98) and that exerkine apelin reversed sarcopenia
partially by triggering autophagy in mice and humans (99).
Autophagy contributes to the maintenance of muscle mass and
strength mediated by Sestrins 1–3 in aging mice (100). Glycogen
synthase kinase-3 alpha (GSK3α) and Tyrosine-protein kinase
(Fyn) are also involved in age-related alterations in sarcopenia
by modulating autophagy (101, 102). Furthermore, mitophagy
impairment has been associated with sarcopenia, as supported
by the observation that the impairment of genes related to
mitochondrial fusion or fission contributed to age-dependent
muscle degeneration (103). For example, age-dependent loss
or genetic disruption of Mfn2 in mouse skeletal muscle causes
sarcopenia via inhibition of mitophagy (104).

Autophagy in muscular dystrophy

Duchenne muscular dystrophy (DMD) caused by DMD
gene mutations is the most common childhood form of
muscular dystrophy, with approximately 1 in 5,000 male
births worldwide (105). DMD codes for the dystrophin
protein, a cytoskeletal protein that functions in the muscle
force transmission and sarcolemmal stability of muscle fibers.
Loss of dystrophin leads to progressive muscle weakness
and wasting, loss of ambulation, respiratory impairment,
cardiomyopathy, and eventual death. A previous study
demonstrated that autophagy was defective at late stages of
disease progression in Dmd mice and DMD patients (106)
and that autophagy impairment correlated with the decline
in muscle regeneration and the increase in fibrotic tissue
deposition in dystrophic muscles by modulating satellite cell
activity (107). Autophagy induction is impaired as mTOR
is constitutively activated, leading to the downregulation
of LC3, Atg12, Bnip3, and Gabarapl1 in mdx mice (106).
Moreover, PINK1/PRAK2-mediated mitophagy deficits
also contribute to dystrophic phenotypes in a mdx mouse
model (108).
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FIGURE 4

The potential autophagic targets for striated muscle disease treatment. The diagram includes current drug candidates (small molecules,
peptides, ASO, and gene therapy) that act at different stages of the autophagy and might be beneficial in heart or skeletal muscle diseases.

Limb-girdle muscular dystrophies (LGMDs), the fourth
most prevalent genetic muscle disease, are a group of genetically
heterogeneous disorders characterized by progressive muscle
weakness (5). LGMDs have more than 30 subtypes with variable
severity and time of onset, and the pathological mechanism of
some types has been associated with aberrant autophagy (109).
LGMDR8 (110), characterized by impaired muscle regrowth
and atrophy, is caused by mutations in the ubiquitin ligase
Tripartite motif-containing protein 32 (TRIM32). TRIM32 is
required for autophagy induction in response to atrophic stimuli
in vivo by catalyzing unanchored K63-linked polyubiquitin
of ULK1 and promoting the interaction of ULK1 with
autophagy/Beclin 1 regulator 1 (AMBRA1) (111). LGMDR9
is an autosomal recessive disorder defined by proximal
muscle weakness, calf hypertrophy, hypotonia and elevated
CK level. LGMDR9 is caused by mutations in the fukutin-
related protein gene (FKRP) encoding a glycosyltransferase
involved in α-dystroglycan modification. A recent finding
showed that Atg7 and LC3B-II were markedly increased,
but p62 and mTOCR1 were decreased in LGMDR9 patients,
indicating that autophagy activation has been linked with
disease development (112). Conversely, another study found
that autophagy was downregulated in patient-specific LGMDR9
iPSC-derived myotubes (113). LGMDR2 caused by DYSF
mutation is an autosomal recessive disease, characterized by
muscle inflammation, fibrosis and progressive weakness in the
hip and shoulder area (114, 115). LGMDR2 patients display
elevated LC3-II, p62, and Bnip3 levels (116).

Mutations of COL6A1 encoding collagen type VI has been
linked to Ullrich congenital muscular dystrophy (UCMD)

characterized by early-onset and generalized muscle weakness,
and Bethlem myopathy (BM) characterized by proximal
muscle weakness and flexion contractures. Autophagy
defects are observed in Col6a1 deficient mice, in which
abnormal AKT-mTOR pathway signaling pathway lowers the
induction of Beclin-1 and Bnip3 and impairs autophagosome
formation in muscle fibers (117). The massive accumulation
of autophagosomes can cause autophagic vacuolar myopathies
(AVMs) such as Danon disease (DD) and Pompe disease (4,
118). The causative defect of LAMP2 leads to Danon disease
characterized by weakening of myocardial and skeletal muscles
(32). Disruption of LAMP2 expression blocks the normal
maturation of autophagosomes in Lamp2-deficient mice
and impairs the fusion of autophagosome with lysosome in
LAMP2-deficient human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) (34, 119, 120). Furthermore, the
mutations in GAA encoding an acid alpha−glucosidase cause
Pompe disease characterized by abnormal buildup of glycogen
and muscle weakness. The fusion of autophagosome-lysosome
is suppressed while autophagy initiation is induced in GAA
mutant mouse model (92).

Although the abovementioned muscular dystrophies are
associated with defective autophagy, excessive autophagy could
cause muscular dystrophies (89, 121). Congenital muscular
dystrophy type 1A (MDC1A) is caused by mutations in LAMA2
encoding the laminin α2 chain. MDC1A is characterized
by clinically profound muscle hypotonia and progressive
muscle weakness accompanied by contractures (122). Excessive
autophagy appears to exacerbate the dystrophic pathologies
in the Lama2-deficient mouse model and MDC1A patient
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TABLE 2 Targeting autophagy for striated muscle disease treatment.

Disease Treatment Model Main conclusions References

MI AAV9-Ghrelin CD1 mice Ghrelin markedly reduces infarct size and preserves cardiac function (79)

I/R injury rAAV9-BAG3 FVB mice BAG3 decreases infarct size and improves left ventricular function after
I/R

(80)

HF rAAV9-BAG3 C57/BL6 mice BAG3 rescues maximum force-generating capacity and CASA protein
turnover

(50)

DCM AAV9-BAG5 Bag5R197Ter KI mice BAG5 can suppress the ventricular arrhythmias with improved left
ventricular dilatation and systolic function

(51)

HF Spermidine Dahl salt-sensitive rats Spermidine can reduce systemic blood pressure, prevent cardiac
hypertrophy and display a decline in diastolic function

(73)

MI Trehalose C57/BL6 mice Trehalose can reduce left ventricular (LV) dilation and increase
ventricular function

(74)

AIC Spironolactone,
rapamycin

AIC zebrafish and mice Spironolactone and rapamycin can reverse the decline in cardiac
function and the suppression of autophagic flux in an ATG7-dependent
fashion

(75)

CM Temsirolimus Lmna H 222P/H 222P mice Temsirolimus can reactivate autophagy and improve cardiac function by
blocking mTORC1 and ERK1/2 activity

(76)

I/R injury SAHA Mice and rabbit SAHA can reduce infarct size and preserve systolic function (77)

I/R injury Tat-Beclin-1 WT, Atg7 KO mice Tat-Beclin-1 can reduce infarct size and improve contractile function (82)

Hypertrophy Rapamycin miR-199a TG mice Rapamycin can attenuate cardiac hypertrophy by activating autophagy (44)

Sepsis Tat-Beclin-1 WT, Becn+/− mice Tat-Beclin-1 can ameliorate cardiac function and survival, attenuate
inflammation

(22)

HF AntimiR-132 TAC mice AntimiR-132 can prevent pressure-overload-induced heart failure by
up-regulating the expression of FoxO3

(43)

HF AntimiR-132 miR-212/132 TG mice, MI pig model AntimiR-132 can ameliorate cardiomyocyte dysfunction, improve HF
without safety concerns

(84)

HF CDR132L MI pig model CDR132L (antimiR-132) can improve cardiac function and reverse
cardiac remodeling without toxic side effects

(83)

HF CDR132L HF patients CDR132L can induce significant QRS narrowing and show the trend of
the decrease in cardiac fibrosis and safety

(85)

HF GapmeR-Chast TAC mice GapmeR-Chast can prevent and improve TAC-induced adverse cardiac
remodeling and hypertrophy

(86)

MI AAV9-sh-Mirf MI mice AAV9-sh-Mirf can improve myocardial injury and protect heart function (87)

HF AAV9-AMPKα2 TAC mice AMPK α2 can protect mice against TAC-induced HF through increasing
cardiac mitophagy

(62)

DMD Urolithin A Dmd worm, mdx, mdx/Utr dKO mice Urolithin A can enhance skeletal muscle respiratory capacity and
improve MuSCs’ regenerative ability by activating mitophagy

(145)

SP Urolithin A Aged patients Urolithin A can promote the expression of skeletal muscle
mitochondrial genes

(146)

SP SW033291 Aged mice SW033291 can improve aged muscle mass, strength and exercise (98)

Myopathy Rapamycin Cox15sm/sm mice Rapamycin can improve exercise, muscle fiber size, and myopathic
histology

(126)

UCMD Spermidine Col6a1 KO mice Spermidine can improve the force contractile and muscle histological
defects

(147)

UCMD Low protein diet UCMD patients Low protein diet can reduce fiber apoptosis and improve mitochondrial
function

(148)

MM Rapamycin Deletor mice and MM patients Rapamycin can restore mitochondrial recycling (128)

SP AAV9-Apelin Aged mice AAV9-apelin can enhance muscle functions including exercise, force and
increase muscle mass

(99)

Danon 5-Aza-2′-
deoxycytidine

iPSC-CMs 5-Aza-2′-deoxycytidine can reactivate LAMP2 and ameliorate autophagy
failure

(78)

Danon AAV9-LAMP2B Lamp2 KO mice AAV9-LAMP2B can improve autophagic flux and cardiac function (81)

MuSC, muscle stem cell; Cox15sm/sm , muscle-specific Cox15 knockout; CM, cardiomyopathy; I/R injury, ischemia-reperfusion injury; AIC, anthracycline-induced cardiotoxicity; TAC,
transverse aortic constriction; MI, myocardial infarction; SAHA, suberoylanilide hydroxamic acid; SP, sarcopenia; UCMD, Ullrich congenital muscular dystrophy; MM, mitochondrial
myopathy.
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TABLE 3 Autophagy in skeletal muscle diseases.

Disease Target Model Main conclusions References

MDC1A Lama2 dy3k/dy3k mice Increased expression of autophagy-related genes in dy3k/dy3k mice skeletal
muscle

(123)

UCMD Col6a1 Col6a1 KO mice Lower induction of Beclin-1 and Bnip3 and impaired autophagosome
formation in KO mice

(117)

LGMDR8 TRIM32 Trim32 KO mice TRIM32 is required for autophagy induction by activating ULK1 (111)

LGMDR2 Dysf LGMDR2 patient LC3-II, p62, and Bnip3 levels elevate, p62-positive proteins aggregate in
patients

(116)

DMD DYS mdx mice and patients Autophagy is impaired as AKT is persistently activated (106)

DM1 MBNL1 Muscle satellite cells MBNL1 enhances cell proliferation and inhibits autophagy via activating
mTOR pathway

(136)

DM1 DMPK DM1 Drosophila and patients The decrease in muscle area is concomitant with increased apoptosis and
autophagy

(137)

DM1 miR-7 DM1 muscle cells miR-7 restores normal autophagic flux and prevents overexpression of
muscle-atrophy-related genes

(138)

Danon LAMP2 Danon patients Accumulation and altered localization of VPS15 but TFEB are activated in
patients

(119)

Danon LAMP2 Lamp2 KO mice KO mice showed fiber degeneration with an accumulation of vacuoles (33)

Pompe GAA Atg5/Gaa dKO mice Induction of autophagy but impaired autophagosome–lysosome fusion in
Gaa KO mice

(92)

hIBM VCP IBM myoblasts VCP is essential for maturation of ubiquitin-containing autophagosomes (130)

hIBM VCP Vcp KO Drosophila VCP mutant disrupts tubular lysosomes and impairs
autophagosome-lysosome fusion

(131)

hIBM VCP Vcp-cKO mice Damaged lysosomes are accumulated in skeletal muscle and persistent
TFEB activation in cKO mice

(132)

RVM p62 RVM patients Patients have late-onset distal muscle weakness, myopathic features and
rimmed vacuoles

(133)

XMEA VMA21 XMEA patients VMA21 deficient can raise lysosomal pH which reduces lysosomal
degradative ability and activate compensatory autophagy

(135)

Atrophy ATG7 Atg7-cKO mice Profound muscle atrophy and age-dependent decrease in force,
accumulation of abnormal mitochondria in cKO mice

(90)

Myopathy ATG7 Atg7 mutation patients Mild myopathic changes and no vacuoles or internalized nuclei in patients (91)

Myopathy ATG5 Atg5-cKO mice Pronounced muscle wasting, profound kyphosis, and growth retardation
in KO mice

(92)

AVM Vps15 Vps15 KO mice Elevated creatine kinase plasma levels, accumulation of autophagosomes,
and glycogen in KO mice

(93)

MD Vps34 Vps34-cKO mice Vps34-cKO mice display premature death, dystrophic muscle and aberrant
accumulation of membrane-associated proteins

(94)

MD Sidt2 Sidt2-cKO mice Sidt2-cKO mice display muscle weakness and mildly elevated CK with
accumulation of autolysosomes, adaptor protein p62 and ubiquitinated
aggregates

(141)

SP HPGD Aged mice Suppression of 15-PGDH slowed sarcopenia progression through
activating autophagy and facilitating mitochondria biosynthesis

(98)

SP Apelin Aged mice, aged human Apelin enhances muscle function by facilitating autophagy, mitochondrial
biogenesis, and anti-inflammatory pathways

(99)

SP Sesn Sesn KO mice Sestrins 1–3 maintain muscle mass and strength in aging mice through
mTORC1 inhibition and autophagy activation

(100)

SP GSK-3α Gsk-3α KO mice Marked activation of mTORC1 and suppression of autophagy markers in
KO mice

(101)

Atrophy Fyn HSA-Fyn TG and KO mice Fyn/STAT3/Vps34 pathway is responsible for fiber-type-specific regulation
of macroautophagy and muscle degeneration

(102)

AVM Atg14 Atg14-cKO, Rb1cc1-cKO mice Atg14-cKO and Rb1cc1-cKO mice display features of AVM with
ubiquitin+ p62+ deposits

(21)

hIBM ULK1/2 Ulk1/2 cDKO mice ULK1 and ULK2 localize to stress granules and ULK-mediated
phosphorylation of VCP promotes stress granule disassembly

(95)

(Continued)
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TABLE 3 (Continued)

Disease Target Model Main conclusions References

SP Mfn2 Mfn2-cKO mice Mfn2 deficiency reduced autophagy and impaired mitochondrial quality,
thereby causing the age−related alterations in metabolic homeostasis
and sarcopenia

(104)

MM mtDNA Deletor mice and MM patients Activated or halted mitophagy occur in a mosaic manner in adjacent
muscle fibers

(127)

Atrophy LONP1 Lonp1-cKO mice LONP1 deficiency impairs mitochondrial protein turnover and activates
autophagy, thereby causing muscle loss

(140)

MDC1A, congenital muscular dystrophy type 1A; UCMD, Ullrich congenital muscular dystrophy; LGMD, limb girdle muscular dystrophy type 2; DMD, Duchenne muscular dystrophy;
DYS, dystrophin; DM1, myotonic dystrophy type 1; hIBM, hereditary inclusion body myopathy; RVM, rimmed vacuolar myopathy; XMEA, X-linked myopathy with excessive autophagy;
AVM, autophagic vacuolar myopathy; MD, muscular dystrophy; SP, sarcopenia; MM, mitochondrial myopathy; MEF, mouse embryonic fibroblasts; cDKO, conditional double knock-out;
mtDNA, mitochondrial DNA; CK, serum creatine kinase.

tissues (123), as evidenced by the observation that a autophagy
inhibitor 3-methyladenine (3-MA) improves MDC1A (123).
However, the detailed relationship between Laminin α2 and
autophagy remains elusive due to a lack of autophagic dynamics.

Autophagy in other myopathies

Mitochondrial myopathies (MM) are clinically and
biochemically heterogeneous disorders characterized by ragged
red fibers and peripheral and intermyofibrillar accumulations
of abnormal mitochondria (124). The skeletal muscle-specific
deletion of Cox15 encoding a Cytochrome C Oxidase Assembly
protein, leads to severe myopathy in mice (125). Meanwhile,
rapamycin can improve this myopathy by activating TFEB-
mediated lysosome biosynthesis and autophagic flux (126).
A recent study found that human patients with MM and Deletor
mice (127), a model of adult-onset MM with multiple mtDNA
deletions, exhibited overtly abnormal mitophagy by activating
mTORC1 (128).

Defects in CASA cause myofibrillar myopathies
characterized by Z-band disorganization and rimmed vacuoles
(2). Under physiological conditions, CASA targets unfold
filamin C for timely autophagic degradation. If CASA is
defective, misfolded filamin C and other Z-disc proteins
accumulate and impair the integrity of the Z-disc, causing
myofibrillar machinery dysfunction (2).

Muscle cells from patients with inclusion body myopathy
(IBM) build up ubiquitin-positive rimmed vacuoles and
non-digested autophagic vacuoles (129, 130). One of the
causative genes for hereditary inclusion body myopathy (hIBM)
is VCP encoding valosin-containing protein (VCP), whose
mutation disrupts the maturation of ubiquitin-containing
autophagosomes (130) and the dynamic tubular lysosomal
network in fruit flies (131), thereby impairing autophagosome-
lysosome fusion. Skeletal muscle-specific KO of Vcp in
adult mice causes necrotic myopathy with accumulating
macroautophagic/autophagic proteins, damaged lysosomes, and
persistent activation of TEFB-mediated lysosome biosynthesis

(132). The dominantly inherited mutations in SQSTM1
have been linked to rimmed vacuolar myopathy (RVM) by
blocking the aggregated and ubiquitinated proteins to the
autophagosome for degradation (133) or perturbing the stress
granule dynamics (134). X-linked myopathy with excessive
autophagy (XMEA), a childhood onset disease characterized
by progressive vacuolation and weakness of skeletal muscle,
is attributed to the decrease in Vacuolar ATPase Assembly
Factor 21 (VMA21), essential for lysosomal degradative
ability by assembling the vacuolar ATPase (135). Moreover,
the muscle integrity is also fine-tuned by other autophagic
modulators, such as muscle blind-like 1 (MBNL1) (136),
myotonic dystrophy protein kinase (DMPK) (137), miR-7 (138),
inositol polyphosphate 5-phosphatase (INPP5K) (139), ion
protease homolog (LONP1) (140) and Sid1 transmembrane
family member 2 (Sidt2) (141).

Targeting autophagy for skeletal
muscle disease treatment

Given that defective autophagy contributes to many skeletal
muscle diseases, reactivating autophagy may be beneficial in
treating these diseases, as shown in Figure 4 and Table 2.
Small molecules, gene therapies, and ASO therapies targeting
autophagy have been under development for myopathies (142,
143). Rapamycin improves the pathological manifestations
caused by LMNA mutations (144), ameliorates the pathology
of mitochondrial myopathy (126, 128), and mitigates the
myopathic phenotype of Cox15sm/sm mice (126). Urolithin A, a
natural microflora-derived metabolite that activates mitophagy,
improves muscle function in worm and mouse models of DMD
(145), and in elderly persons (146). SW033291, specifically
inhibiting 15-PGDH-mediated PGE2 signaling, rejuvenates
aged muscle mass, strength and exercise capacity partly by
increasing autophagy (98). Moreover, the beneficial effects
are also observed in other intervention approaches targeting
autophagy, like an autophagy agonist spermidine or low protein
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diet for MDC1A (147, 148), and AAV9-Apelin for sarcopenia
(99).

Summary and perspective

In summary, autophagy plays an important role in the
pathogenesis of heart and skeletal muscle diseases. The above-
mentioned signaling pathways and molecules are far from being
exhaustive, which reflects the rapid development of the field and
the complexity of the molecular regulation of autophagy but
provides a framework to address the potential analogies between
cardiac and skeletal muscle diseases. Some regulatory pathways
of autophagy are shared by both cardiac and skeletal myocytes.
First, the core machinery of autophagy (such as mTORC1 and
AMPK) and CASA commonly play crucial roles in both cardiac
and skeletal muscles, suggesting that they may be common
therapeutic targets for diseases affecting these two tissues
(Figure 4). Second, many muscular dystrophies also exhibit
cardiomyopathies (Tables 1, 3). Third, although Rab9-mediated
alternative mitophagy has been only demonstrated in the
involvement of heart diseases until now, it does not rule out the
possibility that this signaling pathway may also be involved in
skeletal muscle diseases. Understanding autophagy alterations
underlying these diseases has accelerated the development of
pharmacological and genetic interventions. The introduction of
novel animal models, therapeutic strategies and state-of-the-art
approaches for autophagy studies will provide further insights
into the roles of autophagy in muscles and facilitate the drug
development in the future.

Despite of many studies linking autophagy alterations to
various striated muscle pathologies, most employed global or
conditional KO animal models to examine autophagy in a
snapshot way at certain timepoints. These strategies are limited
in several aspects. First, certain autophagy alterations may be
a compensatory effect in genetic animal models, as organisms
have evolved into sophisticated regulatory mechanisms to
safeguard against genetic or environmental insults. Second,
autophagy-independent functions of some autophagy-related
genes may contribute to the outcomes. Third, autophagy is a
highly dynamic process whereas a snapshot of autophagy may
not reflect the entire picture. Manipulating autophagy-related
genes at the adult stage, pharmacological interventions with
high specificity as well as autophagic dynamics analysis will
address these limitations in the future.

Traditional and novel experimental approaches studying
autophagy in other tissues and diseases can be used to
study striated muscle disorders. For instance, single-cell
RNA sequencing can determine which cell types contribute
to diseases, and establish the link between autophagy and
cell types. Specific targets against autophagy in certain cell
types will be more beneficial to treatment. Multiomics
techniques will provide a broader landscape of the impact of

autophagy abnormalities in striated muscle disorders. DNA
sequencing applied to human biopsies may determine the
relationship between the mutations in autophagy-relevant
genes and myopathies. Moreover, High-throughput screening
strategies based on cutting-edge CRISPR or RNAi will identify
the factors involved in autophagy under physiological or
pathophysiological settings of striated muscles.

Some traditional interventions including caloric restriction
and small chemicals are not specific and may provoke side
effects. Encouragingly, gene therapy and ASO are increasingly
being explored to treat autophagy defects in genetic heart and
skeletal muscle disorders. Moreover, modulating autophagy via
novel approaches such as mRNA delivery and gene editing may
provide increased efficacy and specificity for treating striated
muscle diseases. The drug exploration will be profoundly
energized via the introduction of novel models such as
humanized animal models and human iPSC-derived organoids.
Moreover, artificial intelligence and protein structure prediction
will boost rationally design of drugs targeting autophagy with
higher specificity and efficacy.
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