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Tumor cells are subjected to a broad range of selective pressures. As a result of the 
imposed stress, subpopulations of surviving cells exhibit individual biochemical phe-
notypes that reflect metabolic reprograming. The present work aimed at investigating 
metabolic parameters of cells displaying increasing degrees of metastatic potential. 
The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines 
derived from human tongue squamous cell carcinoma lineages displaying increasing 
metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear 
magnetic resonance) spectroscopy. Living, intact cells were also examined by the 
non-invasive method of fluorescence lifetime imaging microscopy (FLIM) based on the 
auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct 
metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA) of 
the spectra. Measurement of endogenous free and bound NAD(P)H relative concentra-
tions in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity 
in the energy metabolism, indicating that the cells would oscillate between glycolysis 
and oxidative metabolism depending on the microenvironment’s composition. However, 
LN2 cells appeared to have more contributions to the oxidative status, displaying a 
lower NAD(P)H free/bound ratio. Functional experiments of energy metabolism, mito-
chondrial physiology, and proliferation assays revealed that all lineages exhibited similar 
energy features, although resorting to different bioenergetics strategies to face metabolic 
demands. These differentiated functions may also promote metastasis. We propose that 
lipid metabolism is related to the increased invasiveness as a result of the accumulation 
of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2)n in parallel 
with the metastatic potential progression, thus suggesting that the NAD(P)H reflected 
the lipid catabolic/anabolic pathways.

Keywords: oral squamous cell carcinoma, metastasis, cancer progression, nuclear magnetic resonance, 
metabolomics, metabolic reprogramming
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inTrODUcTiOn

Oral squamous cell carcinoma (OSCC) is the most prevalent type 
of head and neck squamous cell carcinoma frequently leading to 
metastasis to the neck lymph nodes (1). OSCC evolves from high 
proliferation rates of the oral squamous epithelium ultimately 
forming an in situ carcinoma (2, 3) followed by metastasis and a 
high lethality rate (4, 5).

Compared to normal cells, cancer cells have been shown to 
display a reprogrammed metabolism resulting from the specific 
energy demands imposed by growth factor signaling (6, 7). 
Furthermore, in the case of metastatic cells, migration and 
colonization of distant tissues also contribute to the extra energy 
burden. Thus, we envision metastatic cells as a subpopulation of 
cells that were selected in terms of a fine-tuned coordination that 
integrates nutrient uptake, anabolic, and catabolic processes. In 
addition, the microenvironment is variable insofar as the tumor 
anatomy is concerned. Whereas glucose, glutamine, and oxygen 
are freely available for those cells located on the surface of the 
tumor mass, the inner layers of cells are confronted by a radi-
cally different milieu characterized by paucity of nutrients and 
by hypoxia (8, 9). Consequently, these constraints introduce 
selective pressures that will reward metabolic plasticity. Those 
cells that can adjust to the different environments in the tumors 
will either thrive locally or eventually become detached and give 
rise to potentially metastatic cells. Successful adjustment can be 
achieved by gain of function through the concerted activation of 
expression of key enzymes that affect the metabolic flux and pro-
liferative pathways as well as genes involved in the acquisition of 
resistance to anoikis through suppression of apoptotic programs. 
However, it is important to bear in mind that the metastatic 
phenotype probably results from non-adaptive innovation, that 
is, through the integration of pre-existing signaling pathways. 
By becoming manifest, these pathways confer different proper-
ties that enable cells to survive in an otherwise incompatible 
microenvironment (10–12).

Recently, the metabolomic approach using nuclear magnetic 
resonance (NMR) has become increasingly more informative. The 
availability of metabolomic data has been very useful for unrave-
ling the metabolic pathways of several types of cancer as well as 
the biochemical features pertaining to metastasis (13–15). The 
main advantage of metabolomics rests on its ability to instantly 
and globally analyze metabolites quantitatively and qualitatively 
so that not only the involved pathways can be highlighted, but 
also their fluxes could be deduced (16, 17). Likewise, two-photon 
fluorescence lifetime imaging microscopy (FLIM), a non-invasive 
technique, has been successfully used to probe intact living cells 
in order to investigate their metabolism, thus affording a snapshot 
of their energy status. Experimentally, the auto fluorescence gen-
erated by both NADH and NADPH has been used to investigate 
the mitochondrial redox state and hence the energy producing 
pathways (18–20).

In the present study, we performed 1H NMR and FLIM 
determinations combined with functional experiments in order 
to evaluate the metabolic alterations that may be relevant to 
the metastatic phenotypes of tongue squamous cells carcinoma 
(SCC) cells.

MaTerial anD MeThODs

cell lines
In the present study, cell lines developed and isolated from squa-
mous cellular carcinoma SCC-9 (ATCC CRL-1629) by Agostini 
et al. (21) were used. The first cell line produced named SCC-9 
ZsGreen stably expresses a green fluorescent zebrafish plasmid 
(ZsG). The paper describes how SCC-9 cells were inoculated into 
the footpads of BALB/c nude mice and were recovered as LN1 
cells, the first metastatic generation. Another round of inocula-
tion of LN1 cells produced LN2 cells, the second metastatic 
generation. Normal fibroblasts isolated from biopsies (3) were a 
gift by Dr. Ricardo Colleta from Department of Oral Diagnosis 
(School of Dentistry of Piracicaba, State University of Campinas, 
Brazil).

cell culture
For SCC-9 derived cells, Dulbecco’s Modified Eagle Medium: 
nutrient Mixture F12 (DMEM/F12; Gibco®, Life Technologies™, 
USA) was used. Media were supplemented with 10% fetal bovine 
serum (FBS—Cultilab, Brasil) and hydrocortisone 400  ng/
ml (Sigma-Aldrich, USA). For fibroblasts, we used Dulbecco’s 
Modified Eagle Medium (DMEM low; Gibco®, Life Technologies™, 
USA) supplemented with 10% donor bovine serum (DBS; Gibco®, 
Life Technologies™, USA) and 1% penicillin–streptomycin. 
1.1 × 106 cells of ZsG, LN1, LN2, and fibroblasts were transferred 
to 60.1 cm2 Petri dishes and maintained for 48 h in an incubator 
series 8000 water-jacketed CO2 (Thermo Scientific), with 5% of 
CO2 humidity atmosphere. At least four independent biological 
replicates of each cell line were used for experimental analysis. 
All cell lines were genotyped and tested free for Mycoplasma sp. 
infection using polymerase chain reaction.

nMr Metabolomics
ZsG, LN1, and LN2 cells were cultivated in DMEM/F12 and 
fibroblasts in DMEM low until 80% confluence. Then, ~1.2 × 107 
cells from each replicate were trypsinized, centrifuged, and all the 
cell pellets were normalized to ~30 mg for metabolite extraction. 
We adapted the protocol for polar phase extraction according to 
adaptations of the method of Bligh and Dyer biphasic extrac-
tion previously described (22). Briefly, cells were extracted with 
methanol/chloroform/water (2:1:0.8), vortexed for 2  min after 
each addition, and homogenized during 30 min in a shaker in an 
ice bath. The polar aqueous phase (supernatant) was centrifuged 
at 4,600 g for 20 min at 15°C, the supernatant was dried overnight 
under vacuum (SpeedVac) and stored at −80°C until used. The 
samples were suspended in 50 mM phosphate buffer, pH 7.4, con-
taining 10% of D2O and 0.1 mM of 4,4-dimethyl-4-silapentane-
1-sulfonic acid (DSS) for chemical shift reference.

All spectra were acquired in a Bruker Avance III HD spectrom-
eter running at 500.13 MHz for 1H at 298 K. One dimensional 
spectra were acquired with excitation sculpting for water satura-
tion, 20 ppm spectral width, 1.74 s relaxation delay, 64 K points, 
and 3 K accumulations. For assignments, we used 1H-1H TOCSY 
and pJRES. Spectra were aligned and processed in TOPSPIN 
3.5 (Bruker-Biospin) and exported to AMIX (Bruker-Biospin), 
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normalized by DSS intensity as internal reference, 0.02  ppm 
binned, and finally water and DSS signal were excluded. The peak 
intensities were used for the relative metabolite quantification in 
each sample.

For statistical analysis, datasets of at least four independent 
samples of each ZsG, LN1, LN2, and fibroblasts cell culture were 
collected. For the univariate analysis, we used multiple t-test 
with two-stage setup method of Benjamini–Krieger–Yekutieli, 
with false discovery rate (FDR) of 5%, with approach, assum-
ing consistent SD, on GraphPad Prism 6.0. For multivariate 
analysis, we used Metaboanalyst 3.0 (23) with default practice 
(skip missing value imputation), filtered data with median 
intensity value (due to large amount of data), and normalized 
by sum of intensities. In addition, we applied the pareto scaling 
to reduce the impact of the buckets with high prevalence in 
each comparison [signaled as threonine, threitol, and (CH2)n] 
in the statistical analysis and to keep the data structure intact. 
Multivariate methods were used to compare all clusters (four 
groups) or paired groups (fibroblasts vs. ZsG; ZsG vs. LN1; LN1 
vs. LN2) by means of principal component analysis and partial 
least-square discriminant analysis (PLS-DA). To validate class 
discrimination and avoid overfitting, we used a permutation test 
(1,000 permutations) based on separation distance, B/W-ratio, 
and cross-validation by the leave-one-out method (24, 25). We 
also calculated the variable importance in the projection (VIP-
score) to analyze the ranking of the most important metabolites 
in separation groups and the PLS-regression coefficients for 
components 1, 2, and 3.

REACTOME free software (26) was used to determine the 
related metabolic pathways to metabolites accumulated in each 
comparison. Briefly, we listed all the related enzymes that pro-
duce each metabolite by manual curation, and it was analyzed 
into REACTOME using Homo sapiens as background, showing 
the corresponding metabolic pathways. FDR correction was used 
with significance of 0.05.

Fluorescence lifetime imaging
The autofluorescence lifetime images of isolate cultured cells 
were acquired using a laser scanning confocal fluorescence 
microscope Nikon Eclipse TE2000-U equipped with a Spectra-
Physics MaiTai HP Laser (Spectra-Physics). The microscope is 
coupled to a fluorescence correlation spectrometer Alba Flim 
(ISS, Inc.) and data were collected by VistaVision software 
(ISS, Inc.) and analyzed by SimFCS 4 software (27). The sam-
ples were excited by two photons at 740 nm using a 60×/1.20 
Plan-Apochromat water immersion objective lens (Nikon). The 
emission was detected on an Avalanche Photodiode detector, 
through a bypass filter 450 nm. A total of 100 frames from five 
different fields of each sample were collected. The image size 
acquired was 256 × 256 and the pixel dwell time was 40 µs. The 
calibration was done using a solution of 250 µM of NADH in 
water. The fluorescence lifetime was calculated by the phasor 
approach. Briefly, through Fast Fourier Transformation, the 
fluorescence decay in each pixel is plotted on the phasor plot 
by the coordinates G and S. The distribution of phasor points 
reveals areas of different lifetimes within the universal semicircle 
(28). Free and bound NADH have lifetimes of 0.38 and 3.4 ns, 

respectively, and their fluorescence intensity decays are plotted 
in the universal semicircle (29, 30).

high-resolution respirometry
High-resolution respirometry (Oroboros Oxygraph-2k) was 
performed to evaluate the oxygen consumption of intact cells, as 
previously described (31). 106 cells/ml of ZsG, LN1 and LN2 cells 
were cultivated separately and suspended in culture medium 
(DMEM/F12) without fetal bovine serum and phenol red. Then, 
cells were placed into a respiration chamber until the steady-
state respiratory flux was attained (~10 min). Subsequently, the 
following parameters were measured: ATP synthase independ-
ent respiration in the presence of oligomycin (oligo) allowing 
the observation of oxygen consumption uncoupled to ATP 
synthesis (“leak”); content of oxygen consumption inhibited by 
the presence of oligomycin (“coupled”); titration with carbonyl 
cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) to 
assess the maximal oxygen consumption rates once it stimulates 
the electron transfer system efficiency (“ETS”); residual oxygen 
consumption (“ROX”) in the presence of rotenone (NADH 
dehydrogenase inhibitor) and antimycin A (AA) (cytochrome 
bc1 inhibitor). Data acquisition and analysis were carried out 
with DatLab 5.1 software (Oroboros Instruments, Innsbruck, 
Austria).

lactate release in culture Media
After 24 h of incubation with completed DMEM/F12 + 10% FBS 
and hydrocortisone 400 ng/ml, the culture medium was replaced 
by fresh DMEM/F12 without phenol red and FBS. Aliquots from 
the culture medium were collected at 0 and 60 min of incubation 
to evaluate lactate release through enzymatic assay. The lactate 
assay was performed in hydrazine/glycine buffer, pH 9.2, contain-
ing 5 mg/ml β-NAD+ and 15 U/ml lactate dehydrogenase (LDH; 
Sigma-Aldrich). NADH absorbance was monitored in a micro-
plate reader (SpectraMax M5, Molecular Devices) at 340 nm.

Proliferation assay
Proliferation assays were performed using Sulforhodamine B 
(SRB) colorimetric assays, as previously described (32). Briefly, 
cells were placed into 96-well plates. After each endpoint (0, 
24, 48, and 72  h), the culture medium was removed and cells 
were fixed with 10% trichloroacetic acid for 1  h at 25°C. The 
plates were then washed with distilled water and incubated with 
SRB solution (1% in acetic acid) for 15 min. After rinsing with 
1% acetic acid, the cell monolayers were dried and the proteins 
were solubilized with Tris pH 10.4. Absorbance was measured 
at 490  nm using a spectrophotometer (SpectraMax Plus 384, 
Molecular Devices).

statistical analysis
Besides metabolomics, all the experiments were plotted as 
means  ±  SD for n independent experiments. Statistical sig-
nificance to evaluate two groups was determined by the unpaired 
t-test, one-way ANOVA, and Dunnett posttest. Univariate analy-
sis was done by multiple t-test, two-way ANOVA, and posttest 
Holm–Sidak. All set at alpha = 0.05. The graphs were generated by 
GraphPad Prism version 6.0 for Windows (GraphPad Software, 
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FigUre 1 | Metabolic profiles of normal, tumor, and metastatic cells. 1D 1H nuclear magnetic resonance representative spectra from fibroblast, ZsG, LN1, and LN2 
cells polar extract of aliphatic region (a), and aromatic region (B). (c) 2D Score plot of partial least-square discriminant analysis, with components 1 and 2 of 
multivariate analysis comparing all cell lines. (D) VIP scores of the most significantly altered metabolites important for multivariate analysis (p-value <0.05).
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La Jolla, CA, USA) and Excel (Microsoft Corporation®) with 95% 
of confidence level.

resUlTs

Metabolic Profiles of normal, Tumor, and 
Metastatic cells
In order to gather insights into the intracellular metabolism 
of cells representing different stages of tumor progression, 1H 
NMR spectra of cellular extracts were compared. Tongue nor-
mal fibroblasts were also investigated. High quality spectra of 
at least four replicates from each cell line (ZsG, LN1, and LN2) 
as well as fibroblasts samples were obtained. All determinations 
revealed similar spectral characteristics within each cluster 
of cell line, indicating that metabolic profiles of individual 
biological replicates were reproducible. Representative 1D 1H 
NMR of the polar phase of the cellular extracts are shown in 
Figures 1A,B within the range of 0.8 and 8.0 ppm. Assignments 

of previously identified metabolites were obtained by compar-
ing chemical shifts and spectral peak multiplicities with data 
from the literature and BMRB (33), HMDB (34), and COLMAR 
(35) data bases.

The major differences between each step of the metastasis pro-
gression, i.e., fibroblasts vs. ZsG, ZsG vs. LN1, and LN1 vs. LN2 
were associated to the accumulation or decrease of threonine, 
threitol, n-acetyl glutamate, methyl malonate, malonate, n-acetyl, 
creatine, ribose, lactate, ethanolamine, phosphoethanolamine, 
and unsaturated lipids (Table 1).

Metabolomic profiles comparing the isolated groups of cells 
showed clearly the discrimination between normal and cancer 
cells by multivariate analysis PLS-DA score plot and VIP scores 
(Figures 1C,D). These analyses were validated using cross valida-
tion by the leave-one-out method (23–25), revealing an accuracy 
of −0.58 R2 (clear variation) of 0.90 and Q2 (predictive capability) 
of 0.57 for two components, representing a reliable classification 
model. In both measures, the value 1 indicates absolute fitting and 
high predictive power (36).
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TaBle 1 | Multivariate analysis data and the highest VIP scores for each 
comparison (fibroblasts vs. ZsG; ZsG vs. LN1; LN1 vs. LN2).

Metabolite δh 
(ppm)

status False discovery 
rate (FDr) 
(q-value)

Fibroblast vs. 
ZsG

Threonine 3.59 ↓ <1E−15

Creatine 2.97 ↑ 1.48E−03

n-acetyl 2.03 ↑ 1.86E−03

Malonate 3.15 ↑ 1.80E−02

Ribose + n-acetyl-
glutamate

2.21 ↑ 3.93E−02

Malonate 3.13 ↑ 3.93E−02

ZsG vs. LN1 Ribose + n-acetyl-
glutamate

2.21 ↑ <1E−15

Threitol 3.69 ↑ <1E−15

Phosphoethanolamine 3.99 ↑ 8.60E−06

Ethanolamine 3.83 ↑ 1.39E−05

(CH2)n 1.27 ↑ 1.02E−02

n-acetyl 2.03 ↑ 4.35E−02

LN1 vs. LN2 (CH2)n 1.27 ↑ 4.90E−13

Ribose + n-acetyl-
glutamate

2.21 ↓ 4.86E−07

Methyl-malonate 1.21 ↓ 4.17E−02

Table shows the metabolites identified, 1H chemical shift values in ppm scale (δH) 
and status represented by arrows ↑↓ indicating increased or decreased metabolites, 
respectively, based on VIP scores (>1; p < 0.05 from Student’s t-test and FDR 
correction q < 0.05).

TaBle 2 | Enzymes related to metabolite accumulation.

Metabolite related enzymes cell comparison

Threonine THNSL1 Fibroblast vs. ZsG

THNSL2

Creatine GAMT Fibroblast vs. ZsG
ASL

n-acetyl NAT1 Fibroblast vs. ZsG; ZsG 
vs. LN1NAT2

NAT8

NAT8B

GNPNAT1

AANAT

HGSNAT

ESCO1

ESCO2

Malonate ALDH6A1 Fibroblast vs. ZsG

Ribose + n-acetyl-glutamate RBKS Fibroblast vs. ZsG; ZsG vs. 
LN1; LN1 vs. LN2NAGS 

Phosphoethanolamine ETNK1 ZsG vs. LN1

ETNK2

Ethanolamine PHOSPHO1 ZsG vs. LN1

Threitol FGGY ZsG vs. LN1

(CH2)n Fatty acid synthase ZsG vs. LN1; LN1 vs. LN2

HADHA

HADHB

Methyl-malonate ALDH6A1 LN1 vs. LN2

Table shows the enzymes related to the accumulation of metabolites and the 
corresponding cell comparisons.
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Several metabolic changes accompany tumorigenesis progres-
sion toward metastasis. To evaluate these alterations during the 
transformation and over tumor development, we previously 
defined paired comparisons replicating parental and derived cells. 
Then, we compared the metabolic profiling between each group 
and according to multivariate analysis PLS-DA, many metabolites 
were informative to distinguish the clusters. Among these values, 
we gathered the buckets with the highest VIP scores (>1; p < 0.05 
from Student’s t-test and FDR correction q < 0.05) and loading 
factors, considering the most discriminating power in each the 
comparison (Table 1; Figure S1 in Supplementary Material).

Metabolite accumulation is due Mainly to 
lipid and nitrogen Metabolism, through 
aminoacid Transformation
In order to understand the origin and the biochemical implica-
tions of those metabolites, all the enzymes related to their forma-
tion were analyzed using the free software REACTOME (26), thus 
revealing the most representative biochemical pathways involved. 
The summary of the major findings is shown in Table 2 and Table 
S1 in Supplementary Material. It is interesting to mention that 
there is only one metabolic pathway, related to metabolism of 
amino acids through aldehyde dehydrogenase 6 family member 
A1 (ALDH6A1), which use NAD+ as cofactor, in fibroblasts and 
ZsG comparison. ZsG vs. LN1 comparison shows that β-oxidation 
and lipid metabolism are the most important processes in LN1 
cells. In the same way, lipid metabolism is highly dependent on 

NAD+, through hydroxyacyl-CoA dehydrogenase/3-ketoacyl-
CoA thiolase/enoyl-CoA hydratase [trifunctional protein], alpha 
subunit (HADHA). A similar pattern is observed in LN1 vs. 
LN2 comparison. However, the fatty acid synthase (FASN) uses 
NADPH as cofactor. Also, interactomes of the related enzymes 
were performed using STRING software (37), showing clusters 
of acetylase activity and amino acid metabolism for fibroblast vs. 
ZsG and ZsG vs. LN1 comparisons, connecting lipid metabolism 
to acetylation in this last comparison. Between LN1 and LN2, 
there is a single cluster which is related to beta-oxidation (Figure 
S2 in Supplementary Material). Lipid metabolism appears to be 
prominently linked to metastatic phenotypes, while cell cycle 
regulation seems to be a feature of the less invasive cells.

naD(P)h FliM reveals that ln2 cells 
Displays longer lifetimes
Most of biochemical pathways depend on reactions promoted by 
the availability of NAD(P)H, including fatty acids metabolism. 
Thus, the measurements of NAD(P)H free/bound ratios afford 
clues about enzymatic activities and enhanced processes (38). In 
this regard, we performed FLIM to evaluate the NADH free to 
bound ratio in ZsG, LN1 and LN2 cells. To simplify the analysis, 
we used the phasor plot approach, in which the fluorescence 
decay in each pixel is plotted on the phasor plot universe (29). 
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FigUre 2 | NADH fluorescence lifetime distribution in ZsG, LN1, and LN2 cells. (a) Color-coded images generated by the cursor selection according to the phasor 
plot (colored squares). (B) Two-photon fluorescence microscopy intensity images showing NADH fluorescence of ZsG, LN1 and LN2 cells excited at 740 nm.  
(c) Phasor plot illustrating the metabolic trajectories or the fraction of free/bound NADH in FLIM images. (D) Fraction of pixels in the phasor plot. (e) Metabolic 
trajectory on the phasor plot. All the images were obtained on a two-photon microscope (Nikon Eclipse TE2000-U) and Plan-Apochromat 60×/1.20 water 
immersion objective lens (Nikon). Data were acquired on VistaVision software and Alba FLIM instrument (ISS) and analyzed on SimFCS software. Values represent 
mean ± SD; N = 4; ***P < 0.0001; ns compared within each group.
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With this approach, it is possible to observe that when cells are 
undergoing glycolysis there is a higher free/bound NAD(P)
H ratio. In contrast, when cells have an increment in oxidative 
phosphorylation (OXPHOS), a lower free/bound NAD(P)H ratio 
is observed (39).

In Figure 2A, the intensity map of NADH fluorescence shows 
a different distribution of these molecules. To analyze the classical 
metabolic states (glycolytic and oxidative states), we divided the 
lifetime distribution of the cells in two cursors, named short and 
long lifetime cursor (Figures 2B,C). The short lifetime represents 
a higher NAD(P)H free/bound ratio (colored in red), which 
means lower binding to dehydrogenases, which is classically asso-
ciated to a glycolytic profile. The long lifetime represents a lower 
NAD(P)H free/bound ratio (colored in green). This is related to 
an increased proportion of binding of NAD(P)H molecules to 
dehydrogenases, hence associated to OXPHOS (39) (Figure 2E). 
Moreover, we quantified the percentage of pixels in each image 
within the cursors and observed that ZsG and LN1 cell lines 
showed the same pattern of NAD(P)H free/bound ratio whereas 
LN2 has a lower ratio, indicating that these cell line exhibited a 
more oxidative profile (Figure 2D).

To better understand and compare the cell lines regarding the 
lifetime distribution, we analyzed the FLIM maps of each replicate 
pictured (40). Because the cell lines were shown to be heterogeneous 

and their phasor plots covered a wide range of different lifetimes, 
we evaluated the mean phasor plot of each image acquired taking 
into account all cells present in a certain field in order to obtain 
the phasor fingerprint of each cell population. Figure  3 shows 
the distribution regarding means of G and S coordinates of ZsG, 
LN1, and LN2 cells. Analyzing the metabolic trajectory, we did not 
observe significant differences between the cell lines regarding the 
color-coded scale (Figure 3B), the phasor fingerprint (Figure 3C), 
and also the comparison of the mean G position of each cell 
line (Figure 3D, left). Notwithstanding, LN1 cells seem to have 
a dislocated dispersion of lifetimes when compared to ZsG and 
LN2. This can be seen by analyzing the mean S position of each cell 
line (Figure 3D, right), in which the pixels of LN1 images have a 
lower position on the phasor plot. Thus, we observed that although 
there were no dramatic differences among the cell lines regarding 
the metabolic pathways (glycolytic vs. oxidative states), they were 
different when the lifetime distributions were considered.

Mitochondrial respiration and lactate 
exportation Does not impair the Malignant 
Transformation in scc Derived cell lines
To further analyze the contributions of oxidative metabo-
lism accompanying the FLIM experiments, we performed 
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FigUre 3 | NADH fluorescence lifetime distribution in ZsG, LN1, and LN2 cells. (a) Two-photon fluorescence microscopy intensity images showing NADH 
fluorescence of ZsG, LN1, and LN2 cells excited at 740 nm. (B) FLIM map of ZsG, LN1, and LN2 represented by a color-coded scale, by which pixels with a high 
free/bound NADH ratio are in purple, and pixels with a low free/bound NADH ratio are in red. All the lifetimes ratios are related to a specific color of the scale.  
(c) Phasor fingerprint, representing the mean S and G position of each image phasor distribution. (D) Mean S (left) and mean G (right) position of each cell line 
lifetimes distribution on phasor plot. Values represent mean ± SD; N = 5, with five images each; ***P < 0.0001. All the images were obtained on a two-photon 
microscope (Nikon Eclipse TE2000-U) and Plan-Apochromat 60×/1.20 water immersion objective lens (Nikon). Data were acquired on VistaVision software and Alba 
FLIM instrument (ISS) and analyzed on SimFCS software.
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high-resolution respirometry assays using OXPHOS modulators 
in intact cells. Figure 4A displays a representative trace of oxygen 
consumption rate in each isolated cell line in the presence of 
culture medium containing the essential substrates (glucose and 
glutamine). In order to evaluate the dependence of respiratory 
complexes on oxygen consumption, we used membrane perme-
able compounds that affect mitochondrial function. Figure 4B 
shows the absolute values of oxygen consumption showing that 
it is not possible to distinguish ZsG, LN1, and LN2 by examining 
their oxidative status.

Metabolomic data showed that cells accumulate lactate during 
their malignant process (Figure 1D). Moreover, the proliferative 
phenotype is associated to higher lactate production and trans-
portation to extracellular matrix in keeping with an enhanced 
glycolytic activity. In order to investigate this feature, we carried 
out a dynamic lactate liberation assay in presence or absence of 
AA, which stimulates glycolytic activity. Our results showed that 
even in the presence of AA there were no differences between 
all three cell lines (Figure 4C). Additionally, proliferation essays 
showed that LN1 and LN2 are less proliferative than ZsG cell line 
(Figure 4D).

DiscUssiOn

The ability of cancer cells to detach from the primary tumor 
migrate through the blood/lymphatic system and eventually 
colonize distant tissues must be accompanied by metabolic 
reprograming. Probing those changes can help to understand the 
mechanisms of the metastatic processes. Accordingly, we first 
identified the major metabolites accumulated as the product of 
metabolic pathways in tongue SCC progression model used here. 

Taking a holistic approach, we performed 1H RMN spectroscopy 
of ZsG, LN1, and LN2 cell lines as well as normal fibroblasts. 
We found that the major variations that could be associated 
to metastasis involved pathways of amino acids and fatty acid 
metabolism. These were revealed by alterations in the amounts of 
threonine, ribose, n-acetyl, malonate, methylmalonate, malonate, 
threitol, n-acetyl glutamate, ethanolamine, phosphoetanola-
mine, unsaturated lipids (CH2)n, and lactate (Figures  1A–D). 
In order to understand the metabolic pathways related to the 
principal metabolites accumulated in cells, we carried out paired 
comparisons considering parental (or one step before in malig-
nant process) and derived cell lines having observed that therein 
lay the highest differences. Thus, the fibroblasts vs. ZsG, ZsG vs. 
LN1, and LN1 vs. LN2 cell lines were compared (Table 1; Figure 
S1 in Supplementary Material). The results in Table 1 show the 
main differences encountered for metabolites present in the 
cell lines. The individual occurrence and concentrations of the 
compounds listed at any given moment could arise from either 
upstream activation of enzymes participating in the catabolism 
of various precursors, or from inhibition of downstream enzymes 
participating in their breakdown. To make a mechanistic sense 
of these findings, one would have to take into account the fluxes 
of all involved pathways and then propose models that would 
fit into coherent biochemical patterns compatible with the 
phenotypes of the cells displaying different metastatic potentials. 
Despite the unknown kinetics following the dynamic interplay 
that contributed toward the pattern observed, the results reflect 
in reproducible manner instant snapshots of the metabolic status 
of each cell line. That is, the differences detected are definitely 
informative in terms of the metabolic reprograming that took 
place for each cell line. In other words, the results emphasize that 
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FigUre 4 | Mitochondrial respiration and lactate exportation does not impair the malignant transformation in squamous cells carcinoma-derived cell lines. 
High-resolution respirometry assay using Oxygraph-2K (Oroboros Instruments, Innsbruck, Austria) in intact cells. Representative traces of oxygen consumption rate 
in intact cells (a) and absolute results of O2 flow per cell (pmol × s−1 × 10−6 cells) (B). During the assay, cells were maintained in DMEM F12 medium without FBS. 
Oxygen consumption was evaluated after the addition of modulators of mitochondrial activity [oligomycin, FCCP, rotenone and antimycin A (AA)]. Routine respiration 
corresponds to endogenous oxygen consumption of cells. All parameters were corrected to ROX values. (c) Lactate release after 60 min of incubation with fresh 
DMEM F12 medium without FBS in the absence (Ctrl) or presence (+AA) of AA. (D) Proliferation using sulforhodamine B (SRB) colorimetric assays. Values represent 
means ± SD; n = 4; **P < 0.005 comparing among cell lines (oxygen consumption and proliferation) or within cell line (lactate release).
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the cell lines have individual profiles that can suggest specific 
ontologies and functional meanings. Nevertheless, it is possible 
to speculate that some of the compounds listed in Table 1 may 
actually have roles as intermediaries. This means that in their 
own right the metabolites could act as effectors participating 
in regulatory networks, altering the expression patterns and, 
therefore, impacting cellular plasticity. Among the compounds 
listed in Table 1, some of the molecules, such as creatine, threitol, 
threonine, phosphoethanolamine, ethanolamine, and ribose, 
irrespective of their potential additional roles in other meta-
bolic pathways, could be grouped under the functional class of 
osmolytes. These are compounds that interchangeably stabilize 
the intracellular milieu by buffering osmotic perturbations, for 
instance. The notion that the osmolytes and compatible solutes 
listed in Table 1 may play such a role opens up the possibility that 
they could act as effectors of a much broader regulatory network, 
given their ability to affect flexible and random coil conforma-
tions of transcription factors (41–43). In this way, the compounds 
detected in our metabolomic analyses may have a dual role. On 
the one hand, they may arise from differentially activated meta-
bolic pathways responding to energy demands and supplying 
precursors such as building blocks for membranes, DNA, etc. 

Alternatively, the metabolites could act as bona fide regulators 
by altering the conformations of members of the signaling 
pathways and thus generate phenotypes such as the metastatic 
ones. This model is attractive since one could invoke new levels 
of regulation that are independent of gain or loss of function 
induced by those regulations and to grow and survive, cancer 
cells display alternate metabolic pathways toward tumorigenesis 
and progression. This hypothesis is currently being investigated 
in our laboratory.

Further information extracted from the metabolome involved 
the manual search for enzymes related to metabolite accumula-
tion in their synthesis/degradation using biochemical pathways 
found in REACTOME free software (Table S1 in Supplementary 
Material). The results obtained pointed clearly to the involvement 
of the pathways connected to lipid metabolism. The importance 
of lipid metabolism becomes apparent when considering that 
lipid metabolism byproducts can influence growth promoting 
activity and hence tumorigenesis (44). However, the less invasive 
cells exhibit enzymes, which although could be broadly included 
in the lipid metabolism category are associated to specialized 
reactions pertaining to lipid biochemistry, or perhaps more to 
the point, catabolism of hydrophobic compounds.
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Upon comparison between the metabolomic data between 
fibroblasts and ZsG, we found that threonine accumulated in 
fibroblasts. The metabolism of threonine involves the reaction 
catalyzed by threonine synthase (THNSL1 and THNSL2) form-
ing l-threonine from O-phospho-l-homoserine (45). Threonine 
biosynthesis initiates from the precursor aspartate leading to a 
chain of reactions dependent of ATP and NADPH (46). In con-
trast, ZsG cells accumulated metabolites that promote biosynthe-
sis relying in the reduction of NADP+ producing NADPH, such as 
malonate and ribose. It is worth mentioning that methylmalonate 
(accumulated in LN1 cells) and malonate are both regulated by 
ALDH6A1, and that this enzyme is related to fatty acid degrada-
tion and amino acid metabolism (Table 2) (47).

Creatine pathway is not related to oxidation/reduction of 
NAD(P)H despite playing important roles in maintaining storage 
of ATP in skeletal muscle cells. During muscular contraction, the 
creatine-phosphate molecules can be decomposed forming ATP 
before fermentation reestablishes ATP content (48). Creatine 
may thus be adjuvant in maintaining the demand of ATP (49) in 
ZsG cell lines. Our data also shows enhanced activity of cell cycle 
regulation in ZsG and LN1 cells. This has been observed in sev-
eral cancer cell lines with chromatin cohesion defects, which lead 
to a poor response to paclitaxel (50). This could mean that ZsG 
and LN1 cells may be more sensitive to spindle poisons than LN2 
cells. Again, the catabolism of some fatty acids such as ω-fatty 
acids play a major role in the metabolism and biotransformation 
of exogenous compounds such as xenobiotics. This is achieved 
for example, by P450 (CYP) mixed function oxidase system that 
mediates by hydroxylation reactions that in general increase the 
solubility of these compounds, thus facilitating their excretion. 
The cytochrome P450 mixed function oxidase enzymes are also 
known to be involved in the biosynthesis of endogenous sub-
strates such as cholesterol (51).

Phosphoethanolamine and ethanolamine are accumulated in 
LN1 cells when compared to ZsG. Phospholipids are required to 
build bilayer membranes in cells, and many studies show that its 
content increases as long as malignant process arises (52, 53). 
The membrane components including lipids and proteins allow 
the formation of ion channels, receptors, and signal transducers 
important to the interaction of extracellular matrix and cytosol 
(50), suggesting that those metabolites play important roles in 
proliferation and growth signaling in LN1 cells.

Comparison between LN1 and LN2 cell lines show that the 
unsaturated lipids (CH2)n are the only class accumulated in LN2 
cells. (CH2)n metabolism shares pathways with valine, leucine, 
and isoleucine degradation (amino acid metabolism) and fatty 
acid metabolism. All of them are related to NAD(P)H dynamics. 
FLIM data confirm these observations (Figure 2D), showing that 
LN2 cells displays lower NAD(P)H free/bound ratio.

Ribose metabolism is associated to the pentose phosphate 
pathway (PPP), an important pathway that provides cancer 
cells with NADPH, ribose-5-phosphate by oxidative pathway. 
NADPH is essential in the antioxidant defense by glutathione 
production, while ribose-5-phosphate is an important element 
for nucleotide biosynthesis. Upregulation of PPP promotes 
cancer cell survival, proliferation, angiogenesis, invasion and 
metastasis, and resistance to radiotherapy and chemotherapy. 

On the other hand, the non-oxidative moiety of PPP reenters 
fructose-6-phosphate and glyceraldehyde-3-phosphate of the 
glycolytic pathway, fueling proliferation (54, 55). In the context 
of our model, the accumulation of ribose was observed in ZsG 
and LN1 cells. Interestingly, respirometry assays did not show 
any differences between the cell lines. Plausibly, this could be 
due to the non-oxidative PPP, fueling the bioenergetic pathways. 
Furthermore, N-acetylglutamate is an obligatory allosteric acti-
vator of carbamoyl phosphate synthetase I (CPS-1) (56). CPS-1 
is related to cell growth and metabolite levels associated with 
nucleic acid biosynthesis pathway, as shown by CPS-1 knock-
down in lung adenocarcinoma (57). Our analysis revealed that 
N-acetylglutamate is increased in ZsG and LN1 cells, which is 
compatible with amino acid metabolism and its contributions to 
nucleotide biosynthesis.

We did not detect differences in lactate exported from cells 
(Figure 4C) when the three cell lines were compared. The balance 
between accumulation and exportation lactate in tumor cells 
has been described as an important factor in regulating glucose 
metabolism and NAD+/NADH availability (58, 59). Much is 
known about lactate regulation in cancer cells and metabolic 
switch bearing glycolysis and tumorigenesis (60). Indeed, ZsG 
cells displaying higher proliferative rates were shown to incorpo-
rate less lactate when compared to LN1 and LN2 cells.

The interaction processes between NAD(P)H and pro-
teins was also investigated here. Because these coenzymes 
play important roles in energy metabolism and, therefore, 
impact on tumor transformation and progression (20, 38, 
61), their participation in the establishment of the metastatic 
phenotypes was determined, reflecting the importance of 
measuring NAD(P)H lifetime as an informative biomarker for 
understanding metabolic reprograming, mitochondrial physi-
ology, oxidative stress, and apoptosis (39). Real-time NAD(P)
H lifetime imaging by two-photon fluorescence microscopy 
allowed prospection into the dynamics of NAD(P)H, by 
analyzing its binding to specific dehydrogenases, representing 
an increased NAD(P)H free/bound ratio in glycolytic cells 
(39). As observed in FLIM experiments, LN2 cells exhibit a 
relatively smaller free/bound NAD(P)H ratio. However, there 
were no significant differences when comparing free/bound 
ratios of ZsG to LN1 cells.

Taken together, the results of the metabolomic analysis and 
FLIM analysis allowed us to conclude that several pathways con-
nected to lipid metabolism appear to be prominently linked to 
metastatic phenotypes, while cell cycle regulation and amino acid 
metabolism are most related to less invasive cells.
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