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Abstract 
 

The veterinary and animal science professions 
are rapidly developing and their inherent and historical 
connection to agriculture is challenged by more 
biomedical and medical directions of research. While 
some consider this development as a risk of losing 
identity, it may also be seen as an opportunity for 
developing further and more sophisticated competences 
that may ultimately feed back to veterinary and animal 
science in a synergistic way. The present review 
describes how agriculture-related studies on bovine in 
vitro embryo production through studies of putative 
bovine and porcine embryonic stem cells led the way to 
more sophisticated studies of human induced 
pluripotent stem cells (iPSCs) using e.g. gene editing 
for modeling of neurodegeneration in man. However, 
instead of being a blind diversion from veterinary and 
animal science into medicine, these advanced studies of 
human iPSC-derived neurons build a set of competences 
that allowed us, in a more competent way, to focus on 
novel aspects of more veterinary and agricultural 
relevance in the form of porcine and canine iPSCs. 
These types of animal stem cells are of biomedical 
importance for modeling of iPSC-based therapy in man, 
but in particular the canine iPSCs are also important for 
understanding and modeling canine diseases, as e.g. 
canine cognitive dysfunction, for the benefit and therapy 
of dogs. 
 
Keywords: embryonic stem cells, induced pluripotent 
stem cells, in vitro fertilization, Alzheimer’s disease, 
dementia. 
 

Introduction 
 
The veterinary and animal science professions 

are rapidly developing in a shifting scientific 

environment. Worldwide institutional reorganizations 
towards larger entities result in absorption of veterinary 
and animal science faculties into broader entities with a 
focus on life, biomedical and medical sciences. While 
this development has a range of advantages creating 
novel scientifically rewarding collaborative landscapes 
it also challenges the conventional identity of the 
veterinary and animal science professions and their 
inherent and historical connection to agriculture. 
Consequently, the focus of veterinary and animal 
sciences has been extended with a major biomedical and 
even medical dimension; a development which is also 
sparked by a shift in funding opportunities with 
biomedicine and medicine having higher leverage than 
agriculture. Some consider the gradual increase in 
biomedical and medical focus, at the expense of 
agricultural attention, a risk. On the other hand, this 
development gives more room for investigating the 
complex area of “One Health” and may also give 
veterinarians and animal scientists access to new sets of 
competences, that may, in a synergistic and constructive 
way, feedback to more core classical veterinary and 
animal science.  

It is fair to say that the biomedical and medical 
trend in science cannot be rejected and should be 
contemplated as an opportunity for contemporary 
development of the veterinary and animal science 
professions. It is the focus of this review to present a 
scientific development where research in assisted 
reproductive technologies (ARTs) and embryonic stem 
cells (ESCs) in the large domestic species has given 
opportunities for establishing a stem cell center of 
excellence in neurology focusing on human induced 
pluripotent stem cell (iPSC)-models for 
neurodegeneration and, finally, how the competences 
gained through these medical activities allowed for 
investigations of porcine and canine iPSCs feeding 
positively back to veterinary and animal science (Fig.1).
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Figure. 1. The progression of research activities moving from agricultural and veterinary medicine through biomedicine and medicine and feeding back to agricultural and veterinary 
medicine. OPU: Ultrasound-guided ovum pickup; IVM: In vitro maturation; IVF: In vitro fertilization; IVC: In vitro culture.
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First agricultural phase: Bovine oocyte and embryo 
development and in vitro embryo production 

 
In vitro embryo production in cattle 
 

Over the past 40 years there has been a gradual 
agricultural implementation of novel ARTs in large 
animal husbandry with particular focus on cattle (Greve 
and Callesen, 2005; Lonergan, 2007). Major components 
of this development have been the development and 
refinement of the multiple ovulation and embryo 
transfer (MOET), including cryopreservation of 
blastocysts, and of in vitro fertilization (IVF) 
culminating with the birth of the first IVF calf in 1981 
(Brackett et al., 1982). Whereas contemporary in vitro 
production (IVP) of embryos in cattle includes in vitro 
oocyte maturation, in vitro fertilization and in vitro 
culture of the resultant embryos to the blastocyst stage, 
Brackett and colleagues flushed in vivo matured oocytes 
from the oviducts, performed IVF and transferred a 4-
cell stage back to the oviduct. In 1987, the first 
European IVF calf, now resulting from in vitro oocyte 
maturation, was born in Copenhagen (Xu et al., 1987) 
where we invested great efforts in fundamental 
investigations of oocyte maturation and fertilization 
(Hyttel et al., 1986a; Hyttel et al., 1986b; Hyttel et al., 
1988a; Hyttel et al., 1988b).  

In parallel, the quest for defining optimal 
culture conditions allowing for the development of 
bovine zygotes to blastocysts took place including focus 
on coculture systems (Edwards et al., 1997), media 
composition (Holm et al., 1999) as well as the physical 
design of the culture platforms (Vajta et al., 2008; 
Smith et al., 2012). These efforts all became extremely 
relevant in the light of the astonishing adverse effects of 
improper in vitro culture conditions that were reported 
in 1997, and which coined the term Large Offspring 
Syndrome (LOS) (Kruip and den Daas, 1997). The risk 
of LOS caused severe drawbacks for the technologies, 
and in Denmark the practical implementation of in vitro 
embryo production in cattle breeding was abandoned 
mainly for this reason. Refined serum-free culture 
conditions, based on BSA supplementation, have now 
been developed allowing for improved fetal 
development and calving (George et al., 2008), and in 
2013 an entire serum-free ready-to-use media suite for 
all the steps, maturation, fertilization and culture, was 
made commercially available by IVF Bioscience, UK, 
combining synthetic serum replacements and BSA. 
Finally, the combination of IVP and ultrasound-guided 
ovum pickup (OPU) has allowed for more sophisticated 
practical implementation of IVP in cattle breeding, and 
the year of 2018 became a turning point as the numbers 
of transferred bovine IVP embryos for the first time 
officially exceeded that of their in vivo-derived 
counterparts. According to the numbers collected by the 
IETS, almost 1.5 million (1,487,343) bovine embryos 
were produced by MOET or IVP worldwide in 2017 
and two thirds (almost 1 million) were derived by IVP 
(Viana, 2018).  

In order to pave the way for successful IVP of 
bovine embryos, we undertook a series of fundamental 

studies of oocyte development, fertilization and initial 
embryonic development in cattle, which are 
summarized in the following. Hence, we have 
characterized oocyte development and maturation, 
fertilization and initial embryonic development in cattle 
extensively by transmission electron microscopy (TEM).  

The basic ultrastructure of the oocyte is 
generated during its growth phase in the primordial to 
the tertiary follicle. When the tertiary follicles in a 
cohort reach a diameter of about 3-5 mm in cattle, one 
dominant follicle is selected, and the structure of the 
oocyte in this particular follicle is modified during a 
process that may be referred to as capacitation or pre-
maturation. The estrous cycle in cattle generally 
comprises 2 or 3 follicular waves, and the dominant 
follicle of the last wave becomes ovulatory. In the 
ovulatory follicle the oocyte undergoes a final 
maturation during an approximately 24 hour period 
between the peak of the LH-surge and ovulation.  
 
Oocyte growth in cattle 
 

During the growth of the bovine oocyte, the 
inside zona pellucida diameter of the gamete increases 
from less than 30 μm in the quiescent primordial follicle 
to more than 120 μm in the tertiary follicle. We have 
carefully characterized the ultrastructure, transcriptional 
activity and developmental competence of bovine 
oocytes in relation to the sequential stages of follicular 
development (Fair et al., 1996; Fair et al., 1997a; Fair et 
al., 1997b). 

In the quiescent primordial follicle gap and 
intermediate junctions are present between adjacent 
granulosa cells, whereas exclusively intermediate 
junctions are seen between the granulosa cells and the 
oocyte. The transcriptionally quiescent nucleus of the 
oocyte, i.e. the germinal vesicle, occupies a central or 
slightly off center position and the organelles are 
concentrated in the perinuclear region. The  primary 
follicle occasionally exhibits small portions of zona 
pellucida substance between the cuboidal granulosa 
cells and the oocyte. The continued zona-formation in 
the secondary follicle is associated with the embedding 
of granulosa cell processes and erect oocyte microvilli 
into the zona pellucida, and gap junctions are 
established between the granulosa cell processes and the 
oocyte. The oocyte nucleoli develop into a fibrillo-
granular appearance and transcription is initiated. The 
oocyte in the small tertiary follicle up to about 1 mm in 
diameter exhibits a complete zona pellucida traversed 
by numerous cumulus cell projections forming gap and 
intermediate junctions to the oocyte. Clusters of cortical 
granules are numerous. The oocyte nucleoli are typical 
fibrillo-granular and transcription abundant. In the 
larger tertiary follicles the oocyte ultrastructure may 
be classified according to the inside zona pellucida 
diameter of the cell. In oocytes <100 μm the particular 
hooded mitochondria, unique to ruminants, are observed 
for the first time. Oocytes from 100 to 110 μm in 
diameter typically display formation of a perivitelline 
space, the process of which is associated with the 
release of the previously embedded microvilli from the



 Hyttel et al. Embryos and stem cells in biomedical science. 
 

Anim. Reprod., v.16, n.3, p.508-523, Jul./Sept. 2019 511 

zona pellucida. The oocyte nucleus is displaced towards 
the periphery as are Golgi complexes and mitochondria, 
amongst which the hooded form becomes more 
numerous. The fibrillar centers of the nucleoli have 
typically migrated towards the nucleolar periphery and 
transcription is decreased. Oocytes from 110 to 120 μm 
typically present a well-developed perivitelline space 
and a peripherally located nucleus. The process of 
nucleolar inactivation has proceeded leaving the 
nucleolus to consist of a spherical nucleolar remnant 
with a fibrillar center attached. At a diameter of 120 μm, 
the oocyte has completed the growth phase and 
achieved the ultrastructure characterizing the fully 
developed gamete.  

Interestingly, the oocyte achieves the 
competence to complete meiotic maturation to 
metaphase II in vitro at a diameter of about 110 μm 
coinciding with the de-activation of its transcriptional 
machinery, indicating that the necessary compartment 
of proteins and mRNAs has been formed at this stage of 
development.  
 
Oocyte capacitation or pre-maturation in cattle 
 

Further, we have carefully mapped the 
ultrastructural development of bovine oocytes in the 
dominant vs. the subordinate follicles (Assey et al., 
1994a). With the growth of the dominant follicle, the 
ultrastructure of the fully grown oocyte is modified 
during its so-called capacitation or pre-maturation. 
During the days approaching the regression of the 
corpus luteum, i.e. the final period of the luteal phase, 
the cortical granule clusters are dislocated to more 
superficial locations and some granules migrate to 
solitary positions along the oolemma. During the period 
between luteolysis and the LH-surge individual cumulus 
cells exhibit elongation and some of the cumulus cell 
process endings are retracted to a more superficial 
location on the surface of the oolemma. Also, the oocyte 
nuclear envelope becomes undulating, especially in the 
regions facing the zona pellucida, and the nucleolar 
remnant displays vacuolization. Both of these 
phenomena are presumably related to the subsequent 
breakdown of the oocyte nucleus, i.e. germinal vesicle 
breakdown (GVBD). There are indications that the 
competence of the oocyte to produce blastocysts in vitro 
increases with completion of capacitation or pre-
maturation in the dominant follicle (Hendriksen et al., 
2000). Superovulation with exogenous gonadotropins 
may have an adverse effect on this process as indicated 
by a lack of at least the vacuolization of the nucleolar 
remnant (Assey et al., 1994b). 
 
Oocyte maturation in cattle 
 

The maturation of the oocyte, which in cattle 
occurs during the approximately 24 hour period from 
the LH-peak to ovulation, comprises the progression of 
meiosis from the diplotene stage of prophase I to 
metaphase II accompanied by a series of ultrastructural 
and molecular changes in the ooplasm. The 
ultrastructural changes have been described in detail in 

relation to the time of the LH-peak in unstimulated 
(Kruip et al., 1983) as well as gonadotropin stimulated 
cattle (Hyttel et al., 1986a). The breakdown of the 
oocyte nucleus (GVBD) occurs 9 to 12 hours after the 
LH-peak when the nuclear envelope becomes extremely 
undulating, the chromatin condenses, the nucleolar 
remnant is dissolved and there is a gradual decoupling 
of the cumulus cell endings from the oocyte (Hyttel, 
1987). At about 15 and 20 hours after the LH-peak most 
oocytes have reached metaphase I and II, respectively, 
and the first polar body is abstricted. During the last 
hours of maturation, lipid droplets and mitochondria 
attain a more central location in the ooplasm and the 
cortical granules migrate to solitary positions along the 
oolemma. The peripheral migration of the cortical 
granules appears to be compromised to a certain degree 
during oocyte maturation in vitro (Hyttel et al., 1986b).  

Growing and dominant follicles are capable of 
maintaining oocyte meiosis arrested at the diplotene 
stage of prophase I. However, numerous subordinate 
tertiary follicles undergo atresia. Interestingly, such 
atretic follicles may lose the ability to retain the oocyte 
in meiotic arrest. Hence, oocytes in atretic follicles may 
display different stages of meiotic maturation; even 
reaching metaphase II (Assey et al., 1994a). Through 
the described phases of growth, capacitation and 
maturation, the oocyte has now acquired the 
ultrastructural architecture for sustaining fertilization 
and initial embryonic development. 
 
Fertilization and development of the zygote in cattle 
 

The ultrastructure of bovine fertilization has 
precisely been described in relation to the estimated 
time of ovulation as determined by timing of the LH-
peak in gonadotropin stimulated cows (Hyttel, et al., 
1988a), and bovine in vitro fertilization have added to 
this understanding (Hyttel et al., 1988b; Hyttel et al., 
1988c).  

Upon acrosome reaction and penetration of the 
zona pellucida, the oocyte microvilli contact the 
equatorial segment of the sperm head where fusion 
between the two gametes initially occurs resulting in 
oocyte activation and cortical granule exocytosis 
establishing the block against polyspermic fertilization. 
With a correct Greek term, gamete fusion is termed 
syngamy; a term that erroneously is also widely used for 
the apposition of the pronuclei (see later). Within the 
first 2-3 hours after ovulation, the paternal chromatin is 
denuded from its membrane coverings and decondensed. 
In parallel, the maternal chromatin is advancing through 
anaphase and telophase II forming the second polar 
body. Pronucleus formation is initiated with smooth 
endoplasmic reticulum (SER) moving towards both the 
paternal and maternal chromatin to form nuclear 
envelope. About 4 hours after ovulation, the two sets of 
chromatin are completely surrounded by nuclear 
envelopes. The midpiece of the sperm tail remain 
spatially associated with the paternal pronucleus. 
Subsequently, the pronuclei swell to their characteristic 
spherical appearance accompanied by chromatin 
decondensation, and about 10 hours post ovulation most
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zygotes exhibit spherical pronuclei (Laurincik et al., 
1998). Along with this process, so-called nucleolus 
precursor bodies, very similar to the oocyte nucleolar 
remnant, which later act as enucleation sites for 
nucleolus formation, are formed in the pronuclei 
(Laurincik et al., 1996). The precursor bodies are not 
active in rRNA transcription and ribosome formation. 
The two pronuclei migrate to a close apposition, and 
about 14 hours after ovulation most zygotes exhibit 
apposed pronuclei. The S-phase of the first post-
fertilization cell cycle takes place 12-19 hours after 
ovulation (Laurincik et al., 1994). Upon pronuclear 
apposition, pronounced undulations of the nuclear 
envelopes of the pronuclei are seen in the apposed 
regions probably preparing for breakdown of the 
envelopes, which is seen at about 24 hours after 
ovulation. This process is often referred to as 
synkaryosis, but it should be emphasized that the two 
pronuclei do not fuse, but undergo dissolution of the 
nuclear envelopes similar to the one seen at the 
breakdown of the oocyte nucleus (GVBD) at 
resumption of oocyte meiosis. Immediately after 
synkaryosis, karyokinesis and cytokinesis proceed 
resulting in the formation of two daughter nuclei 
enclosed in each their blastomere. 
 
Pre-hatching embryonic development in cattle 
 

Along with the initial cleavages, the embryonic 
genome is gradually activated during the so-called 
maternal-embryonic transition. Thus, a low rate of 
transcription of the embryonic genome has been 
detected as early as during the 1st, i.e. the zygote (Hay-
Schmidt et al., 2001), and 2nd post-fertilization cell 
cycles (Hyttel et al., 1996; Viuff et al., 1996), and 
during the 4th cell cycle a major transcriptional 
activation occurs (Camous et al., 1986).  

A number of other researchers have contributed 
to the understanding of the general embryonic 
ultrastructure based on either in vivo or in vitro 
developed embryos (Mohr and Trounson, 1981; 
Camous et al., 1986; Betteridge and Fléchon, 1988; 
King et al., 1988; Kopecný et al., 1989; Abe et al., 1999; 
Laurincik et al., 2000; Laurincik et al., 2003).  

Early during the second cell cycle, i.e. the 2-
cell stage, nucleolus precursor bodies resembling those 
described for the pronuclei are established in the nuclei. 
Hence, functional nucleoli are lacking and protein 
synthesis must be based on the ribosome pool inherited 
from the oocyte. Early during the third and fourth cell 
cycle, i.e. the tentative 4- and 8-cell stages, respectively, 
nucleolus precursor bodies resembling those from the 
previous cell cycles are again established. During the 
fourth cell cycle, however, the nucleolus precursor 
bodies develop into fibrillo-granular nucleoli displaying 
the typical components of actively ribosome-
synthesizing nucleoli: Fibrillar centers, dense fibrillar 
component and granular component. The development 
of the nucleoli is a prerequisite for continued embryonic 
development and is a sensitive marker for the normality 
of this process. Abundant activation of embryonic 
transcription during the fourth cell cycle allows for the 

first cell differentiation and lineage commitments. 
External cells become connected by tight junctions 
while internal cells are only connected by focal 
membrane contacts. Mitochondria of the hooded form, 
which were established back during the development of 
the oocyte in the early tertiary follicle, become fewer, 
and elongated types with transverse cristae become 
more numerous. 

The competences gained by our studies of 
oocyte maturation, fertilization and initial embryonic 
development in cattle allowed us to move into the stem 
cell area for creating novel potentials in agriculture and 
biomedicine. 
 

Second biomedical phase: Bovine and porcine 
putative embryonic stem cells and pluripotency 

 
Embryonic stem cells 
 

Mouse embryonic stem cells (ESCs) were 
derived in 1981 (Evans and Kaufman, 1981; Martin, 
1981) and paved the way for production of genetically 
modified mice (Thomas and Capecchi, 1987). Along 
with this development, an interest emerged in 
investigating the potentials for genomic modifications 
of the large domestic species for production, health, 
environmental and biomedical purposes. 

Further studies of murine ESCs revealed that 
there are distinct states of pluripotency (naïve and 
primed) that differ both morphologically and 
functionally (De Los Angeles et al., 2012). Naïve 
murine pluripotent stem cells are derived from the inner 
cell mass (ICM) or early epiblast cells, proliferate in 
culture as packed dome-like colonies, are maintained in 
the undifferentiated state by LIF and BMP4 signaling, 
readily contribute to germline transmitting chimeric 
embryos, maintain two active X chromosomes (in 
female cells) and are relatively resistant to 
differentiation into primordial germ cells (PGCs) and 
extra-embryonic lineages (Kuijk et al., 2011). In 
contrast, primed pluripotent stem cells are derived from 
the epiblast of post-hatching murine blastocysts, are 
termed epiblast stem cells (EpiSCs), are molecularly 
and epigenetically different from murine ESCs (Brons 
et al., 2007; Tesar et al., 2007), have a more flattened 
colony morphology, depend on bFGF or TGFa/activin 
signaling, exhibit a limited ability to contribute to 
chimeras and have undergone X-chromosome 
inactivation (Brons et al., 2007). Human ESCs were 
first derived in 1998 (Thomson et al., 1998) and, 
surprisingly, they exhibit characteristics more like those 
of primed murine EpiSCs than their naïve murine ESC 
counterparts (Thomson et al., 1998). 

The potentials of murine ESCs for the 
generation of transgenic mice sparked an interest in 
deriving ESCs in the large domestic species including 
activities in our laboratories focusing on cattle and pig. 
We and many others attempted to derive bovine ESCs 
(for review, see Ezashi et al., 2016) from different 
developmental stages from 2-cell embryos (Mitalipova 
et al., 2001) up to Day 12 hatched blastocysts (Gjørret 
and Maddox-Hyttel, 2005). However, even though



 Hyttel et al. Embryos and stem cells in biomedical science. 
 

Anim. Reprod., v.16, n.3, p.508-523, Jul./Sept. 2019 513  

ESC-like cell lines were established and some of them 
could be cultured for extended periods of time, their 
characterization, especially with respect to functional 
contribution to chimeras, remained obscure. At present, 
it must be concluded that none of the derived cell lines 
have been capable of contributing to germline 
transmitting chimeras (Iwasaki et al., 2000) and , thus, 
can not be classified as bona fide ESCs. A very recent 
breakthrough indicates that a combination of FGF2 and 
an inhibitor of the canonical Wnt-signaling pathway 
may be the key to maintain bovine ESCs (Bogliotti et 
al., 2018). 

Similar activities materialized in the pig where 
we and many others attempted to establish porcine 
ESCs (for review, see Telugu et al., 2010; Ezashi et al., 
2016). However, even though a single report on a 
porcine ESC-derived chimera is found (Chen et al., 
1999), none of the derived cell lines were capable of 
contributing to germline transmitting chimeras. 
Interestingly, cells from the inner cell mass from Day 6 
to 7 porcine blastocysts are capable of contributing to 
such germline transmitting chimeras (Anderson et al., 
1994; Onishi et al., 1994; Nagashima et al., 2004), and 
are, by this criterion, pluripotent and hereby a potential 
source of ESCs. Clearly, however, such is pluripotent 
cells loose this potential when cultured for even a short 
period of time. More recent data, where porcine ESCs 
again have been demonstrated to give rise to chimeric 
contribution, indicate that a novel medium including a 
combination of bFGF and LIF may represent a 
breakthrough although follow up with respect to 
germline transmission is warranted (Xue et al., 2016). 
 
ICM and epiblast differentiation in the pig  
 

In order to explain our lack of success in 
deriving bovine and porcine ESC, we undertook a set of 
fundamental studies of the porcine ICM and epiblast 
which clearly demonstrated that ungulate ICM and 
epiblast development and pluripotency show distinct 
differences as compared with its murine counterpart. A 
dynamic change in gene expression is the driving force 
for the first cell differentiation, i.e. the segregation of 
the compacting blastomeres into the ICM and 
trophectoderm. In the mouse, the ICM develops a stable 
regulatory circuit, in which the transcription factors 
Nanog (Chambers et al., 2003; Mitsui et al., 2003), 
OCT4 (Nichols et al., 1998; Schöler et al., 1990), SOX2 
(Avilion et al., 2003), and SAL4 (Elling et al., 2006; 
Zhang et al., 2006) promote pluripotency and suppress 
differentiation. In contrast, in the trophectoderm-
destined cells, the transcription factors CDX2 and 
EOMES are upregulated together with ELF5 and 
TEAD4, which are transcription factors acting upstream 
of CDX2 to mediate trophectoderm differentiation (Ng 
et al., 2008; Nishioka et al., 2008; Yagi et al., 2007). 
On the other hand, expression of the trophectoderm-
associated transcription factors, CDX2, TEAD4, and 
ELF5, are repressed in the ICM by the regulatory circuit 
of Nanog, SOX2, and OCT4 (Ralston and Rossant, 
2005). In the pig, the expression of CDX2 during 
preimplantation development appears conserved as 

compared with the mouse (Kuijk et al., 2007). OCT4 is, 
on the other hand, expressed in both the ICM and 
trophectoderm as opposed to the mouse (Keefer et al., 
2007; Kuijk et al., 2008), and Nanog expression has not 
been observed in the porcine ICM (Hall et al., 2009). 
Hence, there are marked species differences with 
respect to the molecular background for ICM and 
trophectoderm specification. 

The embryo hatches from the zona pellucida by 
Days 7 to 8, and in parallel the OCT4 expression, which 
was earlier present in both the ICM and the 
trophectoderm, becomes confined exclusively to the 
ICM (Vejlsted et al., 2006), whereas expression of 
Nanog is still lacking (Wolf et al., 2011) as opposed to 
the mouse. At the time of hatching, the ICM separates 
into two distinct cell populations. Hence, the most 
“ventral” cell layer towards the blastocyst cavity flattens 
and, finally, delaminates forming the hypoblast, 
whereas the “dorsal” cell population establishes the 
epiblast. The hypoblast subsequently extends along the 
inside of the trophectoderm forming a complete inner 
epithelial lining. The polar trophectoderm covering the 
epiblast (Rauber’s layer) becomes very thin around Day 
9 of gestation and gradually disintegrates exposing the 
epiblast to the uterine environment, which is very unlike 
the situation in the mouse, where the trophectoderm 
stays intact. Before the shedding of Rauber’s layer, tight 
junctions are formed between the epiblast cells and the 
adjacent trophectoderm to maintain the epithelial 
sealing of the embryo despite the loss of the polar 
trophectoderm. Apparently, the porcine epiblast forms a 
small cavity, which finally opens dorsally followed by 
an “unfolding” of the complete epiblast upon the 
disintegration of Rauber’s layer forming the embryonic 
disc (Hall et al., 2010). In parallel with the formation of 
the embryonic disc, the porcine epiblast starts to express 
not only OCT4, but also Nanog (Wolf et al., 2011b). At 
this stage of development, the first sign of anterior-
posterior polarization develops in the embryonic disc: 
As mentioned earlier, the epiblast is underlaid by the 
hypoblast, and an area of increased cell density of 
closely apposed hypoblast cells develops. This area is 
approximately the same size as the embryonic disc, but 
it is dislocated about one third of its diameter anteriorly 
as compared with the epiblast of the embryonic disc 
(Hassoun et al., 2009; Wolf et al., 2011b). It is likely 
that this dense hypoblast region emits signals to the 
epiblast which suppress mesoderm-formation in the 
anterior epiblast regions. In this sense, the hypoblast 
may carry the blue-print for the specification of the 
epiblast. 

During Days 11 to 12, the porcine embryonic 
disc develops into an oval shape, and a crescent-shaped 
accumulation of cells are found in the posterior region 
of the disc (Vejlsted et al., 2006). This crescent includes 
mesodermal progenitors which express the mesodermal 
markers, T (Brachyury) and Goosecoid (Blomberg et al., 
2006; Wolf et al., 2011a), and apparently ingression of 
Brachyury-expressing extra-embryonic mesoderm is 
initiated from this crescent even before the “true” 
gastrulation starts with the appearance of the primitive 
streak (Wolf et al., 2011a), again, as opposed to the
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mouse.  
With the development of the embryonic disc, a 

very peculiar pattern of OCT4 and Nanog expression 
develops in the porcine epiblast: The majority of 
epiblast cells express OCT4, but small groups or islands 
of cells are OCT4 negative (Wolf et al., 2011b). The 
latter cells, on the other hand, express Nanog resulting 
in a mutually exclusive expression pattern. 
Subsequently, Nanog expression is lost in almost the 
entire epiblast, except for a few cell in the most 
posterior region of the embryonic disc, in which OCT4 
is also expressed (Wolf et al., 2011b). The latter cells 
are believed to be the primordial germ cells (PGCs). 

In conclusion, the efforts on establishing 
bovine and porcine ESCs have been plentiful but none 
of them resulted in bona fide ESC lines that were 
capable of giving rise to germ line transmitting chimeric 
embryos. Reasons for this lack of success are probably 
multifactorial (Ezashi et al., 2016). First of all, the 
initial embryonic development in cattle and pig differs 
significantly from that in the mouse: Bovine and 
porcine embryos have a more protracted development of 
the epiblast from the inner cell mass, in contrast to the 
mouse, the bovine and porcine epiblast penetrates the 
trophectoderm (Rauber’s layer) and become exposed to 
the uterine environment and, finally, the bovine and 
porcine embryo adheres to the uterine epithelium 
instead of implanting through the epithelium as their 
murine counterpart. Second, the well-established 
markers of pluripotency are much less distinct and well-
defined in bovine and porcine ESC-like cells than in 
their murine counterparts. Finally, the pluripotency 
states, i.e. naïve vs. primed, are not well recognized in 
bovine and porcine ESC-like cells. Hence, the culture 
conditions and needs for supplementation for 
maintenance of pluripotency are putative and in many 
studies both LIF and bFGF are used.  

Importantly, in 1996 it was elegantly 
demonstrated that cloned sheep could be established by 
somatic cell nuclear transfer (SCNT) from a cultured 
cell line established from embryonic discs (Campbell et 
al., 1996). This breakthrough later led to the birth of 
Dolly (Wilmut et al., 1997), cloned from an adult 
mammary epithelial cell line, and to an alternative 
avenue for production of genetically modified large 
domestic species by SCNT utilizing genetically 
modified cell lines (Schnieke et al., 1997; McCreath et 
al., 2000). With this development, the practical 
importance of bovine and porcine ESCs became less 
evident as seen in an agricultural and biomedical 
perspective.   
 

Third medical phase: Human induced pluripotent 
stem cells as models for neurodegeneration 

 
Through our struggles towards establishing 

bovine and porcine ESCs, we developed a skill set that 
allowed us to embark on human iPSCs and the use of 
these fascinating cells for modelling neurodegeneration. 
Eminent funding opportunities prompted us to move 
from an agricultural focus into the medical arena.  
 

Human iPSC reprogramming and mesenchymal-to-
epithelial transition 
 

In 2006, Takahashi and Yamanaka published 
their conceptual work on the establishment of murine 
iPSCs, where they elegantly narrowed down the need of 
reprogramming factors to the so-called Yamanaka 
factors: Oct4, Sox2, Klf4 and c-Myc (OSKM), which 
were introduced by retroviral vectors (Takahashi and 
Yamanaka, 2006). Only one year later, two groups 
independently reported on the establishment of human 
iPSCs (Takahashi et al., 2007; Yu et al., 2007). Since 
these first publications a range of iPSC reprogramming 
technologies have been developed and refined with 
respect to both reprogramming factors (gene sequences, 
mRNA, miRNA, protein) and vectors (integrating and 
non-integrating viruses, minicircle vectors and episomal 
plasmids) in combination with different epigenetic 
modifiers (for review, see Malik and Rao, 2013). As the 
most novel approach, it has been demonstrated that the 
use of CRISPR transcriptional activators for prompting 
endogenous pluripotency gene expression can result in 
iPSC reprogramming (Weltner et al., 2018).  

We have refined and characterized a non-
integrative episomal plasmid-based human iPSC 
reprogramming strategy first published by Okita et al. 
(2011). Our reprogramming is based on the use of 
electroporation of fibroblasts with three plasmids 
encoding a short hairpin to TP53 (shp53) combined 
with human OCT4, SOX2, KLF4, L-MYC and LIN28. 
We have clearly demonstrated that this strategy, 
including transient p53 suppression, increases 
reprogramming of human fibroblasts without affecting 
apoptosis and DNA damage (Rasmussen et al., 2014). 
Moreover, we have performed a detailed investigation 
of the gene expression and ultrastructural changes 
associated with the mesenchymal-to-epithelial transition 
(MET) that is a vital component of the iPSC 
reprogramming process (Høffding and Hyttel, 2015). 
We clearly demonstrated that the sequential acquisition 
of an epithelial epiblast-like ultrastructure was 
accompanied by a reorganization of actin and beta-
catenin localization from the cytoplasm to the plasma 
membrane region as well as appearance of plasma 
membrane-associated E-cadherin and Occludin and of 
Nanog in the nucleus. In parallel, the mesenchymal 
marker vimentin disappeared. At the transcriptional 
level, the relative expression of the epithelial markers 
CDH1, OCLN and EPCAM was, accordingly, 
dramatically increased through MET. On the other hand, 
transcription of the mesenchymal markers VIM, ZEB1 
and SLUG appeared constant or slightly downregulated. 
The true downregulation was probably masked by the 
large number of non-reprogrammed fibroblasts in the 
samples. These studies clearly demonstrated that a well-
orchestrated MET is a major component of iPSC 
reprogramming.  

The investigations referred to above gave us a 
solid platform for iPSC-based disease modelling, which 
was materialized in the stem cell center of excellence in 
neurology, BrainStem.  
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Human iPSCs for modelling neurodegeneration  
 

The iPSC technology gives access to an infinite 
source of pluripotent cells from an individual, offering 
great potentials for future disease modelling and cell 
therapy (Condic and Rao, 2010). In vitro disease 
modelling has become a major tool in the potential 
identification of novel disease phenotypes and drug 
targets as well as in drug screening. Worldwide, iPSCs 
are used for modelling a variety of disorders, but they 
are especially useful in research focusing on late 
progressive disorders such as neurodegenerative 
diseases, like frontotemporal dementia (FTD), 
amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD) 
and Parkinson’s disease (PD), where early symptomatic 
brain samples are impossible to obtain (Hargus et al., 
2014; Hedges et al., 2016; Lee and Huang, 2017). The 
iPSC technology allows for creation of “micro-brains” 
in a dish and studies of the specific pathology and 
disease progression in an easily assessable and 
manipulated environment.  

Previously, research in the underlying 
mechanisms of neurodegeneration, as e.g. AD, has been 
based on data from transgenic AD mice models, which 
are unfaithful in mimicking AD, or post-mortem AD 
brain tissue, which exclusively represents the terminal 
disease pathology. These shortcomings are a major 
setback for the development of novel therapeutics, 
which need to combat early disease progression. The 
iPSC technology, on the other hand, offers the 
opportunity to investigate early disease mechanisms in 
the relevant targets: The human neurons, astrocytes and 
microglia. An example of modelling of frontotemporal 
dementia (FTD) is presented in the following as it 
encompasses all components of stem cell biology and 
gene editing required for dissecting early disease 
mechanisms.  

Frontotemporal dementia linked to 
chromosome 3 (FTD3) is a rare heterozygous early-
onset form of frontotemporal dementia, which is caused 
by a point mutation in the gene encoding the charged 
multivesicular protein 2B (CHMP2B) located to the 
human chromosome 3. FTD3 is characterized as a 
behavioral variant of frontotemporal dementia mainly 
associated with initial mild personality changes and 
social inabilities and as the disease commences potential 
development of apathy and aggressive behavior (Seelaar 
et al., 2011). FTD3 slowly progresses from the age of 
onset around the late 50’ties with a mean duration of 
approximately 10 years, and is thus defined as an early-
onset form of dementia (Isaacs et al., 2011; Rossor et al., 
2010; Tang et al., 2012). The Danish version of FTD3 
has spread in a large family and is caused by a single 
nucleotide mutation translated into shortened and 
altered C-terminus of the CHMP2B protein (Skibinski 
et al., 2005; Urwin et al., 2010; Zhang et al., 2017). 
CHMP2B is an important part of the endosomal sorting 
complex required for transport-III (ESCRT-III) and for 
a proper function of the intracellular endolysosomal 
pathway (Krasniak and Ahmad, 2016; Urwin et al., 
2010; van der Zee et al., 2008). The mutation results in 
truncated CHMP2B unable to mediate the endosomal-

lysosomal fusion and processing. Patient-derived iPSCs 
have proven to be very useful in identification of 
cellular and molecular FTD3 phenotypes and future 
studies utilizing such models will likely reveal potential 
therapeutic targets. The stepwise process of FTD3 
disease modelling is presented in the following (Zhang 
et al., 2017).  

Skin fibroblasts were harvested from the 
patients and reprogrammed into iPSCs as by means of 
the non-integrative episomal plasmid approach 
described above (Rasmussen et al., 2014). Before using 
the iPSC lines for experimentation, they were carefully 
characterized with respect to their expression of 
pluripotency markers, ability to differentiate into all 
three germ layers in-vitro, normality of karyotype and 
absence of episomal plasmids in their genome.   

For disease modelling of neurons, the iPSCs 
were submitted to neural induction via a dual SMAD 
inhibition using the small molecules SB431542 and 
LDN193189, which inhibits the TGFβ and the BMP 
pathway, thus promoting ectodermal and neuronal 
differentiation, respectively (Zhang et al., 2017). The 
maturation of the neuronal progenitor cells into 
glutamatergic forebrain cortical neurons was initiated 
and maintained with growth factor supplements of 
BDNF, GDNF and the γ-secretase inhibitor DAPT 
(Zhang et al., 2017). 

Until recently, reference iPSCs were derived 
from healthy age- and gender matched control 
individuals and used as a comparison to the iPSCs 
derived from the patients. With the introduction of 
clustered regularly interspaced short palindromic 
repeats (CRISPR)-based gene editing, it is now possible 
to create isogenic controls from the patient’s own cells 
to use as a reference instead, eliminating obvious bias 
due to genomic variance (Poon et al., 2017). This so 
called CRISPR/Cas9 technology is derived from a 
natural adaptive immune defence mechanism in bacteria 
providing protection against DNA sequences invading 
from bacteriophages (Rath et al., 2015). Today, this 
microbial immune mechanism has been 
biotechnologically transformed into a versatile tool for 
genome editing. Hence, a single stranded guide-RNA 
sequence (sgRNA), designed to recognize a specific site 
in the genome, is combined with a Cas9 protein, capable 
of cleaving double stranded DNA. Once the target DNA 
is cut by Cas9 by a double stranded break, the cell 
repairs the break by either non-homologous-end-joining 
(NHEJ) or homology-directed repair (HDR) (Ran et al., 
2013). NHEJ, which is by far the most common of the 
two, is a random default-prone mechanism where the 
DNA-recombinase repairs the break by adding random 
nucleotides until the two DNA strands once again are 
connected. NHEJ is likely to result in insertions or 
deletions (Indels), which often results in formation of a 
codon shift creating a premature stop codon. NHEJ can, 
however, be bypassed by HDR where an alternative, 
often single stranded, DNA template carrying a 
designed sequence with overhangs matching the DNA 
regions beside the cut is provided. This oligo will, in 
successful cases, function as a template for DNA-repair 
(Hsu et al., 2014; Ran et al., 2013; Yumlu et al., 2017). 
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In the case of FTD3, isogenic controls were created in 
three different patients (Zhang et al., 2017). 

Based on the use of patient iPSC-derived 
neurons and their isogenic controls, we have clearly 
demonstrated specific disease phenotypes in the FTD3 
neurons, all of which can be rescued by correction of 
the disease-causing mutation. These include mis-
regulated expression of genes related to endosomes, 
mitochondria and iron homeostasis, which was verified 
by immunocytochemistry, electron microscopy and 
cellular assays demonstrating large neuronal 
accumulations of endosomes, lack of mitochondrial 
axonal distribution and cristae formation, reduction in 
mitochondrial respiration capacity and intracellular iron 
accumulation (Zhang et al., 2017). Further studies in 
disease modelling of FTD3 using iPSCs will potentially 
reveal additional novel disease phenotypes and 
therapeutic strategies. 

The central nervous system holds a 
glial/neuron ratio of 1.48 (Friede and Van Houten, 1962; 
Sica et al., 2016), which emphasize the glial importance 
and points towards potential pathological implications 
of glia in neurodegenerative disorders like FTD. 
Consequently, we applied an astrocyte differentiation 
protocol where growth factor supplements, mimicking 
in vivo embryonic astrogenesis, promoted the 
differentiation and maturation of the neuronal 
progenitor cells into astrocyte progenitors and further 
towards astrocytes expressing the astrocytic markers 
AQP4, S100β, SOX9 and GFAP (unpublished data). 
Our studies of FTD3-derived astrocytes and their 
isogenic controls clearly demonstrated that the FTD3 
astrocytes displayed accumulation of autophagosomes 
and increased astrocyte reactivity with a subsequent 
toxic effect on neurons (unpublished data). Hence, not 
only neurons, but also the prominent glial compartment 
is affected by FTD3. Continued research on co-cultures 
between neurons and glial cells, including both 
astrocytes and microglia, will further aid unravelling the 
molecular mechanisms behind this autophagic 
imbalance and induced neurotoxicity. 
 

Fourth biomedical and veterinary phase: Porcine 
and canine iPSCs and canine cognitive dysfunction 

 
The competences gained from the human 

iPSC-based disease modeling allowed us to return our 
focus to studies of porcine and canine iPSCs of more 
biomedical, veterinary and, potentially, agricultural 
relevance.   
 
Porcine iPSCs  
 

Porcine iPSCs have attracted great attention 
due to the fact that pigs are excellent biomedical models 
where potentials, but also risks associated with iPSC-
based therapy may be investigated. The use of this 
model enables long-term studies of, for example, cell or 
organ transplantation, and a multitude of genetically 
modified pigs are emerging as models for human 
diseases (Perleberg et al., 2018). In addition to being 
used for modeling cell-based therapy, porcine iPSCs 

may also facilitate the generation of genetically 
modified pigs for use as preclinical models and, 
potentially in the future, production of animals with 
valuable traits through the use of chimeric or nuclear 
transfer technologies. For these reasons we set out to 
derive integration-free porcine iPSCs. 

As alluded to earlier, bona fide porcine ESCs 
have not been generated (Gandolfi et al., 2012). The 
derivation of iPSCs, therefore, is of great importance, 
and at least 25 studies have already described putative 
porcine iPSC production (for review, see Pessôa et al., 
2019). The production of porcine iPSCs until now has 
predominantly utilized integrative viral vectors carrying 
human or murine OCT4, SOX2, KLM4 and C-MYC, 
including some variations such as NANOG and LIN-28. 
However, persistent expression of the integrated 
transgenes has been widely reported, as opposed to the 
mouse, and failure to inactivate the exogenous factors is 
considered a major flaw in the generation of bona fide 
porcine iPSCs (Ezashi et al., 2016).   

Contribution of porcine iPSCs to live chimeric 
offspring and germline transmission has only been 
achieved by one group thus far (West et al., 2010; West 
et al., 2011). In this study, porcine mesenchymal stem 
were used for the iPSC reprogramming and this 
approach resulted in more than 85% of the live-born 
piglets being chimeras. Interestingly, this approach also 
allowed for germline transmission where 2 out of 43 
next generation piglets were of iPSC-origin. One of 
these piglets was, however, stillborn and the other only 
lived to Day 3 indicating that underlying potential 
epigenetic aberrancies are incurred.  

As for the putative porcine ESCs, the 
pluripotency state, i.e. naïve vs. primed, of the porcine 
iPSCs has remained elusive and unclarified. 
Interestingly, the porcine iPSCs giving rise to germline 
transmission were cultured in the presence of bFGF 
being typical for primed murine ESCs, which are not 
capable of giving rise to germline transmitting chimeras 
(West et al., 2010; West et al., 2011). Again, this 
underlines the lack of clarity regarding the pluripotency 
states in the pig.   

We have particularly focused on the derivation 
of integration-free porcine iPSCs according to the 
protocol we optimized for human iPSC reprogramming 
(Rasmussen et al., 2014). Porcine iPSCs were 
successfully generated by this methodology and 
cultured in the presence of bFGF as well as  MEK/ERK 
(PD0325901) and GSK-3β (CHIR99021) inhibitors (Li 
et al., 2018). In order to assess the transgene status with 
respect to genomic integration or plasmid persistence in 
our iPSCs, PCR analysis on total DNA extractions, 
which included genomic DNA and episomal plasmid 
DNA, were performed. These revealed that at least two 
of the three episomal plasmids were still present in all 
lines examined at passage 10. However, at passage 20 
the abundance of the two plasmids was significantly 
diminished in all iPSC lines with one plasmid being 
completely undetectable. This promoted us to select the 
a porcine iPSC line, which showed the weakest PCR 
products for the two plasmids, for single cell subcloning 
under the assumption that the cell line might show a
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certain diversity with respect to plasmid integration or 
retention. Indeed, 6 out of 8 subclones were completely 
free of episomal vector DNA. We hereby succeeded in 
generating porcine iPSCs free of the reprogramming 
constructs. One of the most striking findings during this 
quest was that subcloning appears to be crucial in order 
to obtain integration- and episomal-free porcine iPSCs 
using the plasmid approach.  

During our efforts in implementing the 
plasmid-based iPSC reprogramming in the pig, we 
discovered a small population of stage-specific 
embryonic antigen 1 positive (SSEA-1+) cells in Danish 
Landrace and Göttingen minipig embryonic fibroblasts, 
which were absent in their Yucatan counterparts (Li et 
al., 2017). Interestingly, reprogramming of the SSEA-
1+ cells after cell sorting led to higher reprogramming 
efficiency. These SSEA-1+ cells exhibited expression of 
several genes that are characteristic of mesenchymal 
stem cells.  
 
Canine iPSCs  
 

Dogs are considered as very interesting models 
for human diseases; not only due to the over 200 
hereditary canine diseases with equivalents in humans, 
but also due to the physiological similarities as well as 
equivalence in response to therapy (Starkey et al., 2005; 
Gilmore and Greer, 2015). Based on the competences 
gained from our human iPSC modelling of 
neurodegeneration, we extended our studies back to the 
veterinary field focusing on the dog.  Recently, the 
neurobehavioral syndrome canine cognitive dysfunction 
(CCD), which shares many clinical and 
neuropathological similarities with human aging and 
early stages of AD, has been characterized in dogs, and it 
is increasingly evident that humans and dogs demonstrate 
commonalities in brain aging associated with cognitive 
dysfunction (Studzinski et al., 2005; Cotman and Head, 
2008). The prevalence of CCD in dogs over 8 years of 
age has been estimated to 14.2-22.5 % (Azkona et al., 
2009; Salvin et al., 2010). Hence, we set out to further 
characterize the CCD condition in iPSC-derived neurons 
from aged demented and control dogs, which will also 
allow the comparison of CCD with human AD at the 
cellular level. Such studies have several perspectives: The 
dog may in the future serve as a model for spontaneous 
AD in humans and from a veterinary point of view, novel 
treatment modalities of CCD may become available.  

The first information on potential canine iPSCs 
was reported some years after Yamanaka’s breakthrough 
(Takahashi and Yamanaka, 2006), and the quest for 
deriving fully reprogrammed and stable canine iPSCs is 
still ongoing  (Shimada et al., 2010; Lee et al., 2011; Luo 
et al., 2011; Whitworth et al., 2012; Koh et al., 2013; 
Baird et al., 2015; Nishimura et al., 2017; Gonçalves et 
al., 2017; Chow et al., 2017; Tsukamoto et al., 2018). In 
the first studies on canine iPSCs, canine reprograming 
factors were utilized for reprogramming (Shimada et al., 
2010). The presumptive iPSCs were positive for OCT4 
and alkaline phosphatase and were capable of directed 
differentiation into representatives of all three germ 
layers. However, the cells were not extensively 

characterized. In the subsequent work, researchers used 
mostly human or mouse OSKM reprogramming factors, 
occasionally with addition of LIN28 and NANOG 
(Whitworth et al., 2012), introduced using retroviral 
(Shimada et al., 2010; Koh et al., 2013; Baird et al., 2015) 
or lentiviral approaches (Lee et al., 2011; Luo et al., 2011; 
Whitworth et al., 2012; Nishimura et al., 2017; 
Gonçalves et al., 2017). Lastly, non-integrative Sendai 
virus have been attempted (Chow et al., 2017; 
Tsukamoto et al., 2018). Again, as earlier described for 
the pig, the silencing of the integrated transgenes in the 
canine iPSCs seems to represent a consistent problem and 
was only described in a few studies (Baird et al., 2015; 
Gonçalves et al., 2017). Regarding culture conditions and 
supplementation requirements, canine iPSCs seem to be 
dependent of both LIF and bFGF, with some exceptions 
(Whitworth et al., 2012; Nishimura et al., 2017; 
Gonçalves et al., 2017; Chow et al., 2017), as well as the 
cells are dependent on culture with feeder cells, except 
for a single report (Nishimura et al., 2017). 

In general, the reports on putative canine iPSCs 
do not refer to the naïve vs. primed pluripotency state of 
the generated cells. However, based on the expression of 
pluripotency markers, one can speculate that most of the 
generated cell lines represent a primed status, 
characterized by expression of markers such as SSEA4, 
TRA-1-60 and TRA-1-80 (Lee et al., 2011; Luo et al., 
2011; Whitworth et al., 2012; Baird et al., 2015; 
Nishimura et al., 2017; Chow et al., 2017). Nevertheless, 
canine iPSCs expressing naïve pluripotency markers, like 
SSEA1, have also been described (Koh et al., 2013; 
Tsukamoto et al., 2018). The expression of pluripotency 
markers, however, may differ between species making it 
difficult to draw firm conclusions on the state of 
pluripotency just based upon such markers. Overall, the 
potential canine iPSCs have been reported to show 
different combinations of classic pluripotency markers, 
such as OCT4, Nanog, SOX2, amongst others (for review, 
see Pessôa et al., in press), and some of these cells lines 
were also able to form teratomas (Lee et al., 2011; 
Whitworth et al., 2012; Koh et al., 2013; Gonçalves et al., 
2017; Chow et al., 2017; Tsukamoto et al., 2018). 
Contribution of iPSCs to the development of chimeric 
embryos has, however, not been described so far.  

All the previously cited reports deal with 
reprogramming of fibroblasts or adipose tissue cells 
from canine embryos, fetuses or younger adults, the 
oldest donors being 3-year-old beagles and a 6-year-old 
male standard poodle (Koh et al., 2013; Chow et al., 
2017; respectively). Our studies of CCD focused on 
geriatric dogs, and it turned out that iPSC 
reprogramming of fibroblasts from such elderly dogs is 
a major challenge. Our efforts, however, have just 
started to pay off. We have attempted to reprogram 
adult fibroblasts to pluripotency using an excisable 
lentiviral vector containing human and/or murine 
OSKM (Sommer et al., 2009; Gonçalves et al., 2017). 
After a longer series of experiments, the first iPSCs 
colonies have now emerged around 14 days after 
transduction with human factors in skin fibroblasts of a 
14-year and 9 month-old female west highland white 
terrier. So far, colonies obtained are flat, present high
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nuclei to cytoplasm ratio, are tightly packed, present 
well defined edges, and are positively stained for 
alkaline phosphatase and hanog The potential iPSCs are 
dependent on both LIF and bFGF and are in the process 
of expansion for further characterization. Once these 
cell lines are well stablished and characterized, we hope 
they will provide valuable information for iPSC-based 
disease modeling and veterinary research. 

 
Fifth agricultural phase: Return to bovine in vitro 

embryo production 
 

This review began with in vitro production of 
bovine embryos. Even though great advances were 
made in this area in Denmark during the eighties and 
nineties, the practical implementation of the 
technologies failed due to concerns related to animal 
welfare and ethical considerations related to the OPU 
procedure and the risk of LOS. As alluded to earlier in 
the text, the refinement of media for bovine IVP has 
more or less eliminated the risk for LOS, and the OPU 
procedures have also become less harmful. These 
developments have led to a Danish reconsideration of 
the use of the technologies in cattle breeding and have 
given leverage to funding of the project EliteOva by 
Innovation Fund Denmark. EliteOva aims at 
implementing OPU and IVP combined with genomic 
selection of the embryos in commercial Danish Holstein 
dairy breeding.  

It has been a great privilege to encompass a full 
circle of scientific progress from bovine oocytes and 
embryos through bovine and porcine stem cells into 
human stem cell-based disease modeling and back to 
animal stem cells and, finally, practical implementation 
of bovine oocyte and embryo technologies. 
 

Conclusions 
 

The veterinary and animal science professions 
are rapidly developing and their inherent and historical 
focus on agriculture has been extended with a major 
biomedical and even medical dimension. This 
biomedical and medical trend in science cannot be 
rejected and should be contemplated as an opportunity 
for contemporary development of the veterinary and 
animal science professions. With an open scientific 
mind it is possible to embark on such biomedical and 
medical adventures and gain new competences that can 
feed back to novel ideas and projects in the veterinary 
and animal science field. Hence, seek opportunistic 
scientific avenues and see the possibilities in gaining 
novel competences that will, in turn, benefit veterinary 
and animal science.  
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