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ABSTRACT Cell-fate decisions during development are controlled by densely interconnected gene
regulatory networks (GRNs) consisting of many genes. Inferring and predictively modeling these GRNs is
crucial for understanding development and other physiological processes. Gene circuits, coupled
differential equations that represent gene product synthesis with a switch-like function, provide a
biologically realistic framework for modeling the time evolution of gene expression. However, their use
has been limited to smaller networks due to the computational expense of inferring model parameters from
gene expression data using global non-linear optimization. Here we show that the switch-like nature of
gene regulation can be exploited to break the gene circuit inference problem into two simpler optimization
problems that are amenable to computationally efficient supervised learning techniques. We present FIGR
(Fast Inference of Gene Regulation), a novel classification-based inference approach to determining gene
circuit parameters. We demonstrate FIGR’s effectiveness on synthetic data generated from random gene
circuits of up to 50 genes as well as experimental data from the gap gene system of Drosophila mela-
nogaster, a benchmark for inferring dynamical GRN models. FIGR is faster than global non-linear optimi-
zation by a factor of 600 and its computational complexity scales much better with GRN size. On a practical
level, FIGR can accurately infer the biologically realistic gap gene network in under a minute on desktop-
class hardware instead of requiring hours of parallel computing. We anticipate that FIGR would enable the
inference of much larger biologically realistic GRNs than was possible before.
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Development is controlled by gene regulatory networks (GRNs) that
integrate extrinsic signals and intrinsic cell state to make decisions
about cell fate (Levine and Davidson 2005; Davidson and Levine
2008). Modeling of GRNs is an important approach to understanding
a wide variety of developmental processes such as pattern formation
(Manu et al. 2009a,B; Verd et al. 2018; Balaskas et al. 2012), cell-fate

specification (Hamey et al. 2017; May et al. 2013), pluripotency and
cell-fate reprogramming (Collombet et al. 2017; Li and Wang 2013),
oncogenesis (Tyson et al. 2011), and regeneration (Pietak et al. 2019).
Over the past decade or so, it has become clear that developmen-
tal GRNs comprise tens to hundreds of densely interconnected genes
(Davidson et al. 2002a; Novershtern et al. 2011) rather than a few
so-called master regulators. Moreover, developmental GRNs are
wired recursively since the genes encoding transcription factors (TFs)
are themselves regulated by other TFs or indirectly by non-TF gene
products (Palani and Sarkar 2008; Kueh et al. 2013). Their large size
and high interconnectivity make the modeling of developmental GRNs
a challenging problem.

Coupled ordinary or partial differential equations (ODEs or PDEs)
are a natural choice for modeling GRNs since GRNs are nonlinear
dynamical systems (Manu et al. 2009a;Weston et al. 2018; Li andWang
2013; Laslo et al. 2006) whose time evolution depends on their state.
The state is defined by the concentrations of gene products and the
equations are parameterized by constants with a biochemical or bio-
physical underpinning, such as synthesis and degradation rates
and binding constants. Estimating the values of these parameters
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is necessary for simulating the time evolution of GRN state but direct
in vivo biochemical measurement of the large numbers of parameters
involved is generally infeasible if not outright impossible. One ap-
proach to estimating parameter values is to search in parameter space
for broad regions that reproduce the qualitative behavior of the sys-
tem (Huang et al. 2007; Laslo et al. 2006; Li and Wang 2013; Hong
et al. 2012). The other approach (Reinitz and Sharp 1995; May et al.
2013) to parameter estimation is data-driven, that is, parameter values
are inferred by fitting the ODEs or PDEs to quantitative observations of
GRN state sampled in space and/or time. In inferring parameters from
quantitative data, data-driven differential equation modeling of GRNs
provides a framework for understanding developmental cellular deci-
sions at a quantitative and predictive level.

Here we focus on a specific data-driven and predictive ODE
modeling framework, termed gene circuits, that has been particularly
successful in inferring and modeling developmental GRNs from spa-
tiotemporal protein (Jaeger et al. 2004a; Manu et al. 2009a,b; Kozlov
et al. 2012; Hengenius et al. 2011) or mRNA (Crombach et al. 2012)
data. Gene circuits determine the time evolution of protein or mRNA
concentrations using coupled nonlinear ODEs in which synthesis is
represented as a switch-like function of regulator concentrations. The
values of the free parameters define the regulatory influences among
the genes in the network. Gene circuits do not presuppose any par-
ticular scheme of regulatory interactions, but instead determine it by
estimating the values of the parameters from quantitative data using
optimization. Gene circuits infer not only the topology of the GRN
but also the type, either activation or repression, and strength of
interactions. Most importantly, the inference procedure yields
ODE models that can be used to simulate and predict developmental
perturbations (Jaeger et al. 2004b; Manu et al. 2009a,b;Wu et al. 2015;
Verd et al. 2018).

Despite its successes, the gene circuit method suffers from the
drawback that parameter inference is computationally expensive.
Efficient optimization methods, such as steepest descent (Gursky
et al. 2004) are guaranteed to find the global minimum only if
the cost function, usually the sum of squared differences between
model output and data, is convex—has a unique minimum—which
is not the case in such problems. This implies that the only practical
approach currently available for fitting gene circuit models is global
nonlinear optimization with techniques such as simulated annealing
(SA; Kirkpatrick et al. 1983; Lam andDelosme 1988a, b), that minimize
the cost function by searching the high-dimensional parameter space
stochastically. Not only do global nonlinear optimization methods
need to make millions of cost function evaluations in order to find
the minimum, but each evaluation is itself quite costly since it in-
volves solving a set of coupled differential equations. Furthermore,
the computational cost scales poorly, as OðG3Þ, with gene number
G, since G ODEs are solved in each function evaluation and the
number of cost function evaluations required is proportional to the
number of parameters (OðG2Þ). High computational cost and poor
scalability have hamstrung the application of the gene circuit method
to larger networks or more broadly in development. Gene circuits
have only been inferred for relatively small networks so far (Reinitz
and Sharp 1995; Manu et al. 2009b; Cotterell and Sharpe 2010; May
et al. 2013; Verd et al. 2018).

One approach to speeding up the inference procedure has been
to explore different global optimization methods such as evolutionary
algorithms (Kozlov and Samsonov 2009; Kozlov et al. 2012) and scatter
search (Abdol et al. 2017). Alternative global optimization methods
do not circumvent the problem of high computational cost since each
cost function evaluation still involves the solution of coupled ODEs.

Another important strategy for inferring gene circuits in a reason-
able amount of time has been the development of parallel optimi-
zation algorithms such as parallel Lam simulated annealing (pLSA;
Chu et al. 1999) and Differential Evolution Entirely Parallel (DEEP;
Kozlov and Samsonov 2009; Kozlov et al. 2012), including attempts
at reducing communication overhead (Jostins and Jaeger 2010; Lou
and Reinitz 2016). Although parallel methods reduce the absolute
amount of time required to infer a gene circuit of a given size, they
nevertheless suffer from the scaling problem.

In this paper we present an alternative approach, FIGR (Fast Infer-
ence of Gene Regulation), for determining gene circuit parameters that
is significantly more computationally efficient than global nonlinear
optimization. Our algorithm exploits the observation that the inference
of the connectivity of a given gene can be rephrased as a supervised
learning problem: to find a hyperplane in state space that classifies
observations into two groups, one where the gene is ON and the other
where the gene is OFF.Our algorithm determines whether a gene is ON
or OFF at a given observation point by computing the time derivative
of concentrations in a numerically robust manner. It then performs
classification using either logistic regression or support vectormachines
(SVM) to determine the equation of the switching hyperplane. The
genetic interconnectivity can then be computed from the coefficients
of the hyperplane equation in a straightforward manner. We have
implemented the algorithm inMATLAB and tested its ability to recover
the genetic interconnectivity of random GRNs of up to 50 genes from
simulated data. The algorithm works as expected and recovers param-
eters accurately, provided that sufficient data are available. We also
demonstrate the ability of our method to correctly infer the gap gene
regulatory network of Drosophila melanogaster from empirical
data. We observed a � 600-fold speed up relative to simulated
annealing on the gap gene problem.

The results are presented in two parts. In the first half of the results,
we develop the algorithm and validate it on synthetic data. In the
second half, we describe the inference of the Drosophila gap gene
network from empirical data. We begin the first half by introducing
gene circuit equations for cell-autonomous GRNs (Section Gene cir-
cuit models of GRNs). Next, we develop the FIGR algorithm (Section
FIGR: Classification-based inference) for inferring gene circuits for
cell-autonomous GRNs. This is followed by tests assessing the accu-
racy of FIGR in recovering known parameter values from synthetic
data (Section Validation of FIGR on synthetic data). In the second
half (Section Inference of the gap gene network from empirical data),
we first adapt FIGR to spatially extended systems such as the Drosophila
blastoderm (Section FIGR for a spatially extended system) and then
compare FIGR-derived gap gene circuits to data and SA-derived
gene circuits (Section Gap gene circuit inference and comparison
with data and SA).

MATERIALS AND METHODS

Validation of FIGR With synthetic data

Generation of synthetic data from random gene circuits: Random
gene circuits were generated and simulated to generate synthetic data
as follows. The synthesis rates Rg and degradation rates lg were drawn
uniformly from the interval ½0:5; 2� . We chose the genetic intercon-
nectivity coefficients Tgf and threshold hg such that the switching
hyperplane passed through a random point xcen drawn uniformly
from the bounding hypercube (0, xceng ,

Rg

lg
), and the normal to the

switching hyperplane (T̂g) was drawn uniformly from the unitG-sphere,
where G is the number of genes in the GRN. We generated N trajec-
tories starting at random initial position xnðt ¼ 0Þ drawn uniformly
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from the bounding hypercube by integrating the Glass equations
without diffusion (Equation 3) using MATLAB’s ode45 solver. We
stored the values of these functions xngðtkÞ at Nt timepoints equally
subdividing the interval of the simulation (½0; 2�) to serve as synthetic
data for both FIGR and SA.

Inference with FIGR: Gene circuits were inferred using FIGR as
described in Section FIGR: Classification-based inference. The user-
defined options and parameters utilized in this study are provided in
Table S1.

Inference with SA: SAwas carried outwith gene circuit C code in serial
largely as described previously (Manu et al. 2009b) save for a few
modifications. The quality factor l was set to 0.001 and the averaging
parameters lu and lv were set to 200 and 1000 respectively. The
stopping criterion was 0.001. The parameter controlling the search
space of the regulatory parameters L was set to 0.1. The search
space of Rg and lg were set to ð0:4; 2:1Þ . The Glass equations
(Equation 3) were solved using a 4th order Runge-Kutta solver.
Since SA is a stochastic method, different optimization runs yield
slightly different gene circuits. The inferences were carried out in 5
replicates, each starting for a random set of initial parameter values.
For each synthetic dataset, several replicates having low RMS could
be identified. The circuit with the lowest RMS was chosen for further
analysis.

Inference of gap gene circuits
Gap gene circuits were inferred from a publicly available whole-mount
immunofluorescence dataset (Surkova et al. 2008) of the spatiotempo-
ral expression of the segmentation genes. Data from the 50 min-long
cleavage cycle 14 are staged into 8 time classes, T1–T8, spaced 6.25min
apart. We utilized integrated data (Manu et al. 2009b) obtained by
subtracting background fluorescence from raw single-embryo data,
aligning the spatial patterns of different embryos belonging to a time
class, and averaging over several embryos in each time class. See Janssens
et al. (Janssens et al. 2005) for details of how the data were processed.

The user-defined options and parameters utilized for fitting the
gap gene circuit with FIGR are provided in Table S1.Wall clock time
was measured with MATLAB’s tic/toc functions. SA was carried out
with gene circuit C code as described previously (Manu et al. 2009b).
Wall clock time was measured with C’s time function.

Data availability
Figure S1 shows the fraction of genetic interconnectivity signs
inferred correctly from synthetic data. Figure S2 shows the training
error of SA-inferred gene circuits. Figure S3 shows the inference of
hg and kinetic parameters from synthetic data. Figure S4 compares
the spatiotemporal pattern of gap gene expression with the output
of gene circuits inferred with FIGR and SA. Table S1 lists user-defined
options and parameters utilized in FIGR code. File S1 describes an
alternative method for determining kinetic parameters in FIGR.
FIGR Source code is freely available at http://github.com/mlekkha/
FIGR. Supplemental material available at figshare: https://doi.org/
10.25387/g3.9249245.

RESULTS

Gene circuit models of GRNs
We consider a GRN of G genes whose state at time t is defined by the
concentrations of the gene products xgðtÞ, g ¼ 1; 2; . . . ;G. We assume
that the GRN functions cell autonomously, that is, the expression of

the genes is independent of the state of other cells. Gene circuits
(Reinitz and Sharp 1995) describe the time evolution of xgðtÞ
according to G coupled ordinary differential equations,

dxg
dt

¼ RgS

0
@XG

f¼1

Tgf xf þ hg

1
A2 lgxg ; (1)

where Rg is the maximum synthesis rate of product g. Tgf are genetic
interconnectivity coefficients describing the regulation of gene g
by the product of gene f. Positive and negative values of Tgf signify
activation and repression of gene g by gene f respectively. The
threshold hg determines the basal synthesis rate, and lg is the
degradation rate of product g. Nominally, all genes in the model
also function as regulators, so that both g and f run over the range
1; 2; 3; . . . ;G. Sometimes such gene networks include upstream
regulators that are not themselves influenced by other gene products
represented in the model. For example, in the Drosophila segmen-
tation gene network, maternal proteins such as bicoid activate the
zygotically expressed genes, but are not regulated by their targets
(Akam 1987). An upstream regulator g can be represented by setting
Tgf ¼ 0 for all f.

SðuÞ is the regulation-expression function, which determines the
fraction of the maximum synthesis rate attained by the gene given the
total regulatory input u ¼PG

f¼1Tgf xf þ hg . SðuÞ is required to have a
switch-like dependence on u and to take values between 0 and 1. If
the total regulatory input has large positive values, u � 0, as a result of
high activator concentrations, low repressor concentrations, or both,
SðuÞ � 1 and the gene product is synthesized at the maximum rate Rg .
If the total regulatory input has large negative values, u � 0, so that
SðuÞ � 0, the gene product is not synthesized. One sigmoid function
that satisfies these properties,

SðuÞ ¼ sðuÞ ¼ 1
2

�
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p þ 1

�
; (2)

has been utilized almost exclusively in previous studies (Reinitz and
Sharp 1995; Jaeger et al. 2004a; Manu et al. 2009b; Kozlov et al. 2012).
However, any function that satisfies these rather general properties is
a valid regulation-expression function.

Glass networks: In what follows, we show that one choice of the
regulation-expression function permits a radical simplification of the
gene circuit inference problem. If the regulation-expression function
is chosen to be the Heaviside function,

SðuÞ ¼ QðuÞ ¼
�
0 if u, 0
1 if u$ 0:

the resulting differential equations (Equation 1) are piece-wise lin-
ear and are referred to as Glass networks (Glass and Kauffman 1973;
Edwards 2000; Glass and Pasternack 1978; Mestl et al. 1996).

Using the state vector x ¼ ðx1; x2; . . . ; xGÞ to represent a point in
the G-dimensional state space of the model and the vector Tg to
represent the gth row of the genetic interconnectivity matrix, the
Glass equations may be written as

dxg
dt

¼ RgQðTg � x þ hgÞ2 lgxg ;     g ¼ 1; 2; 3; . . . ;G: (3)

The genemay said to be “ON” or “OFF” depending onwhether the gene
product is being synthesized or not respectively. Equation 3 implies that
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gene  g   is

�
ON if Tg � x þ hg . 0
OFF if Tg � x þ hg , 0:

(4)

Thus the “gene g ON” and “gene g OFF” configurations are sepa-
rated in state space by the hyperplane defined by the equation
Tg � x þ hg ¼ 0. We call this the switching hyperplane. Tg is the
normal to the switching hyperplane and Tg � x þ hg is the perpen-
dicular distance of any point x to the hyperplane. Furthermore,

xgðtÞ ¼

8><
>:

xgð0Þe2lg t þ Rg

lg

�
12 e2lg t

�
if ON for t$ 0

xgð0Þe2lg t if OFF for t$ 0:

(5)

Equation 4 andEquation 5 imply that for Glass networks, the regulatory
parameters, Tg and hg , and the kinetic parameters, Rg and lg , are
separable. The former determine the switching hyperplane, while the
latter determine the trajectories on either side of the hyperplane. Figure
1D,G shows examples of the switching hyperplanes and trajectory of a two-
gene gene circuit (Figure 1A,B) having a stable spiral equilibrium solution.

FIGR: Classification-based inference
Let the expression of each gene be measured at Nt time points
te; e ¼ 1; . . . ;Nt , along trajectories starting from n ¼ 1; . . . ;N initial
conditions. The goal of GRN inference is to estimate the values of the gene
circuit parameters ~Tgf , ~hg, ~Rg , and ~lg given the measurements xngðteÞ.

In FIGR, we exploit the separability of the regulatory (Tg , hg ) and
kinetic (Rg , lg) parameters to break up the inference problem into
two distinct tractable subproblems. For inferring the parameters of
any given gene, we classify the data points into two classes—one in
which the gene’s product is being synthesized (ON class) and the
other in which the product is not being synthesized (OFF class). The
regulatory parameters are inferred by determining the optimal G2 1
dimensional hyperplane separating the two classes. The kinetic param-
eters can be inferred either by fitting the piece-wise linear Glass equa-
tions to estimates of the rate of change of gene product concentrations
or by fitting Equation 5 to the gene product concentration time series.

Determining ON/OFF state: We will assume that the gene product
concentration, including initial concentration, is boundedby themaximum
concentrationdeterminedby the synthesis anddegradation rates, that is,

0# xg ,
Rg
lg
;     g ¼ 1; 2; 3; . . . ;G: (6)

Let

yg[sgn
�
Tg � x þ hg

� ¼ 61 (7)

represent the ON/OFF state of gene g. Then,

dxg
dt

¼
�
Rg 2 lgxg . 0 if Tg � x þ hg . 0
2lgxg # 0 if Tg � x þ hg , 0:

(8)

This implies that the ON/OFF state of a gene can be determined by
ascertaining the sign of the velocity, vg ¼ dxg

dt .

yg[sgn
�
Tg � x þ hg

� ¼ sgn
dxg
dt

;     g ¼ 1; 2; 3; . . . ;G: (9)

Gene expression data, such as those obtained from immunofluo-
rescence or high-throughput sequencing, inevitably contain noise. If the

gene expression level is close to its maximum (xg � Rg=lg)
or minimum level (xg � 0), dxgdt is theoretically close to zero, but noise
causes sgn dxg

dt to fluctuate, which might be interpreted as spurious
switching events. To avoid this problem, we identify a gene’s ON/OFF
state as follows. If the gene expression level xg is increasing (de-
creasing) at a rate greater than a user-supplied velocity threshold vcg ,
then the gene is classified as ON (OFF). Otherwise, if the expression
level is above (below) a user-supplied expression threshold xcg , then the
gene is classified as ON (OFF). This can be summarized as

yg ¼

8>>>><
>>>>:

sgn
dxg
dt

����dxgdt
����$ vcg

sgn
	
xg 2 xcg


 ����dxgdt
����, vcg :

(10)

In our implementation of FIGR, cubic smoothing splines are fit to time
series data and differentiated to estimate velocity. Figure 1E,H illus-
trates the determination of yg for an example two-gene network.

Determining regulatory parameters: Within the Glass model, the
ON/OFF state of a particular target gene g, whose index we shall omit
from now on, is given by y ¼ sgnðT � x þ hÞ: Suppose that gene
product concentrations have been sampled P times, in time and
in one or more conditions or cell types. The gene ON/OFF state yp
is determined for each experimentally measured state vector xp,
p ¼ 1; 2; 3; . . . ; P, according to the method described above (Section
Determining ON/OFF state). Then, the regulatory parameters can be
inferred by finding ~T and ~h such that

yp ¼ sgn
�
~T � xp þ ~h

�
(11)

is satisfied for as many p as possible. Inferring the regulatory param-
eters therefore reduces to the problem of linear binary classification
(Hastie et al. 2009).

There are many well known supervised learning algorithms for
linear binary classification.We have used both support vectormachines
(SVM) and logistic regression. An SVM finds a hyperplane buffered
by the biggest possible margin such that the number of points xp
belonging to each class, “gene ON” or “gene OFF”, is maximized on
opposite sides of the margin zone. This can be accomplished by
minimizing the cost function

xðT; h; lÞ ¼ ljjTjj2 þ
XP
p¼1

L
	
yp; xp



; (12)

where the first term is a regularization penalty that maximizes
the margin. The second term is the hinge loss function,
Lðyp; xpÞ ¼ maxð0; 12 ypðT � xp þ hÞÞ, which is non-zero only
for points that transgress their class boundary, each such point
contributing an amount proportional to its distance from the margin.
The parameter l is used to choose the relative weight of the penalty
and loss terms. Two-class logistic regression models the posterior
probability of the ON/OFF state of a point as a logit transformation
of its distance from the switching hyperplane. The optimal switch-
ing hyperplane can be found by minimizing Equation 12 with a
Binomial deviance loss function Lðyp; xpÞ ¼ logf1þ e2ypðT�xpþhÞg.
Figure 1C,F,I illustrate binary classification for an example two-
gene network.

Minimization of Equation 12 is a convex optimization problem,
which can be solved by quadratic programming or the Newton-Raphson
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method quite efficiently, even for large G. This is the key benefit of the
separation of regulatory and kinetic parameters enabled by the Glass
equations.

Determining kinetic parameters: Having identified the ON/OFF state
of a gene, yp, for P measurements of its concentration, xp, the Glass
equations (Equation 3) can be rewritten as

vp ¼
�
R2 lxp if yp ¼ þ1;
2lxp if yp ¼ 2 1:

(13)

The velocities v ¼ dx
dt are estimated by differentiating cubic smoothing

splines fit to the time series data (Section Determining ON/OFF
state). Thus, for any particular gene, Equation 13 takes the form of
P equations that are linear in the two unknowns R and l. This is an
overdetermined linear system, so best estimates for R and l can be
extracted by least-squares linear regression. In practice, the error in
the spline, and hence in v, is the largest when a gene is switching
states. We therefore exclude a user-configurable number of time
points nearest to switching events. This method is implemented as
the “slope” method of FIGR. Alternatively, R and l can also be de-
termined by fitting Equation 5 to the concentration data (see File S1).

Validation of FIGR on synthetic data
As a first test of FIGR, we tested its ability to recover known parameters
from synthetic data. In each test, 100 randomly generated gene circuits
(Section Validation of FIGR with synthetic data) were simulated using

the Glass equations (Equation 3). For each gene circuit, N trajectories
starting from random initial starting points were computed and sam-
pled at Nt time points to obtain synthetic time series data resulting in
NO ¼ N ·Nt observations per simulation. The quality of the inference
depends not only on the effectiveness of the method but also on how
well determined the inference problem is. A gene circuit of G genes has
Np ¼ GðGþ 3Þ parameters. If NO � Np, then the problem is well
determined and the accuracy of the inference depends primarily on
the effectiveness of the algorithm. On the other hand if NO � Np then
there isn’t a sufficient amount of data to infer the parameters accurately
irrespective of the effectiveness of the algorithm. We checked how
effective FIGR is at inferring parameters of gene circuits of various sizes
by exploring different combinations of the number of free parameters
and the number of data points. With the exception of the 50-gene
network, we also inferred the parameters with SA (Section Inference
with SA) to serve as a point of reference. Inference of 100 random
20-gene networks took 5 days on 500 CPUs with SA, and hence it
was impractical to infer 50-gene networks.

The inferred parameter values were compared to the known values
by computing the discrepancies between them. From the viewpoint of
correctly predicting a gene’s ON/OFF state, the accuracy of individual
genetic interconnectivity coefficients Tgf is less important than the
accuracy with which the switching hyperplane has been inferred. Ac-
cordingly, we judged the accuracy of the genetic interconnectivity ma-
trix by computing the magnitude of the vector difference between the
unit normals of the theoretical (Tg) and inferred (~Tg) hyperplanes,
dT ¼ ����~Tg 2Tg

���� . When the angle between the unit normals is small,

Figure 1 Classification-based
inference of an example gene
circuit. A. Theoretical parameter
values are listed by row for each
gene. The T matrix is shown in
the first two columns, one col-
umn per regulator. Green (red)
indicates activation (repression).
B. Schematic of the theoretical
gene circuit. C. Parameters inferred
by FIGR. D,G. Trajectory in state
space (purple) overlaid upon the
Heaviside regulation-expression
function. Green (red) is ON (OFF).
The switching hyperplane is plot-
ted as a blue line. Switching hy-
perplanes for genes A and B
are showing in panels D and
G respectively. E,H. Sampled
gene expression trajectories and
assignment of ON/OFF state for
genes A (panel E) and B (panel
H). Trajectories are numerical so-
lutions of Equation 3. Detected
ON or OFF state (Section Deter-
miningON/OFF state) is indicated
with green stars or red circles re-
spectively. F,I. Switching hyper-
plane (dashed blue line) inferred
using Logistic regression for genes
A (panel F) and B (panel I). Sam-
pled trajectories annotated with
ON/OFF state are plotted in state
space.
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dT gives the angle between them. dT ¼ ffiffiffi
2

p
implies that the inferred

hyperplane is orthogonal to the theoretical one, and dT ¼ 2 is the
maximum value possible, implying that the two normals are in exactly
opposite directions and the assignment of ON/OFF state has been re-
versed. We also computed the null distribution of dT which results
from choosing the inferred unit normal at random uniformly on the
unit G-sphere. The discrepancies in the other parameters were com-
puted as dh ¼

��~hg 2 hg
�� , dR ¼ ��~Rg 2Rg

�� , and dl ¼ ��~lg 2 lg
�� , where

~hg , ~Rg , and ~lg are inferred parameter values.
In the first set of simulations, we simulated networks of size ranging

from two to fifty genes (Figure 2A–E) with N ¼ 100 trajectories sam-
pled at Nt ¼ 21 time points. The switching hyperplane is inferred with
high accuracy (dT , 0:1 or 6� angle to the theoretical normal) for the
vast majority of two-gene random gene circuits, showing that FIGR
is capable of recovering the true values of the parameters if a sufficient
amount of data are available. As the size of the gene circuit, and consequently

the number of free parameters, increases, the accuracy declines. How-
ever the inference is still fairly accurate for 20-gene networks since
75% of the inferred hyperplanes have dT , 0:5 or less than a 30� angle
to the theoretical hyperplane. Inferring the signs of the genetic inter-
connectivity coefficients Tgf , that is, whether a regulator activates or
represses a target, is an important goal in gene circuit analysis. FIGR
achieves 90% accuracy in inferring the signs of Tgf for 20-gene net-
works (Fig. S2). For 50-gene networks, the accuracy of quantitative
inference is quite low and most inferred hyperplanes have dT . 0:5 or
larger than a 30� angle to the theoretical hyperplane. This is not
entirely surprising since a 50-gene network has 2,650 free parameters,
while the model is being inferred from only 2,100 observations. Al-
though 50-gene networks are inferred with poor accuracy, the dT
distribution is significantly better than the null distribution, suggesting
that the inferred parameters still contain information about GRN
structure. In fact, the signs of 82% interconnectivity coefficients are

Figure 2 Inference of genetic intercon-
nectivity coefficients from synthetic data.
The distribution of the discrepancy be-
tween inferred and theoretical switching
hyperplanes, dT ¼ ����~Tg 2Tg

���� , in infer-
ring 100 random gene circuits with FIGR
or SA is shown as boxplots. ~Tg and Tg

are unit normals to the inferred and
theoretical hyperplanes. Note that each
boxplot is constructed from 100G dis-
crepancies since each random parame-
ter set containsG switching hyperplanes,
where G is the number of genes.
The box lines are the first quartile,
median, and the third quartile. The
whiskers extend to the most extreme
values lying within 1.5 times the
interquartile range, and any datapoints
outside the whiskers are shown as
crosses. The blue violin plot (“RAND”)
shows the null discrepancy distri-
bution that would be obtained,

P0ðdT Þ} dG22
T

 
12d2T

4

!G23
2

, if ~Tg were not

inferred but instead picked randomly
from a uniform distribution over the
surface of the G-sphere. The width of
the violin plot is proportional to
P0ðdT Þ, and blue and red vertical lines
indicate quartiles and median respec-
tively. A–E. Number of trajectories
N ¼ 100 and number of timepoints
Nt ¼ 21. The number of genes G was
varied between 2 and 50 for FIGR and
2 and 20 for SA, since SA was impracti-
cal for G ¼ 50. F,G. Number of trajecto-
ries N ¼ 100 and number of genes
G ¼ 20. The number of timepoints Nt

was varied between 41 (panel F) and
11 (panel G). H–J. Number of genes
G ¼ 20 and number of timepoints
Nt ¼ 21. The number of trajectories
N was varied between 10 and 50.
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inferred correctly (Fig. S1) suggesting that FIGR still works reason-
ably well at a qualitative level in a highly underdetermined problem.

Hyperplanes inferred with SA also show a trend of decreasing
accuracy with increasing network size, suggesting that declining accu-
racy is a result of progressive reduction in the determinacy of the
problem rather than an intrinsic inability of FIGR to infer larger
networks. In fact, in nearly all cases, SA’s inferencesweremore variable
than FIGR, and were slightly less accurate than FIGR on the 20-gene
problem. The relatively lower accuracy of SA is not a result of poor
fitting since the RMS of most of the random gene circuit fits is less
than 0.04 (�4% error; Fig. S2).

In the second set of simulations, we simulated random 20-gene net-
works, but varied the number of sampled time pointsNt (Figure 2F,G)
or the number of trajectories N (Figure 2H–J). Increasing or decreas-
ing the number of time points to 41 or 11 respectively had a minimal
effect on the quality of the inference of the switching hyperplanes by
FIGR or SA (compare to Figure 2D). This suggested that 11 time
points were sufficient to reliably estimate the genetic interconnec-
tion coefficients. In contrast, decreasing the number of trajectories
progressively reduced accuracy and both FIGR and SA inferences
were indistinguishable from the null distribution when only 10 trajec-
tories were sampled. Once again, this is not surprising since the 460 free
parameters of a 20-gene network are being inferred from only
210 observations. These results imply that while increasing temporal

resolution beyond a certain point provides diminishing gains in ac-
curacy, the number of trajectories or conditions the trajectories are
sampled from is a crucial parameter influencing the quality of the
inference.

The inference of hg (Fig. S3) was quite accurate and behaved like
the inference of the switching hyperplanes. Increasing gene network
size or reducing the amount of data tended to reduce accuracy, al-
though the effects were less pronounced than what was observed while
inferring switching hyperplanes. The kinetic parameters were also
inferred accurately by FIGR (Fig. S3). The accuracy of both Rg and
lg increased with increasing number of time points but did not depend
on the number of genes or trajectories. This can be understood as a
consequence of the separation of regulatory and kinetic parameters in
Glass gene circuits—the inference of the kinetic parameters occurs inde-
pendently for each gene and depends only on the sampling frequency.

Although the inference is quite accurate, the discrepancies are not
zero formost gene circuits and can be fairly large for a small number of
gene circuits, even in the 2-gene case. This results from constraints
imposed by the intrinsic dynamics of gene circuits and finite sample
size. For instance, trajectories move away from the switching hyper-
plane for autoactivating genes. In this case, the initial conditions act
as support vectors for the inferred hyperplane, which then strongly
depends upon the randomsample of starting points. Another situation
that arises is that of a hyperplane that divides the bounding hypercube

Figure 3 Classification-based inference of
the Drosophila gap gene network. Horizontal
axes indicate anteroposterior position. Verti-
cal axes represent time elapsed since the
thirteenth nuclear division in the down-
ward direction. A. Integrated spatiotemporal
gap gene expression data xngðtkÞ, where
k ¼ 1; . . . ;9, used to infer the gene circuit.
Data at the first time point are from cycle
13 and serve as initial conditions for the
model. The rest of the time points corre-
spond to eight time classes in cycle 14 sepa-
rated by 6.25 min. Hot (cold) colors indicate
high (low) expression levels. B. Classification
of ON/OFF state. Green (red) colors indicate
ON (OFF) states yngðtkÞ determined from ve-
locities vngðtkÞ. C. Prediction of ON/OFF
state ~yngðtkÞ using parameter values inferred
with FIGR. D. Gene circuit output using pa-
rameters obtained by FIGR and then refined
using local search (RMS = 13.29). E. Gene
circuit output using parameters inferred by
SA (RMS = 11.03). F. Comparison of the spa-
tial patterns of gap gene expression (blue),
output of gene circuit inferred by SA (red;
SA), and output of gene circuit inferred by
FIGR (green) at t ¼ 40:6 min (time class T7).
Slightly shallow posterior border of the ante-
rior Hb domain in FIGR output is indicated
with ◁. Slight ectopic bump in the anterior
border of the posterior Hb domain in SA out-
put is indicated with ▷.
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intoON andOFF regions in a lopsidedmanner. Since initial points are
sampleduniformly, this results in too fewsampledpoints in the vicinity
of the hyperplane and poor inference. Given that FIGR was at least as
accurate as SA, these failure modes are not specific to the inference
methodology but likely represent fundamental limitations of infer-
ring differential equations models. These considerations are also valid
when inferring GRNs from empirical data. Such insights and their
implications for parameter identifiability will be described elsewhere.
Notwithstanding these constraints, our analysis demonstrates that
FIGR is capable of inferring parameters quantitatively when pro-
vided with a sufficient number of data points and qualitatively (signs of
Tgf) even when the problem is underdetermined as in the 50-gene case.

Inference of the gap gene network from empirical data
We tested the efficacy of FIGR on empirical data by inferring a gene
circuit for the gap gene network acting during Drosophila segmenta-
tion. The gap gene network is one of the best characterized develop-
mental GRNs at both the experimental and theoretical levels, and
therefore serves as a benchmark for gene circuit inference. We pro-
vide a very brief summary of the segmentation system here; a more
complete description may be found in reviews by Akam (Akam 1987)
or Jaeger (Jaeger 2011). The segmentation proteins pattern the ante-
roposterior axis during the first three hours of embryogenesis. During
this period, the embryo is a syncitium, so that nuclei lack cell mem-
branes and undergo 13 mitotic divisions, termed cleavages. After the
tenth cleavage cycle, the majority of the nuclei migrate to the periph-
ery of the embryo and are arranged in a monolayer, forming a syncitial
blastoderm. Cellular membranes form by invagination of the plasma
membrane in the latter half of cleavage cycle 14, at the end of which
the embryo undergoes gastrulation.

Near the end of cleavage cycle 14, the segmentation genes are
expressed in spatially resolved patterns that specify the position of
each cell to an accuracy of one cell diameter. Segmentation gene
expression is initiated by shallow protein gradients formed by the

translation of localizedmRNAs, such as bicoid (bcd) and caudal (cad),
deposited in the oocyte by the mother. These maternal protein gra-
dients regulate the gap genes, which commence mRNA expression in
cleavage cycle 10–12 and are expressed in broad domains� 20 nuclei
wide during cycle 14. The gap genes in turn regulate the pair-rule and
segment-polarity genes that provide the molecular prepattern for the
subsequent segmentation of the embryo. All the maternal and gap
proteins are known to act as transcription factors that regulate each
others’ expression in a complex GRN that has been modeled exten-
sively (Reinitz et al. 1995; Jaeger et al. 2004a,b, 2007; Gursky et al.
2008; Vakulenko et al. 2009; Manu et al. 2009a,b; Gursky et al. 2011;
Ashyraliyev et al. 2009; Wotton et al. 2015; Verd et al. 2018).

Gene circuit equations for a spatially extended system: The gap
gene circuit describes the time evolution of the concentrations of the
gap proteins in a one-dimensional row of N nuclei lying along the
anteroposterior axis of the embryo (Manu et al. 2009b) during
cleavage cycle 14. The lack of cell membranes in the syncitium implies
that proteins can diffuse between nuclei (cells) and Equation 1 is
modified to incorporate discretized Fickian diffusion and antero-
posterior position, so that

dxng
dt

¼ Rgs

0
@XG

f¼1

Tgf xnf þ hg

1
A

                              þ Dg
�
xn21;g þ xnþ1;g 2 2xn;g

�
                            2 lgxng :

(14)

Here xngðtÞ is the expression level of protein g in nucleus n at
time t, Dg is the diffusion constant for protein g, and sðuÞ is the
sigmoid regulation-expression function (Equation 2). Zero-flux
boundary conditions are used at the ends of the modeled re-
gion, while initial conditions are given by the empirical data
from cycle 13.

Figure 4 Comparison of gap gene parameters
inferred by FIGR and SA. The values of ~Tg, ~hg, ~Rg,
~lg, and ~Dg are listed one gene per row. The T ma-
trix is shown in the first seven columns, one column
per regulator. Green (red) indicates activation (re-
pression). Since Tg and hg can only be determined
up to a constant factor, they have been normalized
(
��ð~Tg1; . . . ; ~TgG; ~hgÞ

�� ¼ 1) to allow comparison be-
tween FIGR and SA. A. FIGR after refinement. B. SA.

4190 | D. A. Fehr et al.

https://identifiers.org/bioentitylink/FB:FBgn0000166?doi=10.1534/g3.119.400603
https://identifiers.org/bioentitylink/FB:FBgn0000166?doi=10.1534/g3.119.400603
https://identifiers.org/bioentitylink/FB:FBgn0000251?doi=10.1534/g3.119.400603
https://identifiers.org/bioentitylink/FB:FBgn0000251?doi=10.1534/g3.119.400603


FIGR for a spatially extended system: The determination of ON/OFF
state and inference of regulatory parameters Tg and hg is carried out
as described above in Sections and. However, inferring gene circuits
in spatially extended systems requires two modifications to the algo-
rithm. First, the diffusion constants Dg must be inferred in addition to
Rg and lg . Second, for gene circuits with diffusion, the correspondence
between velocity vg and ON/OFF state yg (Equation 9) will be violated
for a few nuclei lying adjacent to nuclei in which the gene is ON. Such
nuclei would have positive velocity despite the gene being OFF
because of diffusion of the protein from adjacent “ON nuclei”.
Although this effect is limited to a few nuclei, it would nevertheless
result in slightly inaccurate parameter estimates. For this reason, once
the regulatory and kinetic parameters have been inferred, they are
refined by local optimization.

Inference of kinetic parameters including Dg : We exploit so-called
kink solutions to the gene circuit equations (Vakulenko et al. 2009)
to estimate the kinetic parameters. Let gene g be ON in an antero-
posterior domain ½l; r� so that there is net diffusion out of the domain
into surrounding OFF nuclei. Then the balance of synthesis, degra-
dation, and diffusion will establish a stable gradient,

xngðtÞ ¼

8>>><
>>>:

Rg

2lg
e2ggðn2rÞ; n. r;

Rg

2lg
e2ggðl2nÞ; n, l;

(15)

outside the domain. Here, gg ¼
ffiffiffiffi
lg
Dg

q
is the characteristic length scale

of the gradient at steady state.
In order to infer the kinetic parameters, we first determine the time

class in which a gene is expressed at the highest level, since the spatial
gradient would best approximate steady state at that time point. Next,
we identify gene-expression domains as local maxima in the spatial
pattern in that time class. For genes having multiple expression
domains, such as hb and gt, the domain with the highest expression
is chosen. The gene is expressed at half maximum at the domain
borders (Equation 15). Therefore, border positions (l or r) are deter-
mined as nuclei where the expression is half of the domain peak. Rg ,
lg , and Dg are then determined by fitting Equation 15 to the observed
expression data for n. r and n, l using MATLAB’s lsqnonlin func-
tion. This is implemented as the “kink” method of FIGR.

Refinement of parameters
The parameter values estimated using classification and fitting to kink
solutions serve as a starting point for an unconstrained local search
using the Nelder-Mead algorithm implemented in MATLAB’s fmin-
search function. The cost function is x2 ¼Pngtð~xngðtÞ2xngðtÞÞ2,
where ~xngðtÞ are data and xngðtÞ are solutions of Equation 14.

Gap gene circuit inference and comparison with data and SA: We
inferred a gene circuit for the gap genes hunchback (hb), Krüppel
(Kr), giant (gt), and knirps (kni) using both FIGR (Section FIGR for
a spatially extended system) and SA (Section Inference of gap gene
circuits). The model includes the upstream regulators Bicoid (Bcd),
Caudal (Cad), and Tailless (Tll), so that G ¼ 7. Our implementa-
tion matched previous gap gene models (Manu et al. 2009b) so that
the upstream proteins regulated the trunk gap genes but not vice
versa. The time-dependent concentrations of Bcd, Cad, and Tll were
determined by linear interpolation of the expression data. The gene
circuit models the protein expression of these genes between 35–92%
egg length during cleavage cycle 14 (Section Inference of gap gene

circuits). The dataset is comprised of immunofluorescence protein
concentration measurements at the resolution of individual nuclei
at eight timepoints during cleavage cycle 14 (Figure 3A).

In thefirst stepofFIGR, theON/OFFstate of eachgene is determined
by estimating the velocity vg (Section Determining ON/OFF state).
Figure 3B shows that the assignment of ON/OFF states by FIGR cor-
rectly recapitulates the extent and dynamics of the gene expression
domains. In the next step, the regulatory parameters ~Tg and ~hg were
inferred by supervised classification (Section Determining regulatory
parameters). Predictions of the ON/OFF state from the inferred pa-
rameter values, ~yg ¼ sgnð~Tx � xg þ ~hgÞ (Figure 3C), are in good agree-
mentwith the empirical ON/OFF classification and the gene expression
domains, suggesting correct inference of the regulatory parameters. In
the third step, the kinetic parameters were estimated by fitting the kink
equations to gap gene domain borders (Section Inference of kinetic
parameters including Dg .). In the presence of diffusion, the correspon-
dence between velocity dxng

dt and the ON/OFF state of the gene will
be violated for nuclei abutting gene expression domains due to diffu-
sion of protein from ON regions into OFF regions. The inferred pa-
rameters likely deviate slightly from optimal values and were therefore
refined using local search (Section Refinement of parameters.) in the
fourth step of the algorithm. During refinement, the solutions were
computed using gene circuit equations that represent synthesis with
the sigmoid regulation-expression function (Equation 14) instead of
the Heaviside function. Therefore the final model obtained did not
rely on the assumption of binary switch-like regulation, which was
utilized only during binary classification while obtaining the initial
guesses of parameter values.

Gene circuit simulation with refined parameters produces output
that agrees very well with the data and the output of gene circuits
inferred using SA (Figure 3D,E), and has an RMS (x=

ffiffiffi
n

p
) of 13.29.

Careful comparison of the data and the outputs of the FIGR- and
SA-derived gene circuits shows that there are only minor discrep-
ancies between model output and data (Figure 3F and Fig. S4), some
shared between FIGR and SA output and a few unique to eachmethod.
Both methods underpredict Hb, Kr, and Gt expression in time class
T1 (t ¼ 3:1 min), a discrepancy that is resolved at later time points
(Fig. S4). In FIGR output the posterior border of the abdominal Gt
domain retracts a bit earlier, in time class T2, than in data, another
discrepancy that is resolved at later time points (Fig. S4). SA output
has an ectopic bump in the anterior border of the posterior Hb do-
main while FIGR produces a slightly shallower posterior border of
the anterior Hb domain (Figure 3F). Despite these minor discrep-
ancies, FIGR output agrees well with data overall, having the same
border and peak positions, and reproduces the dynamic anterior
shifts in gap gene domains during cleavage cycle 14 (Fig. S4).

The inferred gap gene network (Figure 4) is in good agreement
with experimental evidence (Jaeger 2011), the network inferred by
SA, and previous analyses (Manu et al. 2009b; Jaeger et al. 2004a).
One of the organizing principles underlying the resolution of gap
gene domains, termed “alternating cushions”, is that genes with
non-overlapping domains, Kr and Gt or Hb and Kni, strongly repress
each other (Kraut and Levine 1991). The genetic interconnection
coefficients of Kr/Gt and Hb/Kni inferred by FIGR have negative
values of high magnitude, which is consistent with the alternating
cushions mechanism. Another key feature reproduced by FIGR
output is the movement of posterior gap gene domains to the an-
terior during cycle 14 (Jaeger et al. 2004b). These shifts have been
understood to occur in a cell-autonomous manner (Jaeger et al.
2004b) due to asymmetric repression between gap genes in reverse
order of adjacent gap gene domains, Kr ⊢ Kni ⊢ Gt (Manu et al.
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2009a). The FIGR gene circuit encapsulates this mechanism since 1)
genes expressed in adjacent domains repress each other weakly or not
at all and 2) Gt represses Kni but not vice versa and Kni represses
Kr but Kr does not repress Kni.

The activation of the gap genes inferred by FIGR is also consistent
with experimental evidence. The gap genes are activated by Bcd and
Cad (Driever and Nüsslein-Volhard 1989; Rivera-Pomar et al.
1995; Hoch et al. 1991; Eldon and Pirrotta 1991; Schulz and Tautz
1995). Hb autoactivates strongly, in agreement with experimental
evidence (Margolis et al. 1995; Simpson-Brose et al. 1994; Hülskamp
et al. 1994). Although there isn’t clear evidence that the other gap
genes autoactivate (Jaeger 2011), the FIGR GRN, like previously
inferred ones (Jaeger et al. 2004a; Manu et al. 2009b; Kozlov et al.
2012), features weak autoactivation by Kr and Gt. Two main differ-
ences are observed between the FIGR- and SA-inferred gene circuits.
First, whereas Hb is strongly activated by Bcd in the SA gene circuit,
it is only weakly activated in the FIGR gene circuit. However in other
studies using both wildtype (Jaeger et al. 2004a) and wildtype/Kr2

(Kozlov et al. 2012) data, SA infers Bcd / Hb interactions ranging
from repression to strong activation. A second difference is that
whereas Tll activates Hb in the SA circuit, it represses Hb in the
FIGR gene circuit. Experimental evidence about whether Tll acti-
vates or represses Hb in the posterior is inconclusive (Jaeger 2011).
In summary, the agreement between FIGR output and data are the
result of genetic mechanisms that have been substantiated by pre-
vious experimental and modeling analyses.

With compiled MATLAB code, FIGR with refinement takes
48 sec compared to 29,067 sec taken by SA (�600-fold speed up) to
achieve the same RMS. In summary, FIGR infers the gap gene
network accurately but at a fraction of the computational expense.

DISCUSSION
Gene circuits (Reinitz and Sharp 1995; Jaeger et al. 2004a; Manu et al.
2009b) provide many unique advantages for inferring and modeling
developmental GRNs. The differential equations are biologically re-
alistic in representing gene regulation as a nonlinear switch-like func-
tion of TF concentrations. Gene circuits not only infer the topology
of the network but the directionality (causality), sign (activation/
repression), and strength of regulatory interconnections. Most impor-
tantly, gene circuits are not limited to inference but are capable of
accurately simulating and predicting gene expression patterns. Fi-
nally, the use of differential equations allows gene circuits to compute
transient solutions, an important factor in simulating develop-
ment since fate determination can occur before equilibrium is reached
(Manu et al. 2009a; Simcox and Sang 1983). Despite the promise
held by gene circuits, their application, as of other data-driven dif-
ferential equation models, has been limited to smaller networks so
far. Analysis of larger networks is limited to correlative approaches
(Margolin et al. 2006; Segal et al. 2003) that neither infer causality
nor simulate or predict the time evolution of GRN state.

Amajor challenge in broader application of gene circuits is the high
computational expense of inferring the free parameters from time
series data. Currently, the approach for inferring parameter values
(Chu et al. 1999; Reinitz and Sharp 1995; Kozlov et al. 2012; Abdol
et al. 2017) is to solve (“integrate”) the ODEs to obtain trajectories,
compare with experimental trajectories, and refine parameters using
global optimization techniques such as SA. This procedure is slow and
expensive because it requires performing multidimensional optimi-
zation on a complicated cost function x2ðfT; h;R; lgÞ with many
local minima and each function evaluation involves solving a system
of ODEs. Moreover, the computational complexity grows rapidly

(OðG3Þ) so that global optimization approaches for gene circuits scale
poorly with G.

In contrast, FIGR directly attempts to fit the differential equations,
which describe how the velocities vg depend upon the concentrations
xg .Tg and hg are determined using binary classification (support vector
machines or logistic regression). Both of these algorithms reduce to
quadratic programming, and thence to convex optimization. Sub-
sequently, Rg and lg can be determined by linear regression against
velocities or non-linear regression against concentrations using the
piece-wise analytical solutions of the ODEs, which are even simpler
optimization problems. Each inference can be completed in a frac-
tion of a second on a consumer-grade computer, even with interpreted
MATLAB code. We found that in the gap gene circuit, the values of
the regulatory parameters Tg and hg thus inferred were consistent
with those obtained by SA, and ODEs solved with the inferred pa-
rameters produced gap gene domains correctly positioned in space
and time. Furthermore, the parameter values, which were inferred
under the assumption of a Heaviside regulation-expression func-
tion, served as a good starting point for equations with a sigmoid
regulation-expression function. Gene circuits with a good RMS
could be obtained with an “off-the-shelf” Nelder-Mead simplex
method built into MATLAB. This refinement takes under a minute
in serial compared to the eight hours taken by SA. Finally, logistic
regression has a computational complexity of OðGÞ , where G is the
number of features (genes), which implies that FIGR has a complexity
ofOðG2Þ when inferring G genes. Consequently, FIGR scales with prob-
lem size much better than global nonlinear optimization techniques.

The computational efficiency of FIGR does not come at the
expense of accuracy. In testing the recovery of known parameters
from synthetic data (Figure 2, S1, and S3), we found that FIGR and
SA had comparable accuracy for smaller gene circuits, while FIGR
had slightly higher accuracy than SA for 20-gene networks. We
speculate that the lower accuracy of SA results from “sloppiness”
(Gutenkunst et al. 2007; Ashyraliyev et al. 2008; Kozlov et al.
2012)—insensitivity of model output to certain genetic interconnec-
tivity coefficients. If a certain parameter gives similar solutions over
some interval, then SA can infer any value in the interval rather than
the true value. This insensitivity can result from the compensatory
and redundant roles many parameters play in the model (Ashyraliyev
et al. 2008; Kozlov et al. 2012). For example, a high expression level
can be achieved by having higher activating genetic interconnection
coefficients, by having higher synthesis rates, or by having lower
degradation rates. The higher accuracy of FIGR could perhaps be
attributed to the separation of the regulatory and kinetic parameters,
which limits the opportunities available for redundant parameters to
produce similar solutions. It is not possible to decide which method
was more accurate in inferring the gap gene circuit because the “true”
values are not known. However, there are hints that FIGR suffers less
from the compensation problem in the gap gene case as well. Using
SA, it is common to get fits where a gap gene is either activated by Bcd
and has low basal synthesis (hg , 0) or a gap gene is repressed by Bcd
but has high basal synthesis (hg . 0). The former is biologically ac-
curate, while the latter is not. For this reason, in the SA optimizations
performed here and in previous work (Jaeger et al. 2004a; Manu et al.
2009b; Gursky et al. 2011; Kozlov et al. 2012; Perkins et al. 2006), hg
was constrained to be negative. No such constraint was used in FIGR,
and it infers low basal synthesis for all the gap genes autonomously.

In representing synthesis as a binary ON/OFF choice, Glass equa-
tions (Equation 3) are similar to Boolean or logical models, which have
been applied to a broad range of developmental GRNs (Theiffry et al.
1993; Sánchez and Thieffry 2001; Davidson et al. 2002b; Thieffry and

4192 | D. A. Fehr et al.

https://identifiers.org/bioentitylink/FB:FBgn0001325?doi=10.1534/g3.119.400603


Sánchez 2003; Collombet et al. 2017; Bonzanni et al. 2013). Given this
similarity between Boolean models and Glass equations, FIGR should
be readily applicable to a large class of GRNmodeling problems. More-
over, Glass equations relax the assumption made in logical models—
that genes are expressed at a small number of discrete levels—to allow
expression at any arbitrary level. Thismakes Glassmodelsmore general
than Boolean models and capable of simulating transient dynamics
during development. The accurate inference of the gap gene network
using FIGR (Section Gap gene circuit inference and comparison with
data and SA) demonstrates that the assumption of discrete ON/OFF
synthesis may also be relaxed—binary classification provided estimates
of parameters which were close enough to the optimal values that
further refinement by a local search resulted in good fits.

The separationof the inferenceprocedure into regulatoryandkinetic
components bears a superficial similarity to the multi-step approach of
Perkins et al. (Perkins et al. 2006) for inferring gap gene circuits. In the
first step of their approach, the diffusion and decay parameters are
inferred by assuming that the domains where each gap gene is synthe-
sized have a quadrilateral shape in space-time. In the second step, the
regulatory parameters are inferred by fitting a sigmoid synthesis func-
tion to the quadrilateral production domains inferred in the first step,
followed by a third step of refining all parameters by solving the coupled
differential equations. In contrast to the method of Perkins et al. our
method does not assume any particular shape for the production do-
mains and does not require manual analysis to define the domains. The
production domains result naturally and automatically from our clas-
sification procedure (Figure 3B). The lack of a strong assumption about
the shape of expression domains means that FIGR should be applicable
to genes having any production domain shape, and with 2D or 3D
spatial data. The second point of divergence is that we infer the regu-
latory parameters using binary classification instead of fitting the sig-
moid synthesis function to the production domains. As a consequence,
FIGR is faster than the method of Perkins et al.

Although in our tests FIGR was shown to be at least as effective as,
andmuch faster than, SA, it does have a few limitations. First, in order to
estimate the velocity and determine ON/OFF state reliably, FIGR
requires that thedatabe sampled sufficiently frequently in time.Roughly
speaking, during each time period inwhich a gene is in a particular state
(ONorOFF), its product concentration would have to be sampled at
least three times in order to ascertain the velocity and state. FIGR
therefore would not be suitable for datasets that have been sampled
sparsely in time.Methods reliant on solving theODEswill, in contrast,
attempt to fit the trajectories to a sparsely sampled dataset, even if
the actual inference achieved is poor (Figure 2J). FIGR was success-
ful in inferring the gap gene circuit even though the gap gene data-
set (Figure 3A) has only 8 time points because most nuclei don’t
change state and a few nuclei at gene expression borders change state
once, allowing sufficient sampling for a reliable detection of the state.

In spatially extended systems, the sign of the velocity, which can be
estimated empirically, and the unobserved gene ON/OFF state are not
strictly equivalent due to diffusion of the gene product out of the region
of synthesis. In the gapgene system,we found that the signof the velocity
nevertheless corresponded quite well to gene state (Figure 3B); well
enough, in fact, to provide a starting point for a local search that yielded
good fits (Figure 3D). The success of this approximation is likely due to
the fact that gap gene patterning is largely cell-autonomous and diffu-
sion plays the limited role of averaging gene expression in space (Manu
et al. 2009a; Jaeger et al. 2004b; Gursky et al. 2004). In spatial systems
where patterning is largely driven by diffusion (Kondo andMiura 2010),
FIGR’s decomposition of regulatory and kinetic parameters might be less
successful, and require a greater reliance on the refinement of parameters

by solving the differential equations. Successfully extending FIGR
to spatially extended systems besides the gap gene network may
require the recognition of situations where patterning is driven by
diffusion. The simplest empirical means of assessing the impor-
tance of diffusion is to compare mRNA and protein expression pat-
terns. A large overlap between the two would imply that diffusion is
less important and that parameter estimates obtained through binary
classification would be close to optimal. If, on the other hand, protein
expression domains extend much farther than the mRNA expression
domains, it would imply that the initial estimates are not close to
optimal values and more aggressive refinement is likely needed. If
mRNA expression data are not available or difficult to obtain, it
might be possible to estimate parameters under slow or fast diffu-
sion scenarios by constraining the ON domains to be larger or smaller
respectively during binary classification. This could potentially be
achieved by adjusting the velocity and expression thresholds vcg and
xcg prior to binary classification in FIGR.

Besides the problem of computational efficiency, the broader appli-
cation of gene circuits, and indeed all nonlinear differential equation
models, is limitedby a lackof understanding of parameter identifiability.
Most commonly, a posteriori confidence intervals for the parameter
estimates are computed (Ashyraliyev et al. 2008). Such calculations
are based on the strong assumption that the solution is linear in
the parameters and that the measurement errors are normally dis-
tributed. a posteriori parameter identifiability analysis also does not
provide any hints to improve experimental design for achieving better
identifiability in future studies.

Although we have not directly addressed the problem here, we
anticipate that conceiving of and visualizing gene circuit inference as
a classification problem will lead to insights into parameter identifi-
ability. For example, it is evident from state space plots (Figure 1F,I)
that sampling gene expression trajectories closer to the true switching
hyperplane of the gene will lead to less “wiggle room” for the inferred
hyperplane and result in more accurate parameter inference. This
implies that datasets that measure gene expression near steady state,
for example in differentiated cell types, are unlikely to lead to accurate
parameter inference irrespective of the number of data points sam-
pled or the precision of the experiment. Sampling transient trajecto-
ries densely when genes are turning ON or OFF is the best strategy for
accurate parameter inference. Another less obvious implication is that
it is easier to infer the regulation of negatively autoregulated genes
than positively autoregulated ones. Trajectories move toward or away
from the switching hyperplane for negatively or positively autoregu-
lated genes respectively, making it more likely that sampled data
points will lie near the hyperplane in the former. This analysis will
be reported elsewhere.

In summary, we have exploited features of the mathematical struc-
tureofgenecircuits tobreakadifficult optimizationproblemintoa series
of two, much simpler, optimization problems. We have demonstrated
that FIGR is effective on synthetic as well as experimental data from a
biologically realistic GRN. We have validated the inferred gap gene
model by comparing its parameters against models inferred with SA
as well as comparing its output against experimental data. The
improvement in computational efficiency and scalability should allow
the inference of much larger GRNs than was possible previously.
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