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selectivity in reconstructing mental
architectures

Ru Zhang and Ehtibar N. Dzhafarov*
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We present a general theory of series-parallel mental architectures with selectively

influenced stochastically non-independent components. A mental architecture is a

hypothetical network of processes aimed at performing a task, of which we only observe

the overall time it takes under variable parameters of the task. It is usually assumed that

the network contains several processes selectively influenced by different experimental

factors, and then the question is asked as to how these processes are arranged within

the network, e.g., whether they are concurrent or sequential. One way of doing this is to

consider the distribution functions for the overall processing time and compute certain

linear combinations thereof (interaction contrasts). The theory of selective influences

in psychology can be viewed as a special application of the interdisciplinary theory of

(non)contextuality having its origins andmain applications in quantum theory. In particular,

lack of contextuality is equivalent to the existence of a “hidden” random entity of which

all the random variables in play are functions. Consequently, for any given value of this

common random entity, the processing times and their compositions (minima, maxima,

or sums) become deterministic quantities. These quantities, in turn, can be treated as

random variables with (shifted) Heaviside distribution functions, for which one can easily

compute various linear combinations across different treatments, including interaction

contrasts. This mathematical fact leads to a simple method, more general than the

previously used ones, to investigate and characterize the interaction contrast for different

types of series-parallel architectures.

Keywords: interaction contrast, mental architectures, noncontextuality, response time, selective influences,

series-parallel network

1. Introduction

The notion of a network of mental processes with components selectively influenced by different
experimental factors was introduced to psychology in Saul Sternberg’s (1969) influential paper.
Sternberg considered networks of processes a, b, c, . . . involved in performing a mental task.
Denoting their respective durations by A,B,C . . ., the hypothesis he considered was that the
observed response time T is A + B + C + . . . . One cannot test this hypothesis, Sternberg
wrote, without assuming that there are some factors, α, β, γ, . . ., that selectively influence the
durations A,B,C . . ., respectively. Sternberg’s analysis was confined to stochastically independent
A,B,C, . . ., and the consequences of the assumptions of seriality and selective influences were
tested on the level of the mean response times only.

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.00735
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ehtibar@purdue.edu
http://dx.doi.org/10.3389/fpsyg.2015.00735
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00735/abstract
http://community.frontiersin.org/people/u/234703
http://community.frontiersin.org/people/u/8530


Zhang and Dzhafarov Mental architectures

Subsequent development of these ideas was aimed at the
entire distributions of the response times and at a greater
diversity and complexity of mental architectures than just
series of “stages.” This development prominently includes
Townsend (1984, 1990a,b); Schweickert and Townsend (1989);
Townsend and Schweickert (1989); Roberts and Sternberg
(1993); Townsend and Nozawa (1995); Schweickert et al. (2000),
and several other publications, primarily by James Townsend
and Richard Schweickert with colleagues. For an overview of
these developments see Dzhafarov (2003) and Schweickert et al.
(2012). In the present context we should separately mention the
development of the ideas of stochastic ordering of processing
times in Townsend (1984, 1990a) and Townsend and Schweickert
(1989); as well as the idea of marginal selectivity (Townsend and
Schweickert, 1989).

The notion of selective influences also underwent a significant
development, having been generalized from stochastically
independent random variables to arbitrarily interdependent
ones (Dzhafarov, 2003; Dzhafarov and Gluhovsky, 2006; Kujala
and Dzhafarov, 2008; Dzhafarov and Kujala, 2010, in press).
The essence of the development is easy to understand using
two random variables (e.g., process durations) A,B selectively
influenced by two respective factors α, β. In Dzhafarov’s (2003)
notation, this is written (A,B) " (α, β). According to the
definition given in Dzhafarov (2003), this means that there
are functions f and g and a random variable R (a common
source of randomness) such that f (α,R) = A and g (β,R) =

B. If such a choice of
(

f , g,R
)

exists, it is not unique. For
instance, R can always be chosen to have any distribution that
is absolutely continuous with respect to the usual Borel measure
on the real line (e.g., a standard uniform, or standard normal
distribution, see Dzhafarov and Gluhovsky, 2006). However, a
triple

(

f , g,R
)

need not exist. It does not exist, e.g., if marginal
selectivity (Townsend and Schweickert, 1989) is violated, i.e., if
the distribution of, say,A at a given value of α changes in response
to changing β. But marginal selectivity is not sufficient for the
existence of a triple

(

f , g,R
)

. Let, e.g., α and β be binary factors,
with values 1, 2 each, and let the correlation ρ between A and B
for a treatment (α, β) be denoted ραβ. Then the triple in question
does not exist if the correlations violated the “cosphericity test”
(Kujala andDzhafarov, 2008), also known in quantummechanics
as Landau’s inequality (Landau, 1988):

|ρ11ρ12 − ρ21ρ22| ≤ ρ11ρ12 + ρ21ρ22, (1)

where ραβ =

√

1− ρ2αβ. There are many other known conditions

that must be satisfied for the existence of a triple
(

f , g,R
)

when
marginal selectivity is satisfied (Dzhafarov and Kujala, 2010,
2012a,b, 2013, 2014a).

The allusion to quantum mechanics is not accidental: as
shown in Dzhafarov and Kujala (2012a,b), the theory of selective
influences in psychology can be viewed as a special application of
the theory of (non)contextuality. This theory is interdisciplinary
(Khrennikov, 2009; Dzhafarov and Kujala, 2014b,c,d), but its
origins are in quantum theory, dating from Kochen and Specker
(1967) and Bell’s (1964, 1966) celebrated work. For the modern
state of the theory see Dzhafarov et al. (in press). A simplified

account of the (non)contextuality analysis of the example given
above is as follows. One labels each random variable in play
contextually, i.e., by what property is being measured/recorded
under what treatment (context):




 Avalue of α

︸ ︷︷ ︸

property: what is measured






(

value of α, value of β
)

︸ ︷︷ ︸

context: under what treatement ,







Bvalue of β
︸ ︷︷ ︸

property: what is measured







(

value of α, value of β
)

︸ ︷︷ ︸

context: under what treatement
. (2)

The notation here is, of course, redundant, because the context
and property identifiers overlap, but we need now to emphasize
the logic rather than achieve notational convenience. Once the
labeling is done, one looks at all possible joint distributions
imposable on all these random variables, for all properties and
all treatments. A system is noncontextual if there exists such
a joint distributions in which any two random variables that
represent the same property (“what is measured”) are equal
with probability 1. The latter is possible only if the random
variables representing the same property always have the same
distribution: in our case

(Aα)
(α,β) ∼ (Aα)

(α,β′) ,
(

Bβ

)(α,β)
∼

(

Bβ

)(α′,β) (3)

for any values α, β, α′, β′ of the two factors. This is called
consistent connectedness (Dzhafarov et al., in press), and in
physics is known under a variety of names, including (in certain
paradigms) “no-signaling condition” (Popescu and Rohrlich,
1994; Cereceda, 2000; Masanes et al., 2006). In psychology, this
is marginal selectivity. The definition of noncontextuality just
given is not the most general one, as the notion of contextuality
can be extended to inconsistently connected (violating marginal
selectivity) systems (Dzhafarov et al., in press), but we do not
need this generality in this paper. What is important for us here
is that the existence of a joint distribution mentioned in our
definition is equivalent to the existence of a random variable R
and the functions f , g mentioned in the introductory paragraph.

It is easy to show (Dzhafarov, 2003) that the existence
of a triple

(

f , g,R
)

for given joint distributions of (A,B)

under different treatments (α, β) is equivalent to the existence
of a quintuple

(

f ′, g′, S, SA, SB
)

, where S, SA, SB are random
variables, such that f ′ (α, S, SA) = A and g′ (β, S, SB) =

B. In such a representation, one can speak of a common
source of randomness S and specific sources of randomness
SA, SB. In Dzhafarov et al. (2004) this representation was
used to investigate different series-parallel arrangements of the
hypothetical durations A and B. The reason this representation
has been considered convenient is that if one fixes the value
S = s, then f ′ (α, s, SA) = Ac and g′ (β, s, SB) = Bc are
stochastically independent random variables. One can therefore
use theorems proved for stochastically independent selectively
influenced components (Schweickert et al., 2000) to obtain a
general result by averaging across possible values of s. For
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instance, let α, β be binary factors (with values 1, 2 each), and
let us assume that the observed duration Tαβ is min

(

Aα,Bβ

)

for
every treatment (α, β). Then Tαβs = min

(

Aαs,Bβs

)

for every
value S = s, and it is known that, for the independent Aαs,Bβs

(satisfying a prolongation condition, as explained below),

Pr (T11s ≤ t) − Pr (T12s ≤ t) − Pr (T21s ≤ t) + Pr (T22s ≤ t) ≤ 0.
(4)

Since this should be true for every value S = s, then it should also
be true that

C (t) = Pr (T11 ≤ t) − Pr (T12 ≤ t) − Pr (T21 ≤ t)

+Pr (T22 ≤ t) ≤ 0. (5)

This follows from the fact that

Pr
(

Tαβ ≤ t
)

=

∫

Pr
(

Tαβs ≤ t
)

dm (s) , (6)

where m (s) is the probability measure for S, and the integration
is over the space of all possible s. The linear combination C (t) in
(5) is called the interaction contrast of distributions functions.

The Prolongation Assumption used in Dzhafarov et al. (2004),
and derived from Townsend (1984, 1990a) and Townsend and
Schweickert (1989), is that, for every S = s,

Pr (A1s ≤ t) ≥ Pr (A2s ≤ t) , Pr (B1s ≤ t) ≥ Pr (B2s ≤ t) . (7)

For this particular architecture, T = min (A,B), this is the
only assumption needed. To prove analogous results for more
complex mental architectures, however, one needs additional
assumptions, such as the existence of density functions for
Aαs,Bβs at every s, and even certain ordering of these density
functions in some vicinity [0, τ].

The same results, however, can be obtained without
these additional assumptions, if one adopts the other,
equivalent definition of selective influences: f (α,R) = A and
g (β,R) = B, for some triple

(

f , g,R
)

. If such a representation
exists, then

aαr = f (α, r) , bβr = g (β, r) (8)

are deterministic quantities (real numbers), for every valueR = r.
Any real number x in turn can be viewed as a random variable
whose distribution function is a shifted Heaviside function

h (t − x) =

{

0, if t < x,
1, if t ≥ x.

(9)

In particular, the quantity tαβr = min
(

aαr, bβr

)

for the simple
architecture T = min (A,B) considered above is distributed
according to

h
(

t − tαβr

)

= hαβr (t) . (10)

Let us see how inequality (5) can be derived using these
observations.

We first formulate the (conditional) Prolongation Assumption,
a deterministic version of (7): the assumption is that f , g,R can
be so chosen that for every R = r,

a1r ≤ a2r, b1r ≤ b2r. (11)

Without loss of generality, we can also assume, for any given r,

a1r ≤ b1r (12)

(if not, rename a into b and vice versa).

Remark 1.1. The Prolongation Assumption clearly implies (7).
Conversely, if (7) holds, one can always find functions f , g,R
for which the Prolongation Assumption holds in the form
above. For instance, one can choose R = (S, SA, SB), take
SA and SB to be uniformly distributed between 0 and 1, and
choose f (α, . . .) , g (β, . . .) to be the quantile functions for the
hypothetical distributions of A and B at the corresponding factor
levels.

We next form the conditional (i.e., conditioned on R = r)
interaction contrast

cr (t) = h11r (t) − h12r (t) − h21r (t) + h22r (t) . (13)

Notation Convention. When r is fixed throughout a discussion,
we omit this argument and write aα, bβ, tαβ, hαβ(t), c (t) in place
of aαr, bβr, tαβr, hαβr(t), cr(t). (For binary factors α, β, we also
conveniently replace α, β in indexation with i, j.)

Following this convention, there are three different
arrangements of a1, a2, b1, b2 (for a given R = r) satisfying
(11)–(12):

(i) a1 ≤ b1 ≤ a2 ≤ b2
(ii) a1 ≤ a2 ≤ b1 ≤ b2
(iii) a1 ≤ b1 ≤ b2 ≤ a2

(14)

In all three cases,

t11 = min
(

a1, b1
)

= a1 = min
(

a1, b2
)

= t12. (15)

For arrangement (i) we have

•
t11 = t12 = a1

+h11 (t) = 1
−h12 (t) = −1
−h21 (t) = −0
+h22 (t) = 0
= c (t) = 0

≤ t <
•

t21 = b1

+h11 (t) = 1
−h12 (t) = −1
−h21 (t) = −1
+h22 (t) = 0
= c (t) = −1

≤ t <
•

t22 = a2
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This diagram shows the values of hijr (t) and the resulting values
of cr (t) as t changes with respect to the fixed positions of tijr (with

index r dropped everywhere). Analogously, for arrangements (ii)
and (iii), we have, respectively

•
t11 = t12 = a1

c (t) = 0

≤ t <
•

t21 = t22 = a2

and

•
t11 = t12 = a1

c (t) = 0

≤ t <
•

t21 = b1

c (t) < 0

≤ t <
•

t22 = b2

In all three cases, c (t) is obviously zero for t < t11 and t ≥ t22.
We see that c(t) = cr (t) ≤ 0 for all t and every R = r. It follows
that C (t) ≤ 0, because

Pr
(

Tij ≤ t
)

=

∫

hijr (t) dµ (r) , (16)

for i, j ∈ {1, 2}, and

C (t) =

∫

cr (t) dµ (r) ≤ 0, (17)

where µ is the probability measure associated with R and the
integration is over all possible r. We obtain the same result as
in (5), but in a very different way.

In this paper we extend this approach to other mental
architectures belonging to the class of series-parallel networks,
those involving other composition operations and possibly
more than just two selectively influenced processes. In doing
so we follow a long trail of work mentioned earlier. When
dealing with multiple processes we follow Yang et al. (2013)
in using high-order interaction contrasts. All our results are
replications or straightforward generalizations of the results
already known: the primary value of our work therefore is not in
characterizing mental architectures, but rather in demonstrating
a new theoretical approach and a new proof technique.

1.1. Definitions, Terminology, and Notation
Since we deal with the durations of processes rather than the
processes themselves, we use the term composition to describe
a function that relates the durations of the components of
a network to the overall (observed) duration. Formally, a
composition is a real-valued function t = t

(

a, b, . . . , z
)

of
an arbitrary number of real-valued arguments. The arguments
a, b, . . . , z are referred to as durations or components. In this
article, we will use X ∧ Y ∧ . . . ∧ Z to denote min(X,Y, . . . ,Z),
and X ∨ Y ∨ . . . ∨ Z to denote max(X,Y . . . ,Z).

A series-parallel composition (SP) is defined as follows.

Definition 1.2. (1) A single duration is an SP composition. (2)
If X and Y are SP compositions with disjoint sets of arguments,
thenX∧Y ,X∨Y , andX+Y are SP compositions. (3) There are no
other SP compositions than those construable by Rules 1 and 2.

Remark 1.3. The requirement thatX andY in Rule 2 have disjoint
sets of arguments prevents expressions like X ∧ X or X + X ∨ Y .
But if the second X in X ∧ X is renamed into X′, or X ∨ Y in
X + X ∨ Y is renamed into Z, then the resulting X ∧ X′ and
X + Z are legitimate SP compositions. This follows from the
generality of our treatment, in which different components of
an SP composition may have arbitrary joint distributions: e.g.,
X and X′ in X ∧ X′ may very well be jointly distributed so that
Pr

[

X = X′
]

= 1. One should, however, always keep in minds the
pattern of selective influences: thus, if X is influenced by α, then
Z is also influenced by α in X + Z above.

Any SP composition is obtained by a successive application
of Rules 1 and 2 (the sequence being generally non-unique), and
at any intermediate stage of such a sequence we also have an SP

composition that we can term a subcomposition.

Definition 1.4. Two durations X,Y in an SP composition are
said to be parallel or concurrent if there is a subcomposition
of this SP composition of the form SP

1
(

X,X′, . . .
)

∧

SP
2
(

Y,Y ′, . . .
)

(in which case X,Y are said to be min-parallel)
or SP

1
(

X,X′, . . .
)

∨ SP
2
(

Y,Y ′, . . .
)

(X,Y are max-parallel).
X,Y in an SP composition are said to be sequential or serial if
there is a subcomposition of this SP composition of the form
SP

1
(

X,X′, . . .
)

+ SP
2
(

Y,Y ′, . . .
)

.

Definition 1.5. An SP composition is called homogeneous if it
does not contain both ∧ and ∨ in it; if it does not contain ∧, it is
denoted SP∨; if it does not contain ∨, it is denoted SP∧.

The only SP composition that is both SP∧ and SP∨ is a purely
serial one: a+b+ . . .+ z. Most of the results previously obtained
for mental networks are confined to homogeneous compositions.
We will not need this constraint for the most part.
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Since we will be dealing with compositions of more than
just two components, we need to extend the definition of
selective influences mentioned above. In the formulation below,
∼ stands for “has the same distribution as.” A treatment φ =
(

λ1i1 , . . . , λ
n
in

)

is a vector of values of the factors λ1, . . . , λn, the

values of λk (k = 1, . . . , n) being indicated by subscripts, λkik .

Definition 1.6. Random variables (X1, . . . ,Xn) are selectively
influenced by factors (λ1, . . . , λn), respectively,

(X1, . . . ,Xn) " (λ1, . . . , λn), (18)

if for some random variable R, whose distribution does not
depend on (λ1, . . . λn), and for some functions g1, . . . , gn,

(X1
φ, . . . ,Xn

φ) ∼ (g1(λ
1
i1
,R), . . . , gn(λ

n
in
,R)), (19)

for any treatment φ =

(

λ1i1 , . . . , λ
n
in

)

.

In the subsequent discussion we assume that all non-dummy
factors involved are binary in a completely crossed design (i.e.,
the overall time T is recorded for all 2n vectors of values for φ).
When we have random variables not influenced by any of these
factors, we will say they selectively influenced by an empty set of
factors (we could also, equivalently, introduce for them dummy
factors, with one value each).

2. SP Compositions Containing Two

Selectively Influenced Processes

Consider two processes, with durations A and B in an SP

composition. The overall duration of this SP composition can
be written as a function of A,B and other components: T =

T(A,B, . . .). We assume that A,B, and all other components
are selectively influenced by α, β, and empty set, respectively:
(A,B, . . .) " (α, β,∅). Let each factor has two levels: α =

1, 2 and β = 1, 2, with four allowable treatments (1, 1), (1, 2),
(2, 1), and (2, 2). The corresponding overall durations (random
variables) are written as T11,T12,T21, and T22.

By Definition 1.6 of selective influences, each process duration
(a random variable) is a function of some random variable R and
the corresponding factor: A = a (α,R), B = b (β,R) . For any
given value R = r, the component durations are fixed numbers,

a (α = 1, r) = a1r, a (α = 2, r) = a2r,
b (β = 1, r) = b1r, b (β = 2, r) = b2r,

x (∅, r) = xr,
(20)

where x is the value of any duration X in the composition
other than A and B. We assume that R is chosen so that the
Prolongation Assumption (11) holds, with the convention (12).

The overall duration T at R = r is also a fixed number, written
as (recall that we replace α, β in indexation with i, j)

T
(

air, βjr, . . .
)

= tijr, i, j ∈ {1, 2} . (21)

The distribution function for tijr is the shifted Heaviside function
hijr (t) = h

(

t − tijr
)

,

• 1

•
tijr time

// 0

(22)

The conditional interaction contrast cr (t) is defined by (13).
Denoting by Hij(t) the distribution function of Tij, we have

Hij (t) =

∫

R

hijr (t) dµr, (23)

withR denoting the set of possible values of R. For the observable
(i.e., estimable from data) interaction contrast

C (t) = H11 (t) −H12 (t) −H21 (t) +H22 (t) , (24)

we have then

C (t) =

∫

R

cr (t) dµr. (25)

Note that it follows from our Prolongation Assumption that

H11 (t) ≥ H12 (t) , H21 (t) ≥ H22 (t) ,

H11 (t) ≥ H21 (t) , H12 (t) ≥ H22 (t) . (26)

We also define two conditional cumulative interaction contrasts
(conditioned on R = r):

c (0, t) =
∫ t

0
c (τ ) dτ. (27)

c (t,∞) =

∫ ∞

t
c (τ ) dτ = lim

u→∞

∫ u

t
c (τ ) dτ. (28)

The corresponding observable cumulative interaction contrasts
are

C (0, t) =

∫

R

c (0, t) dµr =

∫

R

(∫ t

0
c (τ ) dτ

)

dµr

=

∫ t

0

(∫

R

c (τ ) dµr

)

dτ =

∫ t

0
C (τ ) dτ. (29)

C (t,∞) =

∫

R

c (t,∞) dµr =

∫

R

(∫ ∞

t
c (τ ) dτ

)

dµr

=

∫ ∞

t

(∫

R

c (τ ) dµr

)

dτ =

∫ ∞

t
C (τ ) dτ. (30)

In these formulas we could switch the order of integration by
Fubini’s theorem, because, for any interval of reals I,

∫

I×R
|c (τ )| d (τ × µr) ≤

∫

I×R
2d (τ × µr) ≤ 2. (31)
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2.1. Four lemmas
Recall the definition of cr (t) in (13). We follow our Notation
Convention and drop the index r in cr (t) and all other
expressions for a fixed r.

Lemma 2.1. In any SP architecture, for any r,

t11 ≤ t12 ∧ t21 ≤ t12 ∨ t21 ≤ t22.

Proof. Follows from the (nonstrict) monotonicity of the SP

composition in all arguments.

Lemma 2.2. In any SP architecture, for any r, c (t) equals 0 for all
values of t except for two cases:

(Case
+) if t11 ≤ t < t12 ∧ t21, then c (t) = 1− 0− 0+ 0 > 0,

and
(Case

−) if t12 ∨ t21 ≤ t < t22, then c (t) = 1− 1− 1+ 0 < 0.

Proof. By direct computation.

Lemma 2.3. In any SP architecture, for any r, c (t) ≤ 0 for all
values of t if and only if t11 = t12 ∧ t21; c (t) ≥ 0 for all values of t
if and only if t12 ∨ t21 = t22.

Proof. Immediately follows from Lemma 2.2.

Lemma 2.4. In any SP architecture, for any r,

(i) c (0, t) =
∫ t
0 c (τ ) dτ ≥ 0 for any t if and only if

−t11 + t12 + t21 − t22 ≥ 0,
(ii) c (t,∞) =

∫ ∞

t c (τ ) dτ ≤ 0 for any t if and only if
−t11 + t12 + t21 − t22 ≤ 0,

(iii) limt→∞ c (0, t) = 0 if and only if −t11+t12+t21−t22 = 0.
(iv) limt→0 c (t,∞) = 0 if and only if −t11+t12+t21−t22 = 0.

Proof. Without loss of generality, put t12 ≤ t21. We have

c (0, t) =




























0 if t < t11

(t − t11) if t11 ≤ t < t12

(t − t11) − (t − t12) = t12 − t11 if t12 ≤ t < t21

(t − t11) − (t − t12) − (t − t21)

= −t11 + t12 + t21 − t if t21 ≤ t < t22

(t − t11) − (t − t12) − (t − t21) + (t − t22)

= −t11 + t12 + t21 − t22 if t ≥ t22

The expressions for the first three cases are obviously
nonnegative. If−t11+ t12+ t21− t22 ≥ 0, then c (0, t) ≥ 0 for all
t in the last case (t ≥ t22). With−t11+ t12+ t21− t22 ≥ 0, we have
−t11+t12+t21−t ≥ t22−t ≥ 0 for the fourth case (t21 ≤ t < t22).
Hence c (0, t) ≥ 0 for all t if−t11+t12+t21−t22 ≥ 0. Conversely,
if c (0, t) ≥ 0 for all t, then it is also true for t ≥ t22, whence
−t11 + t12 + t21 − t22 ≥ 0.

The proof for c (t,∞) =
∫ ∞

t c (τ ) dτ requires replacing it first
with

∫ u
t c (τ ) dτ ≤ 0 for some u > t22. We have

∫ u

t
c (τ ) dτ =











































(u− t11) − (u− t12) − (u− t21) + (u− t22)

= −t11 + t12 + t21 − t22 if t < t11

(u− t) − (u− t12) − (u− t21) + (u− t22)

= −t + t12 + t21 − t22 if t11 ≤ t < t12

(u− t) − (u− t) − (u− t21) + (u− t22)

= t21 − t22 if t12 ≤ t < t21

(u− t) − (u− t) − (u− t) + (u− t22)

= t − t22 if t21 ≤ t < t22

(u− t) − (u− t) − (u− t) + (u− t)

= 0 if t ≥ t22

The expressions for the last three cases are obviously nonpositive.
If −t11 + t12 + t21 − t22 ≤ 0, then

∫ u
t c(2) (τ ) dτ ≤ 0 for all t in

the first case (t < t11). With −t11 + t12 + t21 − t22 ≤ 0, we have
−t+t12+t21−t22 ≤ t11−t < 0 for the second case (t11 ≤ t < t12).
Hence

∫ u
t c (τ ) dτ ≤ 0 for all t if −t11 + t12 + t21 − t22 ≤ 0 .

Since in all expressions u is algebraically eliminated, they remain
unchanged as u → ∞. Conversely, if c (t,∞) ≤ 0 for all t, then
it is also true for t < t11, whence−t11 + t12 + t21 − t22 ≤ 0.

The statements (iii) and (iv) follow trivially.

2.2. Parallel Processes
2.2.1. Simple Parallel Architectures of Size 2
A simple parallel architecture corresponds to one of the two
compositions: T = A ∧ B or T = A ∨ B, with (A,B) " (α, β).
Recall the definition of C (t) in (24).

Theorem 2.5. For T = A ∧ B, we have c (t) ≤ 0 for any r, t;
consequently, C (t) ≤ 0 for any t. For T = A∨B, we have c (t) ≥ 0
for any r, t; consequently, C (t) ≥ 0 for any t.

Proof. For T = A ∧ B with the Prolongation Assumption
(11)–(12), we have

t11 = a1 ∧ b1 = a1, t12 = a1 ∧ b2, t21 = a2 ∧ b1.

It follows that

t12 ∧ t21 = a1 ∧ b2 ∧ a2 ∧ b1 = a1 = t11.

By Lemma 2.3, c (t) ≤ 0. As C (t) in (25) preserves the sign of
c (t), we have C (t) ≤ 0. For T = A ∧ B, we have

t22 = a2 ∨ b2, t12 = a1 ∨ b2, t21 = a2 ∨ b1.

It follows that

t12 ∨ t21 = a1 ∨ b2 ∨ a2 ∨ b1 = t22,

whence, by Lemma 2.3, c (t) ≥ 0 and therefore C (t) ≥ 0.
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2.2.2. Two Parallel Processes in an Arbitrary SP

Network
Consider now a composition SP(A,B, . . .) with (A,B, . . .) "

(α, β,∅).

Lemma 2.6. If A,B in SP(A,B, . . .) are parallel, then
SP(A,B, . . .) can be presented as A′ ∧ B′ if they are min-parallel,
or as A′∨B′ if they are max-parallel, so that (A′,B′) " (α, β) and,
for any fixed R = r, the Prolongation Assumption holds.

Proof. By Definitions 1.2 and 1.4, if A,B are min-parallel, then
SP∧(A,B, . . .) can be presented either as

SP
1(A, . . .) ∧ SP

2(B, . . .)

or

(

SP
1(A, . . .) ∧ SP

2(B, . . .)+ X
)

∧ Y,

or else
(

SP
1(A, . . .) ∧ SP

2(B, . . .) ∧ X
)

+ Y,

where B does not enter in SP
1 and A does not enter in SP

2. On
renaming

SP
1(A, . . .)

︸ ︷︷ ︸

=A′

∧ SP
2(B, . . .)

︸ ︷︷ ︸

=B′

,

(

SP
1(A, . . .) ∧ SP

2(B, . . .)+ X
)

∧ Y

=
(

SP
1(A, . . .)+ X

)

︸ ︷︷ ︸

=A′

∧
(

SP
2(B, . . .)+ X

)

∧ Y
︸ ︷︷ ︸

=B′

,

and

(

SP
1(A, . . .) ∧ SP

2(B, . . .) ∧ X
)

+ Y

=
(

SP
1(A, . . .)+ Y

)

︸ ︷︷ ︸

=A′

∧
(

SP
2(B, . . .) ∧ X + Y

)

︸ ︷︷ ︸

=B′

,

we have, obviously, (A′,B′) " (α, β). Fixing R = r, by the
(nonstrict) monotonicity of SP compositions,

a′1 = SP
1(a1, . . .) ≤ SP

1(a2, . . .) = a′2

and

b′1 = SP
2(b1, . . .) ≤ SP

2(b2, . . .) = b′2

We can also put a′1 = SP
1(a1, . . .) ≤ SP

2(b1, . . .) = b′1
(otherwise we can rename the variables). The proof for the
max-parallel case is analogous.

Theorem 2.7. If A,B in SP(A,B, . . .) are min-parallel, then
c (t) ≤ 0 for any r, t; consequently, C (t) ≤ 0 for any t. If A,B
in SP(A,B, . . .) are max-parallel, then c (t) ≥ 0 for any r, t;
consequently, C (t) ≥ 0 for any t.

Proof. Immediately follows from Lemma 2.6 and Theorem
2.5.

2.3. Sequential Processes
2.3.1. Simple Serial Architectures of Size 2
Simple serial architectures of size 2 corresponds to the SP

composition T = A + B, with (A,B) " (α, β). Recall
the definitions of the two cumulative interaction contrasts:
(27)–(30).

Theorem 2.8. If T = A + B, then c (0, t) ≥ 0 and c (t,∞) ≤ 0
for any r, t; moreover,

lim
t→∞

c (0, t) = lim
t→0

c (t,∞) = 0,

for any r, t. Consequently, C (0, t) ≥ 0, C (t,∞) ≤ 0 for any t,
and

lim
t→∞

C (0, t) = lim
t→0

C (t,∞) = 0

Proof. Follows immediately from Lemma 2.4, since

−t11 + t12 + t21 − t22 = −
(

a1 + b1
)

+
(

a1 + b2
)

+
(

a2 + b1
)

−
(

a2 + b2
)

= 0.

2.3.2. Two Sequential Processes in an Arbitrary SP

Network
Consider now a composition SP(A,B, . . .) with (A,B, . . .) "

(α, β,∅).

Theorem 2.9. If A and B are sequential in an SP(A,B, . . .)
composition, then one or both of the following statements hold:

(i) c (0, t) ≥ 0 for any r, t, and C (0, t) ≥ 0 for any t,
(ii) c (t,∞) ≤ 0 for any r, t, and C (t,∞) ≤ 0 for any t.

Proof. In accordance with Definitions 1.2 and 1.4, SP(A,B, . . .)
with sequential A,B can be presented as either

(

SP
1(A, . . .)+ SP

2(B, . . .)
)

∧ X + Y (32)

or

(

SP
1(A, . . .)+ SP

2(B, . . .)
)

∨ X + Y (33)

(note that any Z in SP
1(A, . . .)+SP

2(B, . . .)+Z can be absorbed
by either of the first two summands). For both cases, by the
monotonicity of SP compositions, for any R = r, SP

1(a1, . . .) ≤
SP

1(a2, . . .), SP
2(b1, . . .) ≤ SP

2(b2, . . .), and we can always
assume SP

1(a1, . . .) ≤ SP
2(b1, . . .). Denoting the durations of

SP
1(ai, . . .) + SP

2(bj, . . .) by t′ij, we have therefore, by Theorem
2.8, −t′11 + t′12 + t′21 − t′22 = 0. Denoting the durations of X and
Y by t′ and t′′, respectively, in the case (32) we have

tij = t′ij ∧ t′ + t′′.
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By Lemma 2.4, all we have to show is that−t11+t12+t21−t22 ≥ 0.
It is easy to see that t′′ does not affect this linear combination, and
its value is (assuming t′12 ≤ t′21, without loss of generality)



















0 if t′ < t′11
−t′11 + t′ if t′11 ≤ t′ < t′12
−t′11 + t′12 if t′12 ≤ t′ < t′21
−t′11 + t′12 + t′21 − t′ if t′21 ≤ t′ < t′22
−t′11 + t′12 + t′21 − t′22 if t′ ≥ t′22.

The nonnegativity of the first three expressions is obvious, the
fifth one is zero, and the forth expression is larger than the fifth
because t′ < t′22.

The proof for the case (33) is analogous.

If the SP composition with sequential A,B is homogeneous
(Definition 1.5), the statement of theorem can be made more
specific.

Theorem 2.10. If A and B are sequential in an SP∧(A,B, . . .)
composition, then c (0, t) ≥ 0 for any r, t, and C (0, t) ≥ 0 for any
t; if the composition is SP∨(A,B, . . .), then c (t,∞) ≤ 0 for any
r, t, and C (t,∞) ≤ 0 for any t.

3. Multiple Processes

We now turn to networks containing n ≥ 2 processes with
durations (X1, . . . ,Xn), selectively influenced by factors
(λ1, . . . , λn). In other words, we deal with compositions
SP(X1, . . . ,Xn, . . .) such that (X1, . . . ,Xn, . . .) "

(λ1, . . . , λn,∅), where each λk is binary, with values 1,2.
There are 2n allowable treatments and 2n corresponding overall
durations, T11...1,T11...2, . . . ,T22...2. According to Definition 1.6
of selective influences, each process duration here is a function
of some random variable R and of the corresponding factor,
Xk = xk(R, λk). For any fixed value R = r, these durations are
fixed numbers for any given treatment, and so is the overall,
observed value of the SP composition. We denote them

xk(r, λk = 1) = xk1r, xk(r, λk = 2) = xk2r, (34)

and

T(x1i1r, x
2
i2r

, . . . , xninr, . . .), . . . = ti1i2...inr, (35)

where i1, i2, . . . , in ∈ {1, 2} . The distribution function for
ti1i2...inr is a shifted Heaviside function

hi1i2...inr (t) =

{

0, if t < ti1i2...inr
1, if t ≥ ti1i2...inr

. (36)

Denoting by Hi1i2...in (t) the distribution function of Ti1i2...in , we
have

Hi1i2...in (t) =

∫

R

hi1i2...inr (t) dµr. (37)

Conditioned on R = r, the n-th order interaction contrast is
defined in terms of mixed finite differences as

c(n)r (t) = 1i11i2 . . . 1inhi1i2...inr (t) , (38)

which, with some algebra can be shown to be equal to

c(n)r (t) =
∑

i1,i2,...,in

(−1)n+
∑n

k= 1 ik hi1...inr (t) . (39)

Thus,

c(1)r (t) = 1i1hi1r (t) = h1r (t) − h2r (t)

=
∑

i1

(−1)1+i1 hi1r (t) , (40)

c(2)r (t) = 1i11i2hi1i2r (t) =
[

h11r (t) − h12r (t)
]

−
[

h21r (t) − h22r (t)
]

= h11r (t) − h12r (t) − h21r (t) + h22r (t)

=
∑

i1,i2

(−1)2+i1+i2 hi1i2r (t) , (41)

c(3)r (t) = 1i11i21i3hi1i2i3r (t)

=
{[

h111r (t) − h112r (t)
]

−
[

h121r (t) − h122r (t)
]}

−
{[

h211r (t) − h212r (t)
]

−
[

h221r (t) − h222r (t)
]}

= h111r (t) − h112r (t) − h121r (t) − h211r (t)

+h122r (t) + h212r (t) + h221r (t) − h222r (t)

=
∑

i1,i2,i3

(−1)3+i1+i2+i3 hi1i2i3r (t) , (42)

etc. The observable distribution function interaction contrast of
order n is defined as

C(n) (t) =

∫

R

c(n)r (t) dµr. (43)

By straightforward calculus this can be written in extenso as

C(n) (t) =
∑

i1,i2,...,in

(−1)n+
∑n

k= 1 ik Hi1...in (t) , (44)

or, in terms of finite differences,

C(n) (t) = 1i11i2 . . . 1inHi1i2...in (t) . (45)

This is essentially the high-order interaction contrast used by
Yang et al. (2013), the only difference being that they use survivor
functions 1 − H (t) rather than the distribution functions H (t).
We see that cr (t) and C (t) in the preceding analysis correspond
to c(2)r (t) and C(2) (t), respectively.

We also introduce n-th order cumulative contrasts.
Conditioned on R = r, we define

c[1]r (0, t) = c[1]r (t,∞) = h1r (t) − h2r (t) , (46)
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c[2]r (0, t) =
∫ t

0
c(2)r (t1) dt1, c[2]r (t,∞) =

∫ ∞

t
c(2)r (t1) dt1,

(47)

c[3]r (0, t) =
∫ t

0

∫ t1

0
c(3)r (t2) dt2dt1,

c[3]r (t,∞) =

∫ ∞

t

∫ ∞

t1

c(3)r (t2) dt2dt1, (48)

etc. Generalizing,

c[n]r (0, t) =
∫ t

0

(∫ t1

0
. . .

∫ tn−2

0
c(n)r (tn−1) dtn−1 . . . dt2

)

dt1,

(49)

c[n]r (t,∞) =

∫ ∞

t

(∫ ∞

t1

. . .

∫ ∞

tn−2

c(n)r (tn−1) dtn−1 . . . dt2

)

dt1.

(50)
The corresponding unconditional cumulative contrasts of the n-
th order are, as always, defined by integration of the conditional
ones:

C[n] (0, t) =
∫

R

c[n]r (0, t) dµr

=

∫ t

0

(∫ t1

0
. . .

∫ tn−2

0
C(n) (tn−1) dtn−1 . . . dt2

)

dt1, (51)

C[n] (t,∞) =

∫

R

c[n]r (t,∞) dµr

=

∫ ∞

t

(∫ ∞

t1

. . .

∫ ∞

tn−2

C(n) (tn−1) dtn−1 . . . dt2

)

dt1. (52)

In the proofs below we will make use of the recursive
representation of the conditional cumulative contrasts c[n]r . It is
verified by straightforward calculus. Denoting

c
(n−1)
iwr

(t) =
∑

i1,...,iw−1,iw+1,...,in

(−1)n−1−iw+
∑n

k= 1 ik hi1...iw− 1iwiw+ 1...inr (t) ,

(53)

where w ∈ {1, . . . , n} and iw is fixed at 1 or 2, we have:

c[1]r (0, t) = c[1]r (t,∞) = h1r (t) − h2r (t) , (54)

c[2]r (0, t) =
∫ t

0
c(2)r (τ ) dτ

=

∫ t

0

(

h11r (τ ) − h12r (τ ) − h21r (τ ) + h22r (τ )
)

dτ

=

∫ t

0

[

c
(1)
iw=1,r (τ ) − c

(1)
iw=2,r (τ )

]

dτ (55)

=

∫ t

0
c
[1]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[1]
iw=2,r (0, τ ) dτ,

c[2]r (t,∞) =

∫ ∞

t
c(2)r (τ ) dτ

=

∫ ∞

t

(

h11r (τ ) − h12r (τ ) − h21r (τ ) + h22r (τ )
)

dτ

(56)

=

∫ ∞

t

[

c
(1)
iw=1,r (τ ) − c

(1)
iw=2,r (τ )

]

dτ

=

∫ ∞

t
c
[1]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[1]
iw=2,r (τ,∞) dτ,

c[3]r (0, t) =
∫ t

0

∫ t1

0
c(3)r (t2) dt2dt1

=

∫ t

0

∫ t1

0

[

c
(2)
iw=1,r (t2) − c

(2)
iw=2,r (t2)

]

dt2dt1

=

∫ t

0

[∫ t1

0
c
(2)
iw=1,r (t2) dt2 −

∫ t1

0
c
(2)
iw=2,r (t2) dt2

]

dt1

(57)

=

∫ t

0
c
[2]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[2]
iw=2,r (0, τ ) dτ,

c[3]r (t,∞) =

∫ ∞

t

∫ ∞

t1

c(3)r (t2) dt2dt1

=

∫ ∞

t

∫ ∞

t1

[

c
(2)
iw=1,r (t2) − c

(2)
iw=2,r (t2)

]

dt2dt1

=

∫ ∞

t

[∫ ∞

t1

c
(2)
iw=1,r (t2) dt2 −

∫ ∞

t1

c
(2)
iw=2,r (t2) dt2

]

dt1

(58)

=

∫ ∞

t
c
[2]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[2]
iw=2,r (τ,∞) dτ,

and generally, for n > 1,

c[n]r (0, t) =
∫ t

0
c
[n−1]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[n−1]
iw=2,r (0, τ ) dτ, (59)

c[n] (t,∞) =

∫ ∞

t
c
[n−1]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[n−1]
iw=2,r (τ,∞) dτ.

(60)
Also we have, by substitution of variables under integral,

c
[n−1]
iwr

(0, t) = c[n−1]
r

(

0, t − xwiwr
)

, (61)

c
[n−1]
iwr

(t,∞) = c[n−1] (t − xwiwr,∞
)

. (62)

The Prolongation Assumption generalizing (11)–(12) is
formulated as follows.

Prolongation Assumption. R and functions x1, . . . , xn in (34)
can be chosen so that xk1r ≤ xk2r for all R = r and for all
k = 1, . . . , n. Without loss of generality, we can also assume
x11r ≤ x21r ≤ . . . ≤ xn1r (if not, rearrange x

1
1r, . . . , x

n
1r).
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Notation Convention. As we did before for n = 2, when r is
fixed throughout a discussion, we omit this argument and write
x1i1 , . . . , x

n
in
, ti1i2...in , hi1i2...in (t), c(n)(t) in place of x1i1r, . . . , x

n
inr
,

ti1i2...inr , hi1i2...inr (t), c(n)r (t).

3.1. Parallel Processes
3.1.1. Simple Parallel Architectures of Size n
Theorem 3.1. If T = X1∧ . . .∧Xn, then for any r, t, c(n) (t) ≤ 0
if n is even and c(n) (t) ≥ 0 if n is odd. Consequently, for any t,
C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0 if n is odd.

Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c(1) (t) = h1 (t) − h2 (t) ≥ 0.

Let the statement of the theorem be true for c(n−1)(t) , with
n− 1 ≥ 1. By the Prolongation Assumption,

t1i2...in = x11 ∧ x2i2 ∧ . . . ∧ xnin = x11,

for any i2 . . . in, whence

h1i2...in (t) =

{

0, if t < x11
1, if t ≥ x11

.

Therefore c(n−1)
i1=1 (t) = 0, and, applying the induction hypothesis

to c(n−1)
i1=2 (t),

c(n) (t) = c
(n−1)
i1=1 (t) − c

(n−1)
i1=2 (t) = −c

(n−1)
i1=2 (t)

=

{

≤ 0, if n is even
≥ 0, if n is odd

.

That C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0 if n is odd follows
by the standard argument.

Theorem 3.2. If T = X1∨ . . .∨Xn, then for any r, t, c(n) (t) ≥ 0.
Consequently, for any t, C(n) (t) ≥ 0.

Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c(1) (t) = h1 (t) − h2 (t) ≥ 0.

Let the theorem be true for c(n−1)(t), where n− 1 ≥ 1. Let

x12 ∨ x22 ∨ . . . ∨ xn2 = xm2 ,

where 1 ≤ m ≤ n. We have then

ti1i2...im− 12im+ 1...in = xm2 ,

and

hi1...im− 12im+ 1...in (t) =

{

0, if t < xm2
1, if t ≥ xm2

,

for all i1...im−1, im+ 1...in. Then c
(n−1)
im=2 (t) = 0, and

c(n) (t) = c
(n−1)
im=1 (t) − c

(n−1)
im=2 (t) = c

(n−1)
im=1 (t) ≥ 0.

Consequently, C(n) (t) ≥ 0, for any t.

3.1.2. Multiple Parallel Processes in Arbitrary SP

Networks
In a composition SP

(

X1, . . . ,Xn, . . .
)

, the components
X1, . . . ,Xn are considered parallel if any two of them are
parallel. We assume selective influences (X1, . . . ,Xn, . . .) "

(λ1, . . . , λn,∅). We do not consider the complex situation when
some of the selectively influenced processes X1, . . . ,Xn are
min-parallel and some are max-parallel. However, if they are all
(pairwise) min-parallel or all max-parallel, we have essentially
the same situation as with a simple parallel arrangement of n
durations.

Lemma 3.3. If X1, . . . ,Xn are all min-parallel or max-parallel
in an SP composition, this composition can be presented as T =

A1 ∧ . . . ∧ An or T = A1 ∨ . . . ∨ An, respectively. In either case,
(A1, . . . ,An) " (λ1, . . . , λn) and the Prolongation Assumption
holds for any R = r.

Proof. For the min-parallel case, by a minor modification of the
proof of Lemma 2.6 we present the SP composition as

SP
1(X1, . . .)

︸ ︷︷ ︸

=A1

∧ SP
2(X2, . . . ,Xn, . . .),

or

(

SP
1(X1, . . .) ∧ SP

2(X2, . . . ,Xn, . . .)+ X
)

∧ Y

=
(

SP
1(X1, . . .)+ X

)

︸ ︷︷ ︸

=A1

∧
(

SP
2(X2, . . . ,Xn, . . .)+ X

)

∧ Y,

or else

(

SP
1(X1, . . .) ∧ SP

2(X2, . . . ,Xn, . . .) ∧ X
)

+ Y

=
(

SP
1(X1, . . .)+ Y

)

︸ ︷︷ ︸

=A1

∧
(

SP
2(X2, . . . ,Xn, . . .) ∧ X + Y

)

.

Then we analogously decompose SP
2(X2, . . . ,Xn, . . .) achieving

A1∧A2∧SP
3(X3, . . . ,Xn, . . .), and proceed in this fashion until

we reach the required A1 ∧ . . . ∧ An. The pattern of selective
influences is seen immediately, and the Prolongation Assumption
follows by the monotonicity of the SP compositions. The proof
for the max-parallel case is analogous.

Theorem 3.4. If X1, . . . ,Xn are min-parallel in an SP

composition, then for any r, t, c(n) (t) ≤ 0 if n is even and c(n) (t) ≥
0 if n is odd. Consequently, for any t, C(n) (t) ≤ 0 if n is even and
C(n) (t) ≥ 0 if n is odd. If X1, . . . ,Xn are max-parallel, then for
any r, t, c(n) (t) ≥ 0, and for any t, C(n) (t) ≥ 0.

Proof. Follows from Lemma 3.3 and Theorems 3.1 and 3.2.

3.2. Sequential Processes
3.2.1. Simple Serial Architectures of Size n
Theorem 3.5. If T = X1+ . . .+Xn, then for any r, t, c[n] (0, t) ≥
0, while c[n] (t,∞) ≤ 0 if n is even and c[n] (t,∞) ≥ 0 if n
is odd; moreover, c[n](0,∞) = 0 for any r. Consequently, for
any t, C[n] (0, t) ≥ 0, while C[n] (t,∞) ≤ 0 if n is even and
C[n] (t,∞) ≥ 0 if n is odd; moreover, C[n] (0,∞) = 0.
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Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c[1] (0, t) = c[1] (t,∞) = h1 (t) − h2 (t) ≥ 0,

and

lim
t→∞

c[1] (0, t) = lim
t→0

c[1] (t,∞) = 0.

Let the statement of the theorem hold for all natural numbers up
to and including n − 1 ≥ 1. Using the recursive representations
(59)–(60),

c[n] (0, t) =
∫ t
0 c

[n−1]
iw=1 (0, τ ) dτ −

∫ t
0 c

[n−1]
iw=2 (0, τ ) dτ

=
∫ t−xw1
0 c[n−1] (0, τ ) dτ −

∫ t−xw2
0 c[n−1] (0, τ ) dτ

=
∫ t−xw1
t−xw2

c[n−1] (0, τ ) dτ

, (63)

which is ≥ 0 since c[n−1] (0, τ ) ≥ 0 and t − xw2 ≤ t − xw1 .
Analogously,

c[n] (t,∞) =
∫ ∞

t c
[n−1]
iw=1 (τ,∞) dτ −

∫ ∞

t c
[n−1]
iw=2 (τ,∞) dτ

=
∫ ∞

t−xw1
c[n−1] (τ,∞) dτ −

∫ ∞

t−xw2
c[n−1] (τ,∞) dτ

= −
∫ t−xw1
t−xw2

c[n−1] (τ,∞) dτ

,

(64)
which is ≤ 0 if n is even and ≥ 0 if n is odd. Applying the mean
value theorem to the results of (63) and (64), we get, for some
t − xw2 < t′, t′′ < t − xw1

∫ t−xw1

t−xw2

c[n−1] (0, τ ) dτ = c[n−1] (0, t′
) (

−xw1 + xw2
)

,

∫ t−xw1

t−xw2

c[n−1] (τ,∞) dτ = c[n−1] (t′′,∞
) (

−xw1 + xw2
)

,

and, as c[n−1] (0,∞) = 0, both expressions tend to zero as,
respectively, t → ∞ (implying t′ → ∞) and t → 0 (implying
t′′ → 0).

3.2.2. Multiple Sequential Processes in Arbitrary SP

Networks
In a composition SP

(

X1, . . . ,Xn, . . .
)

, the components
X1, . . . ,Xn are considered sequential if any two of them
are sequential. By analogy with Theorem 2.9 for two
sequential processes and with Theorem 3.4 for parallel
X1, . . . ,Xn, one might expect that the result for the simple
sequential arrangement X1 + . . . + Xn will also extend to
n sequential components of more complex compositions
SP

(

X1, . . . ,Xn, . . .
)

. However, this is not the case, as one can
see from the following counterexample.

Consider the composition

SP(X1,X2,X3,Y) =
(

X1 + X2 + X3) ∧ (Y = 2) , (65)

with
(

X1,X2,X3
)

selectively influenced by binary factors, so that

x11 = x21 = x31 = 0,
x12 = x22 = x32 = 1.

(66)

It follows that

t111 = 0,
t112 = t121 = t211 = 1,
t122 = t212 = t221 = t222 = 2.

(67)

This is clearly a sequential arrangement of the three durations
X1,X2,X3, but one can easily check that c[3] (0, t) here is not
nonnegative for all t. For instance, at t=3 we have, by direct
computation, c[3] (0, t) = −1. We conclude that there is no
straightforward generalization of Theorems 3.5 to arbitrary SP

compositions.

4. Conclusion

The work presented in this paper is summarized in the abstract.
By proving and generalizing most of the known results on
the interaction contrast of distribution functions, we have
demonstrated a new way of dealing with SPmental architectures.
It is based on conditioning all hypothetical components of a
network on a fixed value of a common source of randomness
R (the “hidden variable” of the contextuality analysis in
quantum theory), which renders these components deterministic
quantities, and then treating these deterministic quantities as
random variables with shifted Heaviside distribution functions.

The potential advantage of this method can be seen in the fact
that the shifted Heaviside functions have the simplest possible
arithmetic among distribution functions: for every time moment
it only involves 0’s and 1’s. As a result, the complexity of this
arithmetic does not increase with nonlinearity of the relations
involved. Thus, Dzhafarov and Schweickert (1995); Cortese and
Dzhafarov (1996), and Dzhafarov and Cortese (1996) argued
that composition rules for mental architectures need not be
confined to+,∧,∨. They analyzed architectures involving other
associative and commutative operations, such as multiplication.
Due to mathematical complexity, however, this work was
confined to networks consisting of two components that are
either stochastically independent or monotone functions of each
other. It remains to be seen whether the approach presented here,
mutatis mutandis, will lead to significant generalizations in this
line of work.

The limitations of the approach, however, are already
apparent. Thus, we were not able to achieve any progress over
known results in applying it to Wheatstone bridges (Schweickert
and Giorgini, 1999; Dzhafarov et al., 2004). The possibility
that the “architecture” (composition rule) itself changes as
one changes experimental factors makes the perspective of a
general theory based on our approach even more problematic
(e.g., Townsend and Fific, 2004). It seems, however, that these
problems are not specific for just our approach.
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