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Thyroid eye disease: From 
pathogenesis to targeted therapies
Jin Sook Yoon1,2*, Don O. Kikkawa2

Abstract:
Thyroid eye disease (TED) is the most common extrathyroidal manifestation of autoimmune Graves’ 
hyperthyroidism. TED is a debilitating and potentially blinding disease with unclear pathogenesis. 
Autoreactive inflammatory reactions targeting orbital fibroblasts (OFs) lead to the expansion of orbital 
adipose tissues and extraocular muscle swelling within the fixed bony orbit. There are many recent 
advances in the understating of molecular pathogenesis of TED. The production of autoantibodies to 
cross‑linked thyroid‑stimulating hormone receptor and insulin‑like growth factor‑1 receptor (IGF‑1R) 
activates OFs to produce significant cytokines and chemokines and hyaluronan production and to 
induce adipocyte differentiation. In moderately severe active TED patients, multicenter clinical trials 
showed that inhibition of IGF‑1R with teprotumumab was unprecedentedly effective with minimal 
side effects. The emergence of novel biologics resulted in a paradigm shift in the treatment of TED. 
We here review the literature on advances of pathogenesis of TED and promising therapeutic targets 
and drugs.
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Introduction

Thyroid eye disease  (TED, synonyms: 
Graves’ ophthalmopathy, Graves’ 

orbitopathy, and thyroid‑associated 
ophthalmopathy) is the most frequent 
extra thyroidal  fea ture  o f  Graves ’ 
disease  (GD) but can also be associated 
with euthyroidism and Hashimoto’s 
thyroiditis.[1,2] This is an orbital inflammatory 
autoimmune disorder, and the incidence 
of new cases is estimated at 20–50 per 
100,000 people per year.[1] It is reported that 
40%–50% of GD patients develop TED with 
heterogeneous clinical phenotypes. TED is a 
multifactorial autoimmune disease affected 
by genetics, environmental factors such as 
smoking and stress, and immune status. 
Most common symptoms of TED include 
eyelid retraction, exophthalmos, restrictive 
strabismus with diplopia, exposure‑related 
dry eye, and dysthyroid optic neuropathy. 

Thus far, high‑dose glucocorticoid and 
orbital radiation have been a mainstay of 
treatment focusing on reducing orbital 
inflammation. These treatments mainly 
improve clinical activity score  (CAS) and 
diplopia in patients with early, active 
inflammation. Therapy for chronic inactive 
TED is primarily surgical for exophthalmos, 
strabismus, and eyelid retraction. It is 
difficult to assess and manage TED patients, 
owing to its heterogeneity and also to 
predict which patients will progress into 
severe ophthalmopathy.

Various treatments targeting specific 
receptors, cytokines, and immune cells 
have been introduced with promising 
results. Recent remarkable advances in 
understanding pathogenesis of TED led to 
the emergence of a new biologic inhibitor of 
insulin‑like growth factor‑1 receptor (IGF‑1R), 
teprotumumab, which gained approval by 
the US Food and Drug Administration (FDA) 
in early 2020.[3] This paper will review 
accumulated knowledge regarding the 
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immunopathogenesis of TED by both clinicians and 
scientists and suggest promising specific drugs, as well as 
recently approved novel treatment for TED. A systematic 
search of PubMed was undertaken for studies related to 
pathogenesis of TED and therapeutic targets.

Orbital Fibroblast and Fibrocyte

Human orbital fibroblasts (OFs) are considered as the key 
target and effector cells in TED pathogenesis [Figure 1]. 
Studies have characterized why extrathyroidal 
manifestations of GD occur in the orbit, and it may be 
because the orbital tissues display a novel phenotype 
including peculiar sensitivity to cytokines and undergo 
characteristic remodeling. More robust production of 
interleukin (IL)‑6, IL‑8, and monocyte chemoattractant 
protein‑1 in response to IL‑1β[4,5] and a substantial 
induction of IL‑16 and regulated on activation, 
normal T‑cell expressed and secreted responding to 
GD‑immunoglobulin G  (IgG) was noticed in Graves’ 
OFs but not in OFs from controls without GD.[6] Graves’ 
OFs also showed enhanced proliferative capacity at 
baseline and in response to proinflammatory cytokines.[7] 
A subpopulation of OFs, based on the expression of the 
surface Thy‑1 antigen, was observed with a different 
molecular response, which explains the heterogeneous 
clinical course of TED.[8] Perimysial fibroblasts express 
Thy‑1 uniformly and do not undergo adipogenesis, 
whereas adipose tissue‑derived fibroblasts express less 
Thy‑1, undergo adipocyte differentiation, and express 
high level of peroxisome proliferator‑activated receptor 
γ. Thy‑1+ OFs produce higher levels of prostaglandin 
endoperoxide H synthase‑2 and prostaglandin E2 than 
Thy-1-OFs, whereas Thy‑1‑OFs produced more IL‑8 than 
Thy‑1+ OFs.[8] Khoo et al. reported that Thy‑1 mRNA and 

protein expression was higher in orbital tissue and OFs 
from TED donors compared to those from controls.[9]

Fibrocytes, bone marrow‑derived fibroblast‑like 
progenitor cells expressing CD34, CXC chemokine 
receptor 4, and collagen I phenotype, participate in 
the inflammatory process.[10,11] A significant increase of 
circulating CD34+ fibrocytes is observed in TED patients.[12] 
These fibrocytes express thyroid‑stimulating hormone 
receptor  (TSHR) and CD40 in substantially higher 
amounts than in OFs, producing high levels of cytokines 
and chemokines[12,13] and carrying plasticity to differentiate 
into adipocytes or myofibroblasts.[14] An assumption 
has been proposed that circulating CD34+  fibrocytes 
infiltrate orbital tissues, where they convert into 
CD34+ OFs mixing with CD34‑OFs, all expressing both 
IGF‑1R and TSHR.[11] Evidence shows CD34+/CD34‑OFs 
exhibit distinct molecular functions associated with 
TED pathogenesis. Dramatic elevation of autoimmune 
regulator proteins necessary for the expression of 
thyroid proteins,[15] augmented TSH‑induced IL‑6 
production by CXCL‑12  (C‑X‑C Motif Chemokine 
Ligand 12),[16] and enhanced expression of tumor 
necrosis factor‑α  (TNF‑α) by TSH[17] were all shown 
in CD34+  OFs but not in CD34‑OFs. These findings 
suggest a modulatory role of CD34‑OFs by releasing 
a determining factor that downregulates pathological 
TSHR signaling. It was recently reported that Slit2 has 
a distinct role in hyaluronan and cytokine productions 
in CD34+ fibrocytes and OFs but not in CD34‑subsets.[18]

CD40‑CD40 L Interaction

CD40 plays a pathogenic role in various autoimmune 
diseases. CD40 is active in regulating B‑cell responses 

Figure 1: A schematic presentation of the complex cellular and humoral immune responses against autoantigens, thyroid‑stimulating hormone receptor (TSH‑R), and insulin‑like 
growth factor‑1 receptor (IGF‑1R) in orbital fibroblasts and the targeted therapy
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of the GD susceptibility genes identified.[19] CD40 is 
characterized as a molecule to active B lymphocytes 
through the engagement of CD40, by its ligand CD154, 
presented by activated CD4+ T helper (Th) cells.[20] Like B 
cells, CD40 is overexpressed in OFs in TED, especially in 
Thy‑1+ OFs,[4] and CD40 L upregulates proinflammatory 
cytokine and chemokine production and hyaluronan 
synthesis.[4,21,22] High levels of CD40 are also displayed 
by fibrocytes,[23] and TSHR‑CD40 L protein interaction 
and co‑localization are discovered in fibrocytes.[13] 
Iscalimab (CFZ533), an Fc‑silenced blocking anti‑CD40 
monoclonal antibody, was proven safe and well tolerated 
without depletion of leukocytes in a first‑in‑human 
randomized controlled study.[24] In an open‑label 
multicenter phase 2 study in GD patients, iscalimab 
induced euthyroidism in 47%, with a decline of TSHR 
antibody in all patients with minimal side effects.[25] In 
a recent pilot study, haplotypes B and C of CD40 single 
nucleotide polymorphisms (SNPs) were associated with 
higher CD40 mRNA and clinical response to iscalimab, 
suggesting a pretreatment screening of SNP genotype.[26] 
CD40 targeting biologics have not yet been investigated 
in TED, which could represent a novel therapeutic 
approach in the disease where CD40‑CD40 L interaction 
has a major role in the immunopathogenesis.

Thyroid‑Stimulating Hormone Receptor 
and Insulin‑Like Growth Factor‑1 Receptor 

Crosstalk

TSHR is a glycoprotein hormone receptor with a large 
extracellular domain for binding to the ligand, a seven 
transmembrane domain, and an intracellular domain 
bound to G‑protein subunits.[27] Several studies have 
exhibited that TSHR is an autoantigen shared by the 
orbit and the thyroid gland,[28,29] and significantly 
higher levels of TSHR transcript and immunoreactivity 
are demonstrable in Graves’ orbital tissues and early 
passage of OFs.[30] Adipose tissues from active TED 
patients express higher levels of TSHR along with 
proinflammatory cytokines than tissues obtained from 
inactive patients.[31] Clinical observations demonstrate 
that persisting high TSHR antibody levels is associated 
not only with low remission rates of hyperthyroidism 
but also with a more severe course of ophthalmopathy, 
independent from smoking and age.[32] A novel TSHR 
luciferase reporter bioassay with Mc4‑CHO cells 
revealed a strong positive correlation with the clinical 
activity and severity of TED.[33,34]

Several treatments targeting TSHR have been proposed. 
Isolation of human monoclonal autoantibody with 
blocking activity  (K1‑70) with high affinity resulted 
in a dose‑dependent reduction of fT4 levels and 
suppressed the stimulating effect of M22 in rats.[35,36] 

A phase 1 open‑label trial is currently obtaining safety 
and tolerability data in GD patients  (ClinicalTrials.
gov identifier: NCT02904330). Thyroid‑stimulating 
antibody activity in serum decreased with the 
improvement of proptosis and inflammation of orbit 
following administration of K1‑70 therapy in a case 
with follicular thyroid cancer, GD, and orbitopathy.[37] 
Some of the low‑molecular‑weight antagonists for TSHR 
(NIDDK/CEB‑52,[38] NCGC00229600[39]) were identified to 
inhibit the activation of TSHR. NCGC00229600 inhibited 
TSH and M22 stimulated cAMP, Akt phosphorylation, 
and hyaluronan production in Graves’ OFs.[40] Nanomolar 
concentrations of Org 274179‑0 eliminated TSH‑mediated 
TSHR activation with little effect on the potency of TSH 
by an allosteric‑binding mechanism.[41] S37a, a highly 
selective TSHR inhibitor, was discovered to repress TSHR 
activation with no toxicity and high oral bioavailability 
in mice.[42] These TSHR antagonists possess the potential 
to treat TED; however, efficacy and safety have not yet 
been demonstrated through clinical studies.

A functional crosstalk between G‑protein coupled 
TSHR and a tyrosine kinase receptor, IGF‑1R, has 
been discovered, suggesting the signaling platform 
containing two receptors leads to synergistic stimulation 
of cellular responses.[43,44] Co‑localization of two 
receptors in OFs and thyrocytes was demonstrated 
by immunofluorescence staining for IGF‑1Rβ and 
TSHR.[44] IGF‑1R is composed of the ligand binding, 
extracellular domain, IGF‑1Rα, and membrane‑spanning 
β subunit‑containing tyrosine phosphorylation site for 
canonical signaling.[45] IGF‑1R levels are considerably 
higher on Graves’ OFs, and the IGF‑1R+T cells are 
increased in both peripheral blood and orbital connective 
tissue infiltrates in patients with GD.[44,46] IGF‑1R was 
also upregulated in B cells from GD patients, and IGF‑1 
synergistically adds to the IgG production by B cells from 
GD but not from control donors.[47] IGF‑1R on OFs, when 
stimulated with GD‑Igs or IGF‑1, leads to the expression 
of T‑cell chemoattractants[48] and enhanced synthesis of 
hyaluronan in Graves’ OFs, which is absent in control 
OFs.[49] IGF‑1 blocking antibody  (IH7) attenuated the 
actions of both TSH and IGF‑1 in fibrocytes with the 
suppression of proinflammatory cytokine production.[50] 
Two different IGF‑1R blocking antibodies, IH7 and AF305, 
blocked binding of IGF‑1 to IGF‑1R in Graves’ OFs but 
only 1H7 partially blocked hyaluronan production by 
M22, a stimulating TSHR antibody similar to the effect 
of linsitinib, an IGF‑1R kinase inhibitor, indicating 
IGF‑1R is activated through TSHR/IGF‑1R crosstalk.[51] 
In a recent study, the crosstalk occurs proximal to the 
receptors and the distance between is within 40 nm of 
each other by Proximity Ligation Assay.[52] In this study, 
the presence of β‑arrestin 1 protein was necessary for 
the TSHR/IGF‑1R signaling complex, as knock‑down 
of β‑arrestin 1 decreased the receptor co‑localization.
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Teprotumumab, a fully human IgG1 monoclonal 
blocking antibody that binds to extracellular α‑subunit 
domain of IGF‑1R, was first developed for solid tumors 
and lymphomas but became the first approved drug 
for TED based on recent advances in the understanding 
the TSH/IGF1R crosstalk as an effective target. 
Teprotumumab has been shown to decrease TSHR 
and IGF‑1R display and reduce TSH/M22 stimulated 
cytokines and Akt phosphorylation in Graves’ OFs 
and fibrocytes.[50,53] In two randomized, multicenter, 
double‑masked, placebo‑controlled, phase 2 and 3 
clinical trials, published in 2017 and 2020, teprotumumab 
demonstrated a significant improvement in proptosis 
beginning at 6 weeks of treatment and over the course 
of 24 weeks compared to controls, with similar effects 
to surgical decompression in active moderate‑to‑severe 
TED patients.[3,54] At week 24, 83% in teprotumumab 
group had a reduction of proptosis ≥2 mm compared 
to 10% in the placebo group, and all secondary outcomes 
including overall response, CAS, diplopia, and quality of 
life score were significantly better in the teprotumumab 
group with minimal side effects.[3] Fifty‑five percent 
in Teprotumumab‑treated group achieved proptosis 
reduction ≥3 mm compared to 8.9% of placebo‑treated 
group.[55] Of the most commonly reported adverse events 
with teprotumumab, muscle spasm  (18%), hearing 
loss  (10%), and hyperglycemia  (8%) had the greatest 
risk difference from placebo. Based on the evidence, 
FDA approved Teprotumumab in early 2020, as the 
first drug for TED treatment. Orbital imaging showed 
decreased extraocular muscle and orbital fat volume 
and reduced MRI signal intensity ratio of extraocular 
muscles in post‑teprotumumab patients.[56] Some 
reports demonstrate that teprotumumab is effective in 
the resolution of optic neuropathy in the early course 
of teprotumumab[57,58] and significantly reduces the 
proptosis even in chronic TED patients with low CAS.[59,60]

T Cells Trafficking to Orbit and Their 
Cytokines

T cells have a significant role in the pathogenesis of TED. 
T  cells activate B cells to stimulate the production of 
autoantibody and OFs through CD40/CD40 L binding. 
Sensitized T lymphocytes recognizing autologous orbital 
antigens are demonstrated in the peripheral blood and 
orbit from TED.[61] OFs secrete chemokines and adhesion 
molecules which recruit lymphocytes into orbital 
tissues,[61,62] and further interaction between OFs and T 
cells occurs. The clinical activity of TED was reported to 
correlate with T and B lymphocytes infiltration in orbital 
tissues[63] and with the TH1/Th2 cell ratio in peripheral 
blood.[64] Th17  cells are newly identified to contribute 
to the TED pathogenesis. Higher levels of IL‑17A and 
IL‑17A producing T cells were detected in the peripheral 

blood from TED patients,[65,66] and IL‑17A enhances more 
robust production of cytokines in TED fibrocytes than in 
normal.[67] Furthermore, a positive correlation between 
the number of Th17 cells and CAS was found.[67]

Activated T cells, primarily CD4+T cells, produce 
cytokines, aggravating the inflammatory response, 
adipocyte differentiat ion,  prol i ferat ion,  and 
glycosaminoglycan accumulation in OFs.[68,69] A Th1 
immune response predominates in the active early phase, 
leading to the production of interferon (IFN)‑γ, TNF‑α, 
IL‑1β, and IL‑2 that enhance fibroblast proliferation and 
glycosaminoglycan synthesis, whereas Th2 cytokines 
are more abundant later.[70] Orbital muscle tissue from 
TED patients was dominated by Th1 cytokines, while 
cytokine types varied in orbital adipose tissues, meaning 
clinical manifestation of TED may be dependent on types 
of cytokines.[71] Cytokines have been discussed as novel 
targets for TED. Several case and pilot studies have 
demonstrated that monoclonal antibody against TNF‑α 
such as infliximab and etanercept is effective in steroid 
resistant, active TED patients reducing inflammation and 
visual function.[72,73] Adalimumab, another anti‑TNF‑α 
agents, was effective in anti‑inflammatory and 
steroid‑sparing effect in TED patients.[74] Tocilizumab, 
a humanized monoclonal antibody against IL‑6, was 
effective in reducing proptosis and motility restriction 
with no relapse of TED in a prospective, nonrandomized 
study.[75] A follow‑up double‑masked, placebo‑controlled 
trial demonstrated a reduction of at least 2 CAS in 93% of 
tocilizumab group compared to 59% receiving placebo.[76]

B Cells and Targeting CD20

B cells migrate to the orbit and recognize autoantigens 
expressed on OFs through B cell receptors after immune 
tolerance. Besides the production of antibodies, B cells 
have multiple other actions based on B‑T cell interactions. 
B cells produce cytokines, mainly IL‑4, IL‑6, IL‑10, IFN‑γ, 
and TGF‑β, and also function as antigen‑presenting 
cells in the early phase of the autoimmune process.[77] 
In peripheral blood from patients with recent‑onset 
autoimmune thyroid disease, thyroid antigen‑reactive 
B cells are activated expressing CD86, leading to the 
production of autoantibodies.[78]

Rituximab  (RTX) is a chimeric murine/human 
monoclonal antibody against CD20 antigen located 
on B cells. It is FDA approved in rheumatoid arthritis, 
granulomatosis with polyangiitis, chronic lymphocytic 
leukemia, and non‑Hodgkin’s lymphoma. It has also 
been used in different autoimmune disease as off‑label 
drug.[70] RTX was proposed as a promising drug to 
treat TED based on reducing autoantibody. Stimulating 
TSHR Ab was significantly reduced when RTX was 
combined with antithyroid drugs in hyperthyroid 
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patients, compared to those administered antithyroid 
drugs alone.[79] Salvi et al. reported CAS decreased more 
after RTX than with IV methylprednisolone (7.5 g), and 
there was no reactivation in RTX group compared to five 
patients of IV methylprednisolone treated patients.[80] 
However, RTX was not effective in another randomized, 
placebo‑controlled trial.[81] A post hoc analysis of the 
two trial results has found that the disease duration 
differed patients between groups and might have been 
responsible for inconsistent data.[82] A meta‑analysis 
and systemic review of four randomized trials found 
a significant reduction of CAS but not proptosis 
reduction in the RTX group, compared to controls.[83] 
Recently, early use of low‑dose RTX was reported to be 
effective to ameliorate inflammatory activity in active, 
steroid‑resistant TED leading to a reduced systemic 
steroid administration.[84,85]

The neonatal fragment crystallizable (Fc) receptor (FcRN) 
has a role to prevent degradation and prolong the half‑life 
of IgG during recycling process of IgG.[86,87] Multiple 
FcRN inhibitors have emerged as a potential treatment 
in antibody‑mediated autoimmune disease and currently 
are in clinical trials for antibody‑mediated autoimmune 
diseases such as myasthenia gravis and immune 
thrombocytopenia.[86] IMVT‑1401/RVT‑1401, a fully 
human monoclonal antibody against FcRN, developed 
as a subcutaneous injection, has been studied in a phase 
2, multicenter, open‑label trial  (ASCEND GO‑1) and 
double‑blinded, placebo‑controlled trial (ASCEND GO‑2) 
for active, moderate‑to‑severe TED  (ClinicalTrial.gov 
Identifier: NCT03922321, NCT03938545, retrospectively), 
however, unfortunately, ASCEND GO‑2 was terminated 
due to unexpected elevation of serum cholesterol level.

Statins and Other Hypolipidemic Drugs 
with Pleotropic Effects

Statins are a class of hypolipidemic drug that is 
traditionally used to lower cholesterol by inhibiting 
hydroxymethylglutaryl‑coenzyme A reductase. In 
the past recent years, extensive studies have shown 
that statins also have a pleiotropic anti‑inflammatory, 
antifibrotic, and anti‑immune modulatory effect.[88] 
Statins can shift proinflammatory Th17/Th1 cells toward 
regulatory T‑cells resulting in decreased T‑cell 
activation and inflammatory cytokine production.[89] In 
a longitudinal cohort study of 740 patients with newly 
diagnosed GD, statin use for ≥60 days was related to a 
40% decreased hazard (adjusted hazard ratio [HR], 0.6) 
but not with nonstatin cholesterol‑lowering agents.[2] A 
recent epidemiologic report showed statin users were 
less likely to develop TED with full adjusted HR 0.78 
for men and 0.91 for women.[90] Laboratory evidence 
regarding therapeutic effect of statin in OFs was studied. 
Simvastatin inhibited TGF‑β induced fibrosis markers 

in Graves’ OFs through RhoA‑mediated Erk and p38 
signaling pathways.[91] Cysteine‑rich protein 61, a 
product of an immediate early gene, is known to act as a 
proinflammatory factor in many inflammatory diseases 
and was found overexpressed in OFs and in serum from 
active TED patients,[92] and its induction by TNF‑α was 
suppressed by simvastatin through the mediation of 
FoxO3a signaling.[93] Simvastatin also downregulated 
the early and late adipogenic gene and adipogenesis 
in OFs.[94] A hypothesis is proposed that statins reduce 
orbitopathy risk by modulation of both apoptosis 
and autophagy,[95] which are found to be involved in 
the pathogenesis of TED.[96] In a recent randomized 
controlled study, addition of oral atorvastatin to an IV 
glucocorticoid improved TED outcomes at 24 weeks of 
treatment in patients with moderate-to-severe, active 
eye disease and hypercholesterolemia (ClinicalTrial. 
govIdentifier: NCT03110848, protocol ID: STAGO).[97]

Metformin is a biguanide hypoglycemic drug for 
Type  2 diabetes and also has been shown to have 
anti‑inflammatory action by blunting secretion of 
proinflammatory cytokines and inhibition of nuclear 
factor kappa β signaling.[98] In a meta‑analysis of 
six randomized placebo‑controlled studies, both 
total and low‑density lipoprotein  (LDL)‑cholesterol 
levels decreased in metformin‑treated patients.[99] In 
Graves’ OFs, metformin and phenformin suppressed 
adipogenesis, proinflammatory cytokine production, 
and hyaluronan release, providing some evidence of the 
potential use of biguanide for the treatment of TED.[100]

Recently, proprotein convertase subtilisin‑kexin 
type  9  (PCSK9) is identified to play a major role in 
hypercholesterolemia and atherosclerosis through 
promoting lysosomal degradation of LDL receptors, 
and the FDA approved two novel antibodies against 
PCSK, evolocumab and alirocumab, for lowering 
LDL‑cholesterol.[101] PCSK9 inhibitors have also shown to 
have pleotropic effects of anti‑inflammation beyond the 
LDL‑lowering effect.[102] Orbital adipose tissue from TED 
patients had higher PCSK9 transcript levels than controls 
and knock‑down of PCSK9 blocked proinflammatory 
cytokine production and adipogenesis in Graves’ OFs, 
suggesting PCSK9 as a potential promising therapeutic 
target.[103]

Selenium

While the management of moderate‑to‑severe and active 
TED includes high dose intravenous glucocorticoids, 
orbital radiotherapy, surgery, and other biologics of 
specific immunologic target, an anti‑oxidant trace 
mineral, selenium, is recommended in patients with 
mild TED. Selenium has been reported to show more 
improved quality of life, less eye involvement, and 
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more improvement of CAS, compared to placebo in a 
randomized, double‑masked, placebo‑controlled trial.[104] 
In several in vitro studies, selenium reduces H2O2‑induced 
oxidative stress, proliferation, hyaluronan synthesis,[105] 
and proinflammatory cytokine production in OFs.[106,107] 
Controversy exists regarding the association of selenium 
levels with the severity or activity of TED.[108,109] The value 
of supplemental selenium on antithyroid drug medication 
in GD is still debatable in some randomized, controlled 
trials, especially in a selenium‑sufficient cohort of GD.[110,111]

Conclusion

Over the last decades, substantial progress has been 
made in understanding the pathogenesis of TED, 
and several potential therapeutic targets have been 
discovered. Despite the lack of specific animal model for 
TED, in vitro studies in OFs and fibrocytes from patients 
with GD (recognizing the importance of IGF1-1R/THSR 
crosstalk) have been vital to the development of a new 
drug targeting IGF‑1R with a remarkable treatment 
effect in moderate‑to‑severe, active TED patients, even 
replacing surgery in many cases. However, the high cost 
of the drug is a barrier to noninsured patients’ treatment 
access and may lead to obstacles in approval in other 
countries. More results from multicenter, prospective 
longitudinal studies are needed to understand the 
long‑term effects of teprotumumab compared to the 
combination of glucocorticoid and radiotherapy, which 
has still shows some efficacy with lower costs.

With advances in monoclonal antibody technology, there 
are a number of approaches targeting TSHR, B cells, T 
cells, and multiple cytokines, especially in the field of 
GD, which still need to be investigated in TED to provide 
a proof of efficacy. The efficacy of statins and other 
hypolipidemic drugs with pleotropic effects also needs 
verification in clinical trials. Many questions remain 
to be answered regarding aspects of TED including 
the unknown molecular pathogenesis associated with 
heterogeneous clinical phenotypes.
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