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Summary
Background There are several models that predict the risk of recurrence following resection of localised, primary
gastrointestinal stromal tumour (GIST). However, assessment of calibration is not always feasible and when per-
formed, calibration of current GIST models appears to be suboptimal. We aimed to develop a prognostic model to
predict the recurrence of GIST after surgery with both good discrimination and calibration by uncovering and
harnessing the non-linear relationships among variables that predict recurrence.

Methods In this observational cohort study, the data of 395 adult patients who underwent complete resection (R0 or
R1) of a localised, primary GIST in the pre-imatinib era at Memorial Sloan Kettering Cancer Center (NY, USA)
(recruited 1982–2001) and a European consortium (Spanish Group for Research in Sarcomas, 80 sites) (recruited
1987–2011) were used to train an interpretable Artificial Intelligence (AI)-based model called Optimal
Classification Trees (OCT). The OCT predicted the probability of recurrence after surgery by capturing non-linear
relationships among predictors of recurrence. The data of an additional 596 patients from another European
consortium (Polish Clinical GIST Registry, 7 sites) (recruited 1981–2013) who were also treated in the pre-
imatinib era were used to externally validate the OCT predictions with regard to discrimination (Harrell’s C-index
and Brier score) and calibration (calibration curve, Brier score, and Hosmer-Lemeshow test). The calibration of
the Memorial Sloan Kettering (MSK) GIST nomogram was used as a comparative gold standard. We also
evaluated the clinical utility of the OCT and the MSK nomogram by performing a Decision Curve Analysis (DCA).

Findings The internal cohort included 395 patients (median [IQR] age, 63 [54–71] years; 214 men [54.2%]) and the
external cohort included 556 patients (median [IQR] age, 60 [52–68] years; 308 men [55.4%]). The Harrell’s C-index of
the OCT in the external validation cohort was greater than that of the MSK nomogram (0.805 (95% CI: 0.803–0.808)
vs 0.788 (95% CI: 0.786–0.791), respectively). In the external validation cohort, the slope and intercept of the cali-
bration curve of the main OCT were 1.041 and 0.038, respectively. In comparison, the slope and intercept of the
calibration curve for the MSK nomogram was 0.681 and 0.032, respectively. The MSK nomogram overestimated the
recurrence risk throughout the entire calibration curve. Of note, the Brier score was lower for the OCT compared to
the MSK nomogram (0.147 vs 0.564, respectively), and the Hosmer-Lemeshow test was insignificant (P = 0.087) for
the OCT model but significant (P < 0.001) for the MSK nomogram. Both results confirmed the superior
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discrimination and calibration of the OCT over the MSK nomogram. A decision curve analysis showed that the AI-
based OCT model allowed for superior decision making compared to the MSK nomogram for both patients with
25–50% recurrence risk as well as those with >50% risk of recurrence.

Interpretation We present the first prognostic models of recurrence risk in GIST that demonstrate excellent
discrimination, calibration, and clinical utility on external validation. Additional studies for further validation are
warranted. With further validation, these tools could potentially improve patient counseling and selection for adjuvant
therapy.

Funding The NCI SPORE in Soft Tissue Sarcoma and NCI Cancer Center Support Grants.

Copyright © 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
The accurate estimation of risk of recurrence following
resection of primary gastrointestinal stromal tumour (GIST)
not only informs patient prognosis but can also guide patient
selection for imatinib. Specifically, it can spare those who have
already achieved cure from surgical resection from
unnecessary cost and drug toxicity and reserve adjuvant
imatinib for those at high risk for relapse. A PubMed search
between January 1, 2009, and April 6, 2023, was performed
using the terms “gastrointestinal stromal tumours” or “GIST”
and “predictive” or “prognostic model” to identify studies on
the development or validation of statistical models that
aimed to predict recurrence following complete resection of
primary GIST. Several of these prognostic models were
published in high impact clinical oncology journals, such as
The Lancet Oncology (ie, the Memorial Sloan Kettering (MSK)
nomogram by Gold and colleagues and the Joensuu heat
maps). Unfortunately, even the best models suffer from many
deficiencies. For example, the original National Institutes of
Health (NIH) criteria were formulated based on expert
consensus and literature review and were not statistically
validated. Similarly, neither the Armed Forces Institute of
Pathology (AFIP) criteria by Miettinen et al. nor the modified
NIH criteria by Joensuu et al. underwent formal statistical
validation. The MSK nomogram by Gold and colleagues
appears to consistently overestimate the actual risk of
recurrence across all patient groups. Finally, the Joensuu heat
maps underwent a very limited external validation of its
discriminatory ability and no evaluation of calibration. In
addition, because the online tool that was published by the
authors in 2016 is no longer available, the scientific
community cannot evaluate its concordance index or
calibration.

Added value of this study
To remedy these deficiencies and improve upon existing
models, one could either increase the statistical power by

increasing the sample size of the cohort and/or adopt a
different methodological approach. The former is not possible
as only patients who underwent resection of a primary GIST
in the pre-imatinib era (before 2001 in the USA) and thus
retained their natural history are eligible; including patients
from the imatinib era who did not receive treatment would
introduce serious selection and confounding bias to an
analysis. Thus, we collaborated with a group from the
Massachusetts Institute of Technology (MIT) that developed
their own interpretable artificial intelligence (AI)-based
methodology (ie, optimal classification trees [OCT]), which
has been successfully employed in the medical field. To the
best of our knowledge, the GIST OCT has one of the highest
concordance indices ever reported on an external validation of
a GIST prognostic model and is the only GIST prognostic
model that has excellent calibration on external validation.

Implications of all the available evidence
Currently, the decision to offer adjuvant imatinib relies on the
clinician’s expertise and available prognostic models, which
have unknown or poor calibration. The GIST OCT
demonstrated excellent predictive performance and superior
clinical utility in an external cohort consisting of registry data
from geographically distinct hospitals with high
heterogeneity. This attests to the generalisability of its
predictions in various practice settings. Importantly, its
superior performance did not come at the cost of limited
transparency, which occurs in many AI-driven models such as
gradient boosting and deep learning; these models are
considered “black box” models, which means it is nearly
impossible for a human to understand exactly how the input
was used to construct the model predictions. This advantage
of OCTs is particularly important as lack of interpretability
may serve as a significant barrier to clinical implementation of
AI technology. Although we externally validated the GIST OCT
prognostic model, additional studies for further validation are
warranted.
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Introduction
The standard treatment for localised, primary gastro-
intestinal stromal tumour (GIST) is surgical resection,
but many patients recur post-operatively.1,2 The cost
and potential cumulative toxicity of imatinib mandate
adjuvant application in only those at high-risk for
relapse. Thus, accurate risk-stratification following
surgery is needed. Current risk-stratification tools are
based on models that combine well-established pre-
dictors of recurrence. Models include the original
National Institutes of Health (NIH) criteria, the
modified NIH criteria, the Armed Forces Institute of
Pathology (AFIP) Miettinen criteria, the Joensuu con-
tour maps, and the Memorial Sloan Kettering (MSK)
nomogram.3–7 Their popularity stems from the high
area under the curve (AUC) or concordance indices
reported in both the original publications and external
validations.5,6,8 A high AUC or concordance index in-
dicates that these models can accurately rank patients
according to risk of recurrence.7 However, a perfect
ranking does not necessarily equate to correct predic-
tion of probability of recurrence. For example, three
patients with recurrence risks of 20, 40, and 60% can
be appropriately ranked both by a model that correctly
assigns them probabilities of 20, 40 and 60% and by a
model that incorrectly assigns them probabilities of 30,
50 and 70%. The measurement of how well a model
matches the probability of the event (e.g., recurrence)
is a distinct property called calibration.9

The importance of good calibration may be even
more pronounced in GIST, as the model can be utilised
to not only inform patients about their prognosis, but
also decide who receives adjuvant imatinib. The cali-
bration of the original NIH criteria, the modified NIH
criteria, and the AFIP-Miettinen criteria cannot be
A

Fig. 1: Flowchart of study cohort sele
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assessed because they only provide a qualitative estimate
of risk-stratification (e.g., low vs moderate vs high-
risk).3,4,7 The calibration of the Joensuu contour maps
has also not been validated because they demonstrate
ranges of probabilities of recurrence and not a specific
probability for a given patient.5 Across the most
commonly used risk-stratification tools, only the MSK
nomogram predicts quantifiable risk of recurrence for a
given patient.6

Using a novel methodology could allow one to devise
a model with both a high concordance index and
excellent calibration. Joensuu et al. have shown a non-
linear effect of tumour size and mitotic count on
recurrence.5 Thus, we hypothesised that important non-
linear relationships also exist among variables that pre-
dict recurrence, and an interpretable Artificial Intelli-
gence (AI) framework that could uncover and harness
them may be an optimal option. We collaborated with
the Massachusetts Institute of Technology (MIT) to
employ interpretable AI-based techniques to devise a
model with excellent calibration and compared it to the
MSK nomogram. We also investigated whether the
addition of KIT mutational status can further improve
the interpretable AI-based model.

Methods
Internal cohort
All adult patients who underwent complete resection
(R0 or R1) of a localised, primary GIST in the pre-
imatinib era (and thus retained their natural history)
at the Memorial Sloan Kettering Cancer Center
(MSKCC) (recruited 1982–2001) and at the 80 hospitals
of the Spanish Group for Research in Sarcomas (Grupo
Español de Investigación en Sarcomas, GEIS) (recruited
1987–2011) were considered for inclusion (Fig. 1).
B

ction: (A) Internal, (B) External.
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External cohort
The data of patients from another European consortium
(Polish Clinical GIST Registry) similarly treated in the
pre-imatinib era (recruited 1981–2013) were used to
externally validate the OCT predictions (Fig. 1).

Ethical standards
The study was conducted in accordance with the ethical
standards of the participating institutions and was
approved by their respective institutional review boards
(IRBs). The IRB study protocol designation for each
institution is as follows: IRB protocol 16–1583 (Memo-
rial Sloan Kettering Cancer Center), IRB protocol 2016/
195 (Grupo Español de Investigación en Sarcomas,
GEIS), and IRB protocols KB/9/2011 and 119/2002
(Polish Clinical GIST Registry and Maria Sklodowska-
Curie Institute—Oncology Center, respectively). The
IRB approved the waiver of authorisation for MSKCC
and the Polish Clinical GIST Registry. Informed con-
sent was obtained from all participants undergoing
follow-up for GEIS.

Rationale for selecting the OCT methodology
Optimal classification trees (OCTs) are state-of-the-art
decision tree methods and have several technical advan-
tages over other AI-based methods.10,11 Importantly,
OCTs not only do not share the limitations which have
impeded the wide adoption of AI methodology in
healthcare, but have a unique combination of interpre-
tability and excellent performance.12 Because of these
properties, OCTs have been repeatedly used to predict
outcomes in acute care surgery, cardiac surgery, and
surgical oncology.13–22 A detailed discussion of the main
advantages of OCTs over the other decision tree-based
methods is available in the relevant passage of the
eMethods section. Given the several theoretical advan-
tages of the OCT over other decision tree models, we
were also interested in comparing its performance to
“black box” machine learning (ML)-based models such as
Random Forest (RF) and XGBoost as well as the popular
Classification and Regression Trees (CART) (eMethods).

Feature selection and OCT training
We trained the OCTs (please see the protocol that is
provided within the appendix for details) with three well-
known, independent predictors of recurrence (tumour
size, mitotic count, and tumour site) that are routinely
available and used by all five current risk-stratification
tools (the original NIH criteria, modified NIH criteria,
AFIP-Miettinen criteria, Joensuu contour maps, and the
MSK nomogram).3–7

Five feature selection analyses (optimal feature se-
lection (OFS), XGBoost training and Shapley Additive
exPlanations (SHAP) analysis, least absolute shrinkage
and selection operator (LASSO), minimal redundancy
maximal relevance (MRMR), and recursive feature
elimination (RFE)) were performed in the same dataset
to test our decision to use tumour size, mitotic count,
and tumour site to train the OCTs.23–29 The candidate
features included tumour size, mitotic count, tumour
site, demographic features (age and sex), histology
subtype (spindle vs epithelioid vs mixed), and resection
margin status (R0 vs R1).

OFS is a state-of-the-art methodology that has been
shown to outperform similar approaches and results in
a model that is simpler, more interpretable, and more
accurate.27–29 The SHAP method determines the average
contribution of each factor to the model’s output by
calculating the respective SHAP value.23,27 The magni-
tude of a given SHAP value reflects the importance of
the predictor in question. We opted to use XGBoost to
predict recurrence because as a “black box” model, it
should have superior performance over a transparent,
decision tree model such as the OCT. This is supported
by the well-described trade-off that exists between per-
formance and interpretability.30 In addition to the OFS
and SHAP analyses, three other methodologies were
used to select the features that predict recurrence–the
LASSO estimator, the MRMR feature selection frame-
work, and the RFE.

We used 5-fold cross-validation to tune the OCT
hyperparameters. The hyperparameters used in the grid
search were minbuckets (minimum number of patients
included in each leaf of the tree) of 5%, 10%, and 15%,
maximum depths of the tree of 3–5, and scoring criteria
between gini and entropy. We trained models for every
possible combination of these hyperparameters, which
were determined from prior experience and familiarity
with OCTs.

Evaluation of the OCT performance
There are two important properties of any prognostic
model. First, the AUC or concordance index, which re-
flects discriminatory ability, has values that range from
0.5 (performance is equivalent to random prediction) to
1.0 (perfect discrimination). An AUC of 0.8 means that
80% of the time, the model will correctly assign a higher
risk to a randomly selected patient with an event than to
a randomly selected patient without an event. An AUC
of 0.8–0.9 indicates excellent performance.31,32

Second, calibration refers to the degree of agreement
between predicted probabilities and the rate of the actual
outcome. A calibration plot, which is typically drawn by
splitting the external validation cohort into at least five
and ideally ten groups (deciles), should be close to the
45-degree line if the predictions are well calibrated.
Alternatively, we can first discretise our model pre-
dictions into four interval bins (recurrence risk of
0–25%, 25–50%, 50–75%, and >75%) and calculate the
average predicted probability and rate of the actual
outcome of each bin. It has been previously suggested
that the sample size for calibration assessment should
be 400 cases with at least 100 and ideally 200 events.33–35

Our external validation cohort included 556 cases with
www.thelancet.com Vol 64 October, 2023
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173 events (recurrences). We also calculated and re-
ported the calibration slope and intercept. Ideally, the
calibration slope is 1 and the intercept is 0. An intercept
of up to 0.4 is considered excellent.31

Finally, we evaluated the clinical utility of the OCT
and the MSK nomogram by performing a Decision
Curve Analysis (DCA).36,37 Unlike traditional accuracy
measures, DCA is a statistical method that determines
the net benefit of a model in comparison to a competing
model (e.g., MSK nomogram) and the two default stra-
tegies of treat all patients and treat no patients. DCA is
most useful when there is no consensus on a single risk
threshold, as it “allows one to examine risk model per-
formance across a range of plausible risk thresholds”.38

Thus, DCA may be ideal for GIST models that predict
recurrence since there is no strict threshold of recur-
rence risk that mandates adjuvant imatinib but rather a
range of plausible thresholds. Specifically, the ESMO-
EURACAN Clinical Practice Guidelines and a recent
expert review published in Nature suggest that a recur-
rence risk of less than 25% should dissuade a provider
from offering adjuvant imatinib to a patient, whereas a
risk of 50% and higher would mandate offering adju-
vant imatinib.39,40 However, the appropriate recommen-
dation for patients with a recurrence risk between 25
and 50% is less clear.

Selection of the optimal OCT
The OCT with the highest AUC in both the training and
internal validation (5-fold cross validation) cohort and
that minimised overfitting was selected. The calibration
of the OCT was subsequently validated in the entire
external validation cohort, as well as in the subset of the
external validation cohort with predicted intermediate/
high recurrence risk according to the AFIP-Miettinen
criteria.7 Specifically, based on recommendations pro-
posed by Miettinen et al., AFIP groups 3b–6b and
jejunal and ileal 3a were included in the intermediate
and high-risk categories.7 Additionally, per the same
recommendations, less common lower intestinal sites
were grouped similarly to small intestinal GISTs.7

Another sub-analysis was performed in the subset of
patients with tumours of known KIT and platelet-
derived growth factor receptor alpha (PDGFRA) muta-
tional status (eMethods).

Computing and statistical analysis
This study followed the STROBE reporting guidelines
(Supplementary appendix). Continuous variables were
presented as medians with interquartile ranges (IQR)
and categorical variables as counts and percentages.
Categorical variables were compared with the chi-square
test, whereas continuous variables were compared with
the Mann–Whitney U test. The OCT models were
trained by using the Julia and Python programming
languages. The Kaplan–Meier method was used for
univariable survival analysis, and median follow-up was
www.thelancet.com Vol 64 October, 2023
calculated using the reverse Kaplan–Meier method. The
evaluation of the discrimination and calibration of the
OCT and the MSK nomogram is described above. We
also calculated the Harrell’s C-index, defined as the
proportion of observations that the model can correctly
order in terms of survival times. When censoring is
present, the C-index has the added benefit of only
including those patient pairs for which valid compari-
sons can be made. Comparisons between the OCT and
the MSK nomogram model were performed with the
rcorrp.cens function in the Hmisc package in R. We
further evaluated the calibration of the two models by
performing the Hosmer-Lemeshow test. Finally, we
calculated the Brier score for the OCT and the MSK
nomogram. The Brier score is an overall measure of
the quality of predictions and is simultaneously influ-
enced by both discrimination and calibration, with
smaller values indicating superior model performance.
All statistical analyses were conducted using R 5.3.0
(cran.r-project.org) and computing was performed on
the MIT Sloan School of Management’s remote
Engaging cluster (https://github.com/cran/iai/blob/
master/R/optimaltrees.R).

Role of the funding source
The funding organisations had no role in the design and
conduct of the study; collection, management, analysis,
and interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit the
manuscript for publication.

Results
Internal training cohort
The demographic and clinicopathologic features of the
395 patients included in the MSK- Spanish Group in-
ternal cohort are presented in Table 1. The median age
was 63 years and 54.2% of patients were male (n = 214).
Fifty-five percent of tumours were located in the stom-
ach (n = 218). The median diameter of the tumours was
7 cm, and the median mitotic count was four mitoses
per 5 mm2. Genetic testing was performed in 81.3% of
all tumours. Of those, 42.4% harbored a KIT exon 11
deletion (n = 136), with the second most common mu-
tation being other isoforms of the KIT exon 11 muta-
tion. The number of patients who had AFIP low-risk,
intermediate-risk, and high-risk disease was 153, 88,
and 154, respectively. There were 147 events (37.2%)
and the 5-year recurrence-free survival (RFS) rate was
65% (60–70%) for the Spanish cohort and 56%
(46–67%) for the MSK cohort. The median follow-up
time was 106 (82–135) months.

External validation cohort
The demographic and clinicopathologic features of the
556 patients included in the external validation cohort
are presented and compared to those of the patients
included in the internal training cohort in Table 1. A
5
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Numerical features (median [IQR]) Memorial Sloan
Kettering (MSK)-Spain

Poland P-value

(n = 395) (n = 556)

Age, years 63.0 (54–71) 60.0 (52–68) <0.001

Tumour size, cma 7.0 (5–11) 6.0 (4–9.5) <0.001

Mitotic countb 4.0 (1–11) 3.0 (1–9) 0.126

Categorical features

Sex 0.741

Male 214 (54.2%) 308 (55.4%)

Female 180 (45.6%) 248 (44.6%)

Tumour sitec 0.371

Gastric 218 (55.2%) 319 (57.4%)

Non-gastric 177 (44.8%) 237 (42.6%)

Mutation category

KIT exon 9 17 (4.3%) 16 (2.9%)

KIT exon 11 deletion 112 (28.4%) 87 (15.6%)

KIT exon 11 other 102 (25.8%) 61 (11%)

KIT exon 13 5 (1.3%) 2 (0.4%)

KIT exon 17 0 (0.0%) 1 (0.2%)

KIT multiple exons 24 (6.1%) 0 (0.0%)

PDGFRA D842V or D842I 17 (4.3%) 19 (3.4%)

PDGFRA other 14 (3.5%) 10 (1.8%)

Wild type (WT) 21 (5.3%) 31 (5.5%)

Not tested 74 (18.7%) 329 (59.3%)

NF1 only 0 (0.0%) 0 (0.0%)

SDH 0 (0.0%) 0 (0.0%)

BRAF 9 (2.3%) 0 (0.0%)

Armed Forces Institute of Pathology (AFIP) category 0.077

Low-risk 153 (38.7%) 253 (45.5%)

Intermediate-risk 88 (22.3%) 101 (18.2%)

High-risk 154 (39%) 202 (36.3%)

TNM AJCC staging systemd (8th edition) 0.070

I 152 (38.5%) 250 (45.7%)

II 89 (22.5%) 102 (18.6%)

IIIA 44 (11.2%) 69 (12.6%)

IIIB 110 (27.8%) 126 (23%)

The Spanish cohort had 309 patients (147 females, 161 males, and 1 unknown), while the MSK cohort had 86
patients (33 females and 53 males). No significant difference in gender was identified on chi square test
(P = 0.265). Similarly, no significant difference in age distribution was identified on Mann-Whitney U test
between the Spanish (median age = 63 (IQR: 54–71)) and MSK cohorts (median age = 64 (IQR: 52–71))
(P = 0.715). aTumour size was ascertained in cm using the greatest diameter. bMitotic count was determined to
reflect per 50 HPF. cThe primary tumour site was categorised as gastric vs non-gastric per the modified National
Institutes of Health (NIH) and AFIP-Miettinen criteria; the exact site of origin was also ascertained. dTNM
staging could not be calculated for all patients in the Polish cohort.

Table 1: Demographic information and clinicopathologic variables of the internal training and
external validation cohorts.
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significant difference in median age and tumour size
was noted between the two cohorts. The median age was
60 years, and 55.4% of patients were male (n = 308).
Fifty-seven percent of tumours were located in the
stomach (n = 319). The median diameter of the tumours
was 6 cm, and the median mitotic count was four mi-
toses per 5 mm2. Genetic testing was performed in
40.8% of all tumours. Of those, more than one-third
harbored a KIT exon 11 deletion (n = 87, 38.3%), with
the second most common mutation being other iso-
forms of the KIT exon 11 mutation. The number of
patients who had AFIP low-risk, intermediate-risk, and
high-risk disease was 253, 101, and 202, respectively.
There were 173 events (31.1%) and the 5-year RFS rate
was 62% (58–67%). The median follow-up time was 61
(29–91) months.

Feature selection
Importantly, mitotic count and tumour size were
selected as the two most important features by all five
feature selection analyses, which supports our decision
to use them to train the OCTs (eTable 1). The decision
to use tumour site as the third variable was corroborated
by the fact that not only was there no agreement among
the five feature selection analyses with regard to the
third most important feature, but tumour site was also
included in most of the five current risk score systems
(the original NIH criteria, the modified NIH criteria, the
AFIP-Miettinen criteria, the Joensuu contour maps, and
the MSK nomogram).3–7 In turn, this would allow for a
fair comparison between the OCT and the other prog-
nostic models since the latter also include tumour size
and mitotic count.

OCT structure
The OCT with the highest AUC in both the training and
internal validation (5-fold cross validation) cohorts and
with the least overfitting was an OCT with an AUC of
0.84 (0.80–0.87) in the training cohort and 0.777 in the
5-fold cross-validation. Fig. 2 illustrates the structure of
this OCT, which assigned patients to eight distinct
subgroups, each with a unique probability of recurrence
within 5 years after GIST resection. The number of
patients whose data were used to derive the eight pre-
dictions are reported in the respective OCT leaf. A
calculator to enable rapid determination of recurrence
risk based on the OCT model depicted in Fig. 2 is
available online at: https://alexandriahealth.gitlab.io/
apps/gastrointestinal-stromal-tumor/recurrence.html.

The ESMO-EURACAN Clinical Practice Guidelines
and a recent expert review published in Nature suggest
that a recurrence risk of less than 25% should dissuade
a provider from offering adjuvant imatinib to a patient,
whereas a risk of 50% and higher should mandate of-
fering adjuvant imatinib.39,40 We merged the eight sub-
groups into three groups based on the aforementioned
cut-offs. The KM curves of the three groups separate
nicely as shown in eFigure 1, and the pair wise log rank
tests were all statistically significant (P < 0.05). However,
given that the appropriate recommendation for patients
with a recurrence risk between 25 and 50% is less clear,
we recommend that readers use the original OCT,
which can provide a more accurate estimate of recur-
rence risk and better facilitate shared physician-patient
decision making. For example, a patient and/or pro-
vider may decide that 57.1% (Group B of the OCT) is a
www.thelancet.com Vol 64 October, 2023
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Fig. 2: Optimal classification tree to predict recurrence. Footnote: For tumours less than 7.15 cm, tumour site was not accounted for by the
algorithm; thus, for these tumours, we should clarify that the probability of recurrence is reflective of mixed gastric and non-gastric site tu-
mours. This is in contrast to tumours equal to or larger than 7.15 cm, for which the probability of recurrence was influenced by tumour site.
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risk high enough to warrant receiving imatinib while
23.8% (Group E of the OCT) is not.

The OCT that was trained in the subset of patients
with known KIT and PDGFRA status is illustrated in
eFigure 2 and presented in the eResults section.

OCT performance
The concordance index of the main OCT in the external
validation cohort was greater than that of the MSK
nomogram (0.805 (95% CI: 0.803–0.808) vs 0.788 (95%
CI: 0.786–0.791), respectively). In the external validation
cohort, the slope and intercept of the calibration curve of
the main OCT were excellent at 1.041 and 0.038,
respectively. The curve was close to the 45-degree line,
indicating excellent calibration (Fig. 3A). In comparison,
the slope and intercept of the calibration curve of the
MSK nomogram were 0.681 and 0.032, respectively, and
an overestimation of the risk of recurrence throughout
A B

Fig. 3: Assessment of calibration of (A) the OCT (B) the Memorial Slo
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the entire calibration curve was visually apparent
(Fig. 3B). The calibration plots that discretise OCT and
nomogram predictions into four interval bins (recur-
rence risk of 0–25%, 25–50%, 50–75%, and >75%) were
consistent with the main plots (Fig. 4A and B).

The calibration of the main OCT was also tested in
the subset of patients in the external validation cohort
with intermediate/high risk of recurrence according to
the AFIP-Miettinen criteria and compared to that of the
MSK nomogram. The slope and intercept of the cali-
bration curve of the main OCT were 0.921 and 0.069,
respectively. The curve was relatively close to the 45-
degree line, indicating good calibration (eFigure 3A).
In comparison, the slope and intercept of the calibration
curve of the MSK nomogram were 0.633 and 0.023,
respectively, and an overestimation of the risk of
recurrence throughout the entire calibration curve was
visually apparent (eFigure 3B). Of note, the Hosmer-
an Kettering (MSK) nomogram in the external validation cohort.
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A B

Fig. 4: Assessment of calibration of (A) the OCT (B) the MSK nomogram in the external validation cohort using the discretised OCT and
nomogram predictions.

Articles

8

Lemeshow test was insignificant (P = 0.087) for the OCT
model but significant (P < 0.001) for the MSK nomo-
gram. We also compared the OCT predictions to the
actual events in the external validation cohort. As shown
in eFigure 4, the rates are remarkably consistent. We
also calculated the Brier score for the OCT and the MSK
nomogram (0.147 vs 0.564, respectively) which
confirmed the superior discrimination and calibration
of the OCT model compared to the MSK nomogram.

Finally, as shown in eFigure 5, the decision curve for
the OCT model dominated the curve for the MSK
nomogram and thus allowed for superior decision
making compared to the MSK nomogram for both pa-
tients at 25–50% recurrence risk as well as those with
>50% recurrence risk.

The performance of the OCT that was trained in the
subset of patients with known KIT and PDGFRA status
is reported in the eResults section and in eFigure 6.
Finally, the main OCT outperformed all three ML al-
gorithms (eResults and eFigure 7).

Discussion
In this study, we report on the first interpretable AI-
based algorithm to predict recurrence risk following
GIST resection. The algorithm utilised the same pre-
dictors of recurrence used by most existing models to
allow for a fair comparison across different methodolo-
gies and has three main advantages. First, it had excel-
lent calibration in an external cohort. The fact that the
external cohort consisted of registry data from
geographically distinct hospitals with high heterogeneity
attests to the generalisability of the algorithm’s pre-
dictions. In comparison, the original NIH criteria, the
AFIP criteria by Miettinen et al., and the modified NIH
criteria by Joensuu et al. can only make qualitative esti-
mates. Thus, we cannot assess whether these predictions
are well calibrated. The Joensuu contour or heat maps
demonstrate ranges of probabilities of recurrence and
not a specific probability for a given patient, and thus
their calibration cannot be assessed.5 Of note, one can
calculate an estimated probability of recurrence for a
given patient using contour and heat maps as long as an
online tool is provided, but their associated online
calculator was taken down in 2020 for unknown reasons.

In contrast, the MSK nomogram has undergone
validation of its calibration, but a study from Japan by
Tanimine et al. reported poor calibration.41 Specifically,
the authors found that the nomogram overestimated the
recurrence risks along the entire length of the calibra-
tion curve. A group from Singapore similarly reported
on poor calibration of the MSK nomogram.42 A group
from Canada that validated the MSK nomogram also
reached similar conclusions; in their cohort, the
observed recurrence rates were significantly lower than
those predicted by the MSK nomogram.43 Finally, an
Italian group corroborated the aforementioned studies
and also reported an overestimation of the risk of
recurrence.44 Ultimately, these results are consistent
with our study findings, as the MSK nomogram over-
estimated the actual risk of recurrence across all patient
groups.

Second, the OCT’s high Harrell’s C-index that was
retained on external validation (0.80) places it among the
best models that predict recurrence following GIST
resection. Joensuu et al. reported that the AUCs in their
validation series were 0.80 for their contour maps, 0.76
www.thelancet.com Vol 64 October, 2023
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for the NIH consensus criteria, 0.76 for the modified
NIH criteria, and 0.77 for the AFIP-Miettinen criteria.5

Gold et al. reported that the AUC of their MSK nomo-
gram ranged between 0.76 and 0.80 in the two validation
cohorts, while the AUC of the original and modified
NIH criteria ranged between 0.66 and 0.78 in the two
validation cohorts.6 An external validation by Chok et al.
concluded that the MSK nomogram and AFIP criteria
had superior predictive accuracy for tumour recurrence
compared to the original and modified NIH criteria.42

Third, the algorithm may address a long-standing
problem in GIST prognostication, which is the high
heterogeneity of the intermediate/high-risk groups for
the most commonly used GIST prognostic models. For
example, an external validation by Gold et al. showed
that the intermediate/high-risk groups not only had very
heterogeneous outcomes, but they even included pa-
tients with excellent prognosis (predicted 5-year RFS of
90–100%).6 This deficiency has been acknowledged by
others. Specifically, in a systematic review of GIST
prognostication systems, Khoo et al. concluded that the
Joensuu modified NIH criteria have “marked prognostic
heterogeneity” in its high-risk group and the AFIP-
Miettinen criteria also have “extreme prognostic het-
erogeneity” in its high-risk group.45 Our algorithm
appears to remedy this deficiency as it can accurately
predict the probability of recurrence even among pa-
tients with intermediate/high-risk according to the
AFIP-Miettinen criteria.

The difference in accurate prognostication between
the MSK nomogram and the OCT can be further
highlighted by examining individual patient cases. For
example, an 8 cm gastric GIST with a mitotic count of
five mitoses per 5 mm2 would be assigned an 88%
probability of recurrence at five years by the MSK
nomogram, while the OCT model predicts only a 24%
probability of recurrence (eFigure 8A). On external
validation, the actual rate of recurrence for this group in
the Polish cohort was 24.1%. If prediction of recurrence
risk was based on the MSK nomogram, this patient
would be deemed very high risk and offered adjuvant
imatinib; in reality, the risk of recurrence was much
lower at 24.1%, which was very close to the OCT pre-
diction of 24% and also lower than the 30–50% risk of
recurrence threshold for offering imatinib.39,40,46,47

Another example is a 4 cm GIST with a mitotic count
of five mitoses per 5 mm2. The MSK nomogram pre-
dicts a recurrence rate of 66% and 98% for a gastric and
a small bowel GIST, respectively, at five years. In
contrast, the OCT model predicts a 7% risk of recur-
rence (eFigure 8B). On external validation, the actual
rate of recurrence for this group in the Polish
cohort was 3.5%. Ultimately, an overestimation of
recurrence risk is clinically important as it can lead to
overtreatment.

We also evaluated the clinical utility of the OCT and
the MSK nomogram by performing a Decision Curve
www.thelancet.com Vol 64 October, 2023
Analysis. DCA is a statistical method that unlike tradi-
tional accuracy measures evaluates the net benefit of a
model in comparison to a competing model (e.g., MSK
nomogram). It is most useful when there is no
consensus on a single risk threshold, as it allows one to
examine model performance across a range of plausible
risk thresholds. Thus, DCA may be ideal for GIST
models that predict recurrence since there is no strict
threshold of recurrence risk that mandates adjuvant
imatinib but rather a range of plausible thresholds
(25–50%). Notably, DCA provided a clear answer to the
question about which of OCT and MSK nomogram
would lead to better clinical outcomes on average among
patients with resected GIST. Specifically, the OCT had a
higher net benefit than the MSK nomogram. Interest-
ingly, according to a recent systematic review on clinical
prediction modeling, only 1% of all studies that reported
on ML-based models evaluated their clinical utility using
DCA.48 Thus, this study is one of the very few to report
on the use of DCA in ML-based models for clinical
prediction modeling.

Future studies with larger cohorts may succeed in
developing more granular OCTs than the ones we
presented, as more data can allow for deeper OCTs
without the risk of overfitting. In turn, this can
smoothen the abrupt changes currently present be-
tween some OCT groups. However, it should be noted
that such abrupt changes are common in all current
prognostication models. For example, the MSK nomo-
gram predicts a 5-year RFS of 87% for a typical patient
with a 7 cm gastric GIST with four mitoses per 5 mm2,
but a 5-year RFS of only 16% for a similar case with five
mitoses per 5 mm2.49 Similarly, the Joensuu contour
maps predict a 10-year RFS of 60–80% for a typical
patient with a 5 cm gastric GIST with nine mitoses per
5 mm2, but a 10-year RFS of only 40–60% for a similar
case with ten mitoses per 5 mm2.5 Nonetheless, this
limitation does not appear to restrict the external use of
the OCT calculator, since a calibration analysis in an
independent, external cohort demonstrated that the
OCT predictions are accurate. Finally, a potential limi-
tation of the study is that while tumour size was
ascertained by dedicated, highly experienced patholo-
gists and not by imaging, we did not assess for inter-
observer variation in determining tumour size.

The OCT has one of the highest concordance indices
ever reported on an external validation of a GIST prog-
nostic model and is the only GIST prognostic model that
has excellent calibration on external validation. The al-
gorithm that incorporated KIT (eDiscussion) also had
excellent calibration and yielded intuitive stratifications
of KIT variants. It is important that the statistical
properties of the GIST OCT were successfully validated
in a cohort with great heterogeneity with regard to local
treatment protocols, level of experience, case volume,
and other pertinent factors, as this attests to the algo-
rithm’s generalisability.50 We attribute the excellent
9

www.thelancet.com/digital-health


Articles

10
performance of the models to the novel OCT method-
ology as we used the same predictors of recurrence as
previously published prognostic models. Specifically,
unlike the current risk score systems which assume that
variables interact in a linear and additive fashion, in the
OCT methodology, some variables gain or lose signifi-
cance due to the absence or presence of other variables.
Finally, in contrast to most AI-driven models such as
deep learning, OCTs have a tree structure that allows the
reader to understand which prognostic factors and
which specific cut-offs were used to calculate the prob-
ability of recurrence for a given patient. This is partic-
ularly important in GIST because these predictions can
be used to guide patient selection for adjuvant imatinib,
and clinicians tend to distrust predictions that derive
from “black box” methods.51
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