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ABSTRACT
Tumor immune microenvironment (TIME) plays an important role in tumor diagnosis, prevention,
treatment and prognosis. However, the correlation and potential mechanism between clear cell
renal cell carcinoma (ccRCC) and its TIME are not clear. Therefore, we aimed to identify
potential prognostic biomarkers related to TIME of ccRCC. Unsupervised consensus clustering
analysis was performed to divide patients into different immune subgroups according to their
single-sample gene set enrichment analysis (ssGSEA) scores. Then, we validated the differences
in immune cell infiltration, prognosis, clinical characteristics and expression levels of HLA and
immune checkpoint genes between different immune subgroups. Weighted gene coexpression
network analysis (WGCNA) was used to identify the significant modules and hub genes that
were related to the immune subgroups. A nomogram was established to predict the overall
survival (OS) outcomes after independent prognostic factors were identified by least absolute
shrinkage and selection operator (LASSO) regression and multivariate Cox regression analyses.
Five clusters (immune subgroups) were identified. There was no significant difference in age,
sex or N stage. And there were significant differences in race, T stage, M stage, grade, prognosis
and tumor microenvironment. WGCNA revealed that the red module has an important
relationship with TIME, and obtained 14 hub genes. In addition, the nomogram containing LAG3
and GZMK accurately predicted OS outcomes of ccRCC patients. LAG3 and GZMK have a certain
correlation with the prognosis of ccRCC patients, and play an important role in the TIME. These
two hub genes deserve further study as biomarkers of the TIME.
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Introduction

Renal parenchymal carcinoma is adenocarcinoma derived
from renal tubular epithelial cells; 85% of these tumors
are clear cell carcinomas, while others are granular cell
carcinomas and mixed cell carcinomas. Hemorrhage,
necrosis, cystic change and calcification are common in
cancer (Bray et al. 2018). Clear cell renal cell carcinoma
(ccRCC) has the highest mortality rate among urinary
system cancers. Its incidence rate and mortality rate
account for 2% of all tumors. Approximately 100 thou-
sand patients worldwide die of this disease (Torre et al.
2016). China’s incidence rate of renal cancer is approxi-
mately 3%, and the incidence rate of renal cancer in
cities (4.73/105) is significantly higher than that in rural
areas (1.89/105) (Pang et al. 2016). Approximately 30%
of ccRCC is advanced when diagnosed, and approxi-
mately 10%-20% of early ccRCC will recur andmetastasize

after treatment. The 5-year survival rate is approximately
11.7% (La Rochelle et al. 2010).

Compared with other tumors, ccRCC is less sensitive
to chemotherapy and radiotherapy, and surgery is still
the main treatment for nonadvanced ccRCC patients.
Many years ago, the drug treatment of advanced
ccRCC was limited to interleukin-2 and interferon
alpha. However, due to its serious adverse reactions
and extremely low efficiency, its clinical application is
not widely used (Escudier et al. 2007). The development
and application of immune checkpoint inhibitors (ICIs)
have improved the prognosis of patients with RCC. The
CTLA-4 pathway plays an important role in the early
stage of immune system activation, and the PD-1 / PD-
L1 pathway plays an important role in immune system
tumor microenvironment and is related to tumor
immune escape mechanism (Zhou et al. 2020). The
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first-line treatment of advanced ccRCC with ravulizumab
combined with ipilimumab reported in 2018 confirmed
the first-line treatment status of this regimen in
advanced renal clear cell carcinoma. A total of 1096
patients with advanced renal clear cell carcinoma were
enrolled in this study. They were randomly divided
into two groups: the ravulizumab combined with ipili-
mumab group and the sunitinib group. The objective
remission rate of the combined group was significantly
higher than that of the sunitinib group (42% vs. 27%, P
< 0.001), and the complete remission rate of the com-
bined group was also higher than that of the sunitinib
group (9% vs. 1%). After a median follow-up of 25.2
months, the survival rates of the combined group and
sunitinib group were 75% and 60%, respectively
(Motzer et al. 2018).

Due to the success of immunotherapy, countless
patients have achieved remarkable results with its inter-
vention. However, some patients did not respond to
immunotherapy. The complexity and diversity of the
tumor immune microenvironment (TIME) may deter-
mine its important impact on immunotherapy (Yang
and Zhang 2020; Shang et al. 2018). Immune cells and
stromal cells are two important components of the
extracellular matrix in the microenvironment. They
have a wide range of interactions with tumor cells,
including early tumor recruitment and the activation of
stromal cells to form primitive precancerous stroma.
These cells can change the cancer cell phenotype to a
malignant phenotype. They also establish complex
cell–cell interaction networks that help to improve and
maintain the immunosuppressive microenvironment,
promote immune escape, and ultimately promote the
development of cancer. Therefore, the TIME is a multidir-
ectional, dynamic and complex interaction network
among immune cells, stromal cells and tumor cells
(Hanahan and Coussens 2012). Therefore, in this study,
we aimed to identify possible biomarkers for ccRCC
through the tumor immune microenvironment.

Materials and methods

Data collection and processing

In RNA-Seq analysis, normalizing the number of read
counts of genes or transcripts is an extremely important
step, because the number of read counts falling in a
gene region depends on gene length and sequencing
depth. When we analyze gene differential expression,
we often compare the expression of different genes in
multiple samples. If we do not standardize the data,
the comparison results are meaningless. Therefore, the
two key factors that we need to standardize are gene

length and sequencing depth. Fragments per kilobase
of transcript per million mapped reads (FPKM) is often
used as the standardized value. Level 3 HTSeq-FPKM
RNA-seq data of ccRCC patients were downloaded
from the UCSC Xena database (https://xenabrowser.
net/datapages/) (Goldman et al. 2015), and clinical infor-
mation for each patient was obtained. Samples with any
incomplete information were excluded, and patients
who survived for less than 1 day were also excluded.
We definded overall survival (OS) as the period from
the diagnosis to death for any reason and progression-
free survival (PFS) as the period from the diagnosis to
death or progression of the tumor.

Evaluation of the immune cell infiltration level

Single-sample gene set enrichment analysis (ssGSEA)
(Barbie et al. 2009) was performed to obtain the 29
immune signatures, including immune cells or immune
function, of each sample, and the activities of the
immune pathways were assessed using the GSVA
package (Hänzelmann et al. 2013). In the tumor microen-
vironment, immune cells and stromal cells are two main
types of nontumor components and have been proposed
for the diagnostic and prognostic evaluations of tumors.
The ESTIMATE algorithm (Wilkerson and Hayes 2010)
was used to evaluate the immune cell infiltration level
(immune score), stromal content (stromal score) and com-
prehensive environmental score (ESTIMATE score).

Identification of molecular subtypes

Consistent clustering is a method used to provide quan-
titative evidence for determining the number and
members of possible clusters in a dataset (e.g. a microar-
ray gene expression dataset). The consistency clustering
method involves subsampling from a group of items and
determining clusters with a specific cluster count (k).
Then, for the consensus value, two items with the
same clustering in the same subsample are calculated
and stored in the symmetric consistent matrix of each
k value. The ConsensusClusterPlus package (Yoshihara
et al. 2013) was used to perform consistent clustering
analysis of each ssGSEA score of each ccRCC sample.

Weighted Gene Coexpression Network Analysis
(WGCNA)

The WGCNA package (Langfelder and Horvath 2008) was
used to perform this analysis. We first selected the genes
that varied greatly in different samples (i.e. genes whose
variance was greater than all variance quartiles). The
goodsamplesgenes function was used to evaluate
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whether the matrix data were qualified, that is, whether
there was a missing value. If so, the gene was excluded.
Then, the samples were clustered, and outliers were
removed. After removing the outliers, we reconstructed
the sample clustering tree and selected an appropriate
soft threshold (β) to ensure scale-free distribution; that
is, a small number of genes showed an absolute advan-
tage (high expression), and most showed a disadvantage
(low expression). By means of the power index, a certain
power indexwas used to determine the correlation coeffi-
cient between genes, and a suitable soft threshold (β) was
determined. According to the β value, the proximity
matrix and topological matrix were obtained, and the
genes were clustered by dissimilarity between genes.
Then, the tree was cut into different modules by the
dynamic cutting method (the minimum number of
genes in the module was 50). Combining the correlation
between eachmodule and sample character, we analyzed
the relationship between the module and phenotype.
The module with the highest correlation coefficient
with clinical characteristics was considered an important
module. In addition, genetic significance (GS) and
module membership (MM) were calculated. GS was
defined as the level of correlation between gene
expression and clinical characteristics. MM was defined
as the correlation between the module’s own genes
and gene expression profiles. For the important
modules, the inclusion criteria for the hub genes were
as follows: GS >0.4 and MM > 0.7.

Functional enrichment analysis

For important modules and hub genes, we analyzed
their biological functions and possible pathways
through Gene Ontology (GO) database and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses. The
above analysis is performed by the clusterProfiler (Yu
et al. 2012), org.Hs.eg.db and enrichplot packages.
Fisher exact test and Benjamin Hochberg (B-H) multiple
test correction method were used to correct the occur-
rence of false positive. The adjustied P < 0.05 was
taken as the cut-off standard.

Construction and Validation of the Nomogram

To further verify the impact of the hub genes on the
prognosis of patients, we combined the clinical infor-
mation and prognostic information to construct the rel-
evant nomogram. Least absolute shrinkage and
selection operator (LASSO) regression analysis was first
used to filter variables and prevent overfitting using
the glmnet package (Engebretsen and Bohlin 2019).
After the influencing factors were screened by LASSO

regression, multivariate Cox regression analysis was
used to identify independent prognostic factors using
the survival package (Rizvi et al. 2019). The nomogram
was used to show the predictive results of these inde-
pendent prognostic factors for the 1-, 3-, and 5-year
OS rates by multivariate Cox regression analysis using
the rms package (Huang et al. 2019). Calibration curves
were generated to test the predictive power of the
nomogram. In addition, a time-dependent receiver oper-
ating characteristic (ROC) curve was used to judge the
predictive power of the nomogram.

Statistical analysis

All the above calculations were carried out with R software
(version 4.0.2, 64 bit). Corrected P < 0.05 was considered
statistically significant. When comparing whether there
was a significant difference between the two groups of
data, we used the rank-sum test. To determine whether
there was a significant difference between multiple
groups of data, we used the Kruskal–Wallis test. The
Kaplan-Meier method was used to draw the patient survi-
val curves, and the log-rank test was used to compare
whether there was any difference in prognosis between
the groups.

Results

Immune microenvironment landscape of ccRCC

After using the ssGSEA method to measure the immune
function of The Cancer Genome Atlas (TCGA) ccRCC tran-
scriptome, we obtained the corresponding ssGSEA score
of each sample according to the 29 immune-related
pathways, and immune cell infusion was used to evaluate
the immune function of ccRCC, as shown in Supplemen-
tary Table 1. R code is available in Supplementary Data
Sheet S1.

Consensus clustering according to molecular
aubtypes

The results of consensus clustering of the ssGSEA scores
were visualized using an empirical cumulative distri-
bution function (CDF) plot and a delta area plot (Figure
1A and C). K = 5 was regarded as the best value to cut
these clusters, and the consensus matrix heat map is
shown in Figure 1B. Therefore, the total ccRCC dataset
was divided into 5 clusters: C1, C2, C3, C4, and C5. By
using the ESTIMATE algorithm, we obtained three
scores: the immune score, stromal score and ESTIMATE
score (shown in Supplementary Table 2). A heatmap of
the 5 clusters with their ssGSEA and ESTIMATE scores is
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shown in Figure 1D. Cluster C3 showed obvious differ-
ences compared with the other clusters.

For different clusters, there was no statistical difference
in age (Figure 2A, P = 0.1185), sex (Figure 2B, P = 0.3226)
or N stage (Figure 2E, P = 0.3545). However, there were
significant differences in race (Figure 2C, P = 0.0072), T
stage (Figure 2D, P<0.0001), M stage (Figure 2F, P =
0.0052) and grade (Figure 2H, P = 0.0072). Regarding the
prognosis of patients, there were significant differences
between the five clusters. Cluster 4 had the best progno-
sis for both OS (Figure 2G) and PFS (Figure 2I). Moreover,
the tumor microenvironment using the ESTIMATE algor-
ithm was statistically significant between the five clusters
(Figure 3A–C). However, concerning the stromal score,
there was no significant difference between the C4 and
C5 clusters (Figure 3A). For the three ICIs and PD1 and
PDL1, only some clusters showed significant differences
(Figure 3D and E). Regarding CTLA4, except for the
expression of CTLA4 between cluster 1 and cluster 4,
there were significant differences in the other clusters
(Figure 3F). Notably, almost all HLA genes showed signifi-
cant differences between the five clusters (Figure 3G).

WGCNA

A total of 4555 genes and 526 samples with great vari-
ation in different samples were subjected to WGCNA.
We first made it clear that all samples had no missing
values, and sample cluster analysis suggested that an
outlier was excluded.(Figure 4A). β = 3 was used to
establish a proximity matrix to make our gene distri-
bution conform to the scale-free network (Figure 4B).
After clustering genes and using the dynamic cutting
method to cut the tree into different modules and
merge similar modules, we obtained a total of 8
modules (Figure 4C). Among them, the red module
was positively correlated with immune cluster classifi-
cation (R2 = 0.53, P = 2e-38) (Figure 5D). The red
module showed the highest GS and MM based on an
intramodular analysis (Figure 5E) and was regarded as
a significant module. Based on the cutoff value for hub
genes (MM > 0.7 and cor GS > 0.4), we ultimately
obtained 14 hub genes: CD79A, FCRLA, GPR174, GZMK,
JCHAIN, LAG3, MZB1, PDCD1, PLA2G2D and POU2AF1
(supplementary table 3).

Figure 1. Consensus clustering results based on the ssGSEA scores of ccRCC patients. (A) Empirical cumulative distribution function
(CDF) plot displaying consensus distributions for each k value. (B). Consensus matrix heat map depicting consensus values on a white
to blue color scale of each cluster. (C). Delta area plot reflecting the relative changes in the area under the CDF curve. Usually, we
choose the K value with a small gradient of CDF decline or the point where the delta area starts to be gentle as the best K value.
In the follow-up, we need to combine the clinical data of the sample to determine whether these groups have practical significance.
(D). Heat map displaying the profiles of the 5 clusters and corresponding stromal scores, immune scores and ESTIMATE scores.
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Functional enrichment analysis

In the GO analysis, the red modules were mostly
enriched in cell killing, the external side of the plasma
membrane and receptor ligand activity (Figure 5A). In
the KEGG analysis, the red modules were mostly enriched
in cytokine−cytokine receptor interactions (Figure 5B).
The main enriched functions and pathways of the 14
hub genes were related to immunity. Examples included
the regulation of regulatory T cell differentiation, the
regulation of the T cell apoptotic process and the nega-
tive regulation of T cell activation (Figure 5C).

Identification of the prognostic factors of
nomogram

Eleven prognostic factors, including three hub genes,
MZB1, GZMK and LAG3 were identified by LASSO
regression analysis (supplementary figure 1). Multivariate
Cox regression analysis showed that the final independent
prognostic factors were LAG3, GZMK, radiotherapy, age, T
stage, M stage and grade. The results of the multivariate
Cox regression analysis are shown in supplementary
figure 2, and the nomograms are shown in Figure 6A.

The areas under the curve (AUCs) of the time-dependent
ROC curves were 0.839, 0.802 and 0.769 for 1-, 3-, and 5-
year OS, respectively (Figure 6B). The calibration curves
of the 1-, 3-, and 5-year survival rates also showed that
the nomogram had good prediction ability (Figure 6C–E).

Discussion

In our study, we first obtained RNA-seq and clinical data
of ccRCC patients from the TCGA database. Moreover,
ssGSEA and the ESTIMATE algorithm were used to
obtain the corresponding immune microenvironment
scores, and through consistency clustering analysis, we
obtained the relevant immune clusters. The immune
microenvironments of these clusters were significantly
different, and there were also significant differences
between the immunosuppressive sites of the CTLA4
and HLA gene families. The related hub genes were
found after performing WGCNA among different clus-
ters, and the prognostic signature constructed by
these hub genes and clinical information has great pre-
dictive ability. These biomarkers may be useful for RCC
immunotherapy.

Figure 2. Distribution proportions based on (A) age, (B) sex, (C) race, (D) T stage, (E) N stage, (F) M stage, and (H) grade in each cluster.
Survival curves comparing different clusters for OS (G) and PFS (I).
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In recent years, the drug treatment of ccRCC has
changed from the era of cytokines to the era of targeted
drugs and even the new era of immunotherapy. Immu-
notherapy has become a choice for ccRCC treatment.
ccRCC is characterized by multidrug resistance and bio-
logical heterogeneity. It is not sensitive to traditional
radiotherapy and chemotherapy. Because there are a
large number of inflammatory cells, such as T cells,
natural killer (NK) cells, dendritic cells and macrophages,
around RCCs, immunotherapy may be an effective treat-
ment (Noessner et al. 2012). With the expeditious devel-
opment of high-throughput sequencing technology,
there are an increasing number of studies on tumor bio-
markers using bioinformatics technology by using the

RNA-aeq data from lots of databases (Liao, Wang, et al.
2020; Liao, Xiao, et al. 2020; Liao et al. 2019). Therefore,
in this study, we explored immune-related biomarkers
of ccRCC.

At present, many clinical and basic experimental
studies have shown that a variety of factors constitute
a unique tumor microenvironment and promote the
immune tolerance of tumor cells. One of the most pro-
minent factors is the expression of a variety of negative
costimulatory molecules, such as CTLA-4 (Alme et al.
2016), TIM3 (Li et al. 2016), and LAG3 (Ivanova et al.
2020). Due to the poor clinical effect of CTLA-4 and
PD-1 in the treatment of KIRC, many researchers are
actively seeking new negative costimulatory molecules

Figure 3. The difference of stromal scores (A), immune scores (B) and ESTIMATE scores (C). The difference of 3 immunosuppressive
point. (A). CD274 (B). SNCA (C) CTLA4. The difference of HLA family for 5 clusters.
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combined with blocking therapy strategies. Remarkably,
LAG3 is considered another promising target for cancer
therapy. In addition to its inhibitory effect on T cell acti-
vation, it also has a synergistic inhibitory effect with PD-1
in various diseases, such as viral infection, parasites,
hematological tumors and solid tumors. For example,
the depletion of bovine T cells is caused by cryptospor-
idium infection, chronic tuberculosis infectious diseases,
viral infectious diseases, ovarian cancer and chronic lym-
phoma (Boer et al. 2013; Imai et al. 2018; Saleh et al.
2019; Chen et al. 2020; Simonaggio et al. 2020).

Although LAG3 is another potential target of immu-
notherapy, a study on pan-cancer from the TCGA
found that although the CD8 + T cell marker CD8a
and LAG-3 are strongly coexpressed in most cancers,
there are still three obvious exceptions: HPV + head
and neck squamous cell carcinoma, RCC and glioblas-
toma (Panda et al. 2020). Zelba et al. (2019) isolated
tumor-infiltrating lymphocytes and autologous periph-
eral blood mononuclear cells (PBMCs) from patients
with primary RCC. After staining and examining the
cells with polychromatic flow cytometry, it was found
that blocking PD-1 could lead to the upregulation of
LAG-3; moreover, the double blocking of PD-1 and
LAG-3 and the dual blocking of PD-1 and TIM-3

resulted in an increase in IFNγ release in vitro. It has
also been proven that the double blocking of PD-1
and LAG-3 is a promising checkpoint blocking combi-
nation for ccRCC.

Another hub gene that we found to have a significant
impact on prognosis was GZMK. There are five granzyme
genes in humans (GZMA, GZMB, GZMH, GZMK and
GZMM). GZMK is an apoptotic serine protease secreted
by granules. Studies have shown that GZMK has a signifi-
cant proinflammatory effect. It can induce the secretion
of a variety of inflammatory factors, such as interleukin
(IL)-1β, IL-6, and IL-8 and monocyte chemoattractant
protein-1 (MCP-1). In addition, GZMK activated protease
activated receptor 1 and induced cell proliferation (Lee
et al. 2015). In a phase I multicenter dose escalation
study for advanced solid malignancies, in which 36
RCC patients were included and the safety and thera-
peutic efficacy of the anti-PD 1 antibody MEDI0680
were evaluated, the degree of tumor invasion of CD8+
T cells and the expression of the GZMK gene were also
increased after using MEDI0680 (Naing et al. 2019).
Moreover, GZMK may be involved in the pathological
mechanism of many kinds of tumors, such as colorectal
cancer (Zhang et al. 2018), lung cancer (Weng et al. 2016)
and breast cancer (Joeckel et al. 2017). GZMK and LAG3

Figure 4. WGCNA results. (A) Cluster analysis of ccRCC patients and samples with a height above 400 are excluded as outliers. (B)
Competition selection of the best soft threshold (β). (C) Hierarchical clustering tree shows each module. Each color of the tree rep-
resents a module. Gray modules are represented as genes that are not classified into any modules. (D) Correlation between the
modules and clinical characteristics, including the different clusters. (E) Scatter diagram for MM vs. GS for the different clusters in
the red module.
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Figure 5. Enrichment analyses. (A) GO analysis of the red module. (B) KEGG pathway analysis of the red module. (C) Enrichment ana-
lyses of hub genes.

Figure 6. (A) The nomogram used to predict OS for ccRCC patients. (B)Time-dependent ROC curve for 1-, 3-, and 5-year OS proved the
great prediction ability. Calibration curves for predicting 1 – (C), 3 – (D), and 5-year (E) OS probability.
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have been confirmed by some studies that they may be
related to the pathophysiology of ccRCC, and the nomo-
gram can accurately predict the prognosis of patients,
which has certain clinical value.

Our research also has some shortcomings. First, Our
research is mainly based on bioinformatics analysis, all
the data are from the open database and not from our
own experience; thus, in-depth functional verification
is needed. Second, there may be some deviations in
the data obtained from public databases. Finally, all
the samples examined in this study were from patients
living in the United States, most of whom were Cauca-
sian, so our results may not be representative of the
global population. Therefore, more well-designed exper-
iments with large sample sizes need to be used to
further verify our conclusions.

Conclusion

In our study, we found two immune treatment-related
biomarkers: LAG3 and GZMK. We also found that the
prognosis of ccRCC patients could be accurately deter-
mined by combining their clinical information and the
expression levels of LAG3 and GZMK.
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