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Abstract: Microarrays have been used for more than two decades in preclinical research. 

The tumor transcriptional profiles were analyzed to select cancer-associated genes for  

in-deep functional characterization, to stratify tumor subgroups according to the histopathology 

or diverse clinical courses, and to assess biological and cellular functions behind these gene 

sets. In lung cancer—the main type of cancer causing mortality worldwide—biomarker 

research focuses on different objectives: the early diagnosis of curable tumor diseases, the 

stratification of patients with prognostic unfavorable operable tumors to assess the need for 

further therapy regimens, or the selection of patients for the most efficient therapies at 

early and late stages. In non-small cell lung cancer, gene and miRNA signatures are 

valuable to differentiate between the two main subtypes’ squamous and non-squamous 

tumors, a discrimination which has further implications for therapeutic schemes. Further 

subclassification within adenocarcinoma and squamous cell carcinoma has been done to 

correlate histopathological phenotype with disease outcome. Those tumor subgroups were 

assigned by diverse transcriptional patterns including potential biomarkers and therapy 

targets for future diagnostic and clinical applications. In lung cancer, none of these 

signatures have entered clinical routine for testing so far. In this review, the status quo of 

lung cancer gene signatures in preclinical and clinical research will be presented in the 

context of future clinical perspectives. 

Keywords: lung cancer; NSCLC; biomarker; gene signature; testing 

 

  

OPEN ACCESS 



Microarrays 2013, 2 319 

 

 

1. Introduction 

The ultimate goal reducing the high mortality rate in lung cancer disease is strongly linked to an 

increased efficacy of cancer prevention strategies and screening approaches for risk assessment and 

early detection of lung cancer in a curable stage. Major risk factors for lung cancer onset are smoking 

and increasing air pollution in metropolitan areas [1]. Despite enhanced prevention campaigns in the 

last two decades, lung cancer still represents the second most frequent malignancy and the highest 

cancer-related death rate in western countries. In 2013, about 228,190 new cases and 159,480 related 

deaths were estimated for cancer in the lung and bronchus in the United States [2]. About 55%–60% of 

patients are diagnosed at late incurable stages with distant metastases. As a consequence, the five-year 

survival rate is only 13%–16% for all stages. Non-small cell lung cancer (NSCLC) is the most common 

bronchial tumor, which is classified into the two major histological subtypes adenocarcinoma and 

squamous cell carcinoma. Both subtypes strongly differ in DNA copy number, DNA methylation, gene 

mutations, transcriptome, proteome and putative biomarkers as outlined in the following chapters. The 

stratification of diverse lung cancer entities based on clinico-histopathology and molecular alterations 

also determines disease outcome and therapy options. Despite significant progress in the development of 

novel targeted therapies, the high mortality rate in lung cancer strongly emphasizes the need for 

efficient lung cancer prevention and screening approaches, and the better stratification of patients who 

will benefit from a particular therapy regimen. A survey of clinical studies between 2009 and 2012 

indicated enlarged activities of biomarker analyses to almost half of all interventional studies [3]. 

Biomarker-based patient selection for therapy decision clearly increased up from 7.9%–25.8%. The 

major goal is to identify and validate specific biomarkers or signatures in lung cancer tissues and 

patient surrogates, that will shift lung cancer diagnosis towards a curable stage, better stratify patients 

with resectable tumors for the need of adjuvant therapies, and guide clinicians to select the most 

beneficial therapy regimens for their patients after first diagnosis and disease progression.  

2. Risk Assessment and Early Detection of Lung Cancer  

In the National Lung Screening Trial, low-dose computed tomography-based lung cancer screening 

reduced cancer mortality in high-risk individuals [4]. However, CT screening is also accompanied with 

a high rate of suspicious cases without confirming a malignancy, cancer over-diagnosis and economic 

challenges [5]. A future diagnostic testing scenario may also include screening approaches for  

cancer-related nucleic acid, peptide or metabolic molecules. So far, no molecular test for lung cancer 

diagnosis has been established in routine health care. Serum proteins like CEA, CYFRA 21-1 or 

MALDI/MS signatures might have been valid to detect lung cancer subtypes, but did not overcome 

clinical studies [6].  

An immunobiomarker test (EarlyCDT
®

-Lung) measuring autoantibodies to a panel of seven 

antigens (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and MAGE A4) in serum has been 

developed [7,8], and is actually evaluated in a phase 2 trial. This commercially available assay objects 

the early detection of lung cancer in high-risk individuals (long standing smokers) and risk stratification 

in patients with pulmonary nodules detected by CT scans. Depending on cut-off criteria, sensitivity 

(49%) and specificity (93%) leads to the diagnosis of one lung cancer patient from seven positive 
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tested individuals [9]. Another in vitro diagnostic test assay (Epi proLung BL Reflex Assay, 

Epigenomics, AG) measures SHOX2 DNA methylation in bronchial aspirates of patients which are 

suspected for lung cancer (78% sensitivity, 96% specificity), and is suggested as diagnostic adjunct 

when cytology results are negative or suspicious [10]. Additionally, a clinical trial is ongoing to test 

the accuracy of mediastinal staging by SHOX2 methylation level in transbronchial needle aspiration [11]. 

Moreover, a 4-gene methylation signature (p16, TERT, WT1, and RASSF1) was reported based on  

655 bronchial washings to diagnose lung cancer with 82% sensitivity and 91% specificity [12]. 

However, it remains a challenge to sequentially combine different methods like CT and genomic 

signatures in a screening approach and to avoid a high number of false positives. 

Circulating miRNAs, robustly detected in serum and plasma, are suggested as promising biomarkers 

in cancer patients. Different abundance of specific miRNAs was detected in serum and plasma of  

lung cancer patients, which might improve risk group assessment for further CT and invasive 

diagnostics [13–16]. One study outlined a weighted linear combination of the expression levels of  

34-miRNAs measured in 253 patients separated in a training, validation and an additional clinical 

validation cohort finally displaying 71% sensitivity and 90% specificity [13]. A 10-miRNA signature 

developed in a screening and validation study including serum from 620 NSCLC patients and controls 

proposed a better accuracy (90% sensitivity and 93% specificity) for early lung cancer detection [15]. 

Of note, expression of a serum miRNA pair (miR-15b and miR-27b) promised a 100% sensitivity and 

84% specificity [16]. The increasing number of studies reporting circulating miRNAs as putative 

biomarkers in cancer patients indicates the great potential in biomarker discovery and translational 

research. Blood cells were also analyzed for non-invasive biomarkers. For example, a large gene 

classifier was identified and validated in blood of 233 patients using Illumina microarrays [17].  

In contrast to serum and plasma, overall RNA expression will be strongly affected by various 

compositions of blood cell types.  

Molecular alterations have been associated with the individual risk for lung tissue damage and 

tumorigenesis. The comparison between lung cancer and benign tissues revealed diverse transcriptional 

profiles and putative diagnostic biomarkers [18–20]. For example, comprehensive meta-analysis of  

20 studies comprising over 1100 lung tumor and benign tissues resulted in a robust tumor-associated  

15-miRNA signature in NSCLC [20]. miRNA detection methods include both microarray and qPCR 

technology. Technical studies revealed a higher variation of miRNA quantification between different 

microarray platforms compared with qPCR and sequencing, and proposed a higher sensitivity and 

specificity for qPCR-based miRNA expression analysis [21,22]. Recently, an 8-miRNA signature 

(miR-96, miR-450a, miR-183, miR-9, miR-577, Let-7i, miR-27b miR-34a) was proposed to diagnose 

NSCLC in minimal biopsy material [23]. In non-tumor lung tissues of 853 lung cancer patients large 

and consistent gene expression variances caused by smoking were identified by using microarray 

technology [24]. Furthermore, gene expression changes along the airways were analyzed in order to 

investigate if easily accessible epithelial cells like in the nose, mouth or main bronchus reflect early 

oncogenic alteration in lung tissues caused by toxic agents like cigarette smoke [25,26]. Here,  

a prospective study (DECAMP-1) was started in 2013 aiming at the validation of gene, protein and 

cytokine signatures identified in bronchial airway and serum of cancer patients [27].  

Alternative lung specimens like endobronchial epithelial lining fluid, bronchial lavage and sputum 

are collected for biomarker research. For example, DNA methylation changes, specific gene and 
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miRNA expression signatures were identified in the presence of cancer cells [28–30]. However, 

standardization of sampling procedures for these approaches is much more challenging, because the 

general health condition and comorbidities strongly affect sample recovery and cellular components. 

As non-invasive approach, GC/MS or electronic noses were used to identify diverse signatures of 

volatile organic compounds (VOCs) in exhaled breath of cancer patients compared to healthy 

individuals [31–33]. Distinct VOC profiles could be assigned to patients suffering from lung cancer.  

In addition to analytical techniques, the excellent olfactory sense of dogs might contribute to early lung 

cancer detection [34]. Here, a phase-2 trial was terminated in 2013 because of inconsistent training 

status of sniffer dogs. Such diagnostic methods have the potential to improve the stratification of  

high-risk individuals and suspicious cases before invasive diagnostic bronchoscopy. Ongoing validation 

of diagnostic biomarker profiles and an earlier focus on standardization parameters of the techniques 

are prerequisites for application into clinical practice. 

3. Molecular Stratification of Non-Small Cell Lung Cancer Subtypes and Outcome 

3.1. Molecular Profiling of NSCLC Tumor Subtypes 

After lung cancer detection, clinicopathological parameters like tumor histology, staging and 

localization of metastases determine the disease outcome and current therapeutic interventions [35,36]. 

The clinical practice guidelines differentiate between small cell lung cancer (SCLC) and NSCLC, and 

between the major NSCLC subtypes squamous and non-squamous cell carcinoma assessed by standard 

histopathology. Concerning the status of present blood biomarkers, different serum levels and ratios of 

ProGRP, CEA, SCC, CA 125, CYFRA 21-1 and NSE have been proposed to distinguish between the two 

major NSCLC subtypes adenocarcinoma and squamous cell carcinoma, and SCLC, respectively [37]. 

Here, the precise determination of protein isoform signatures in lung cancer patients may further 

improve testing accuracy [38]. Recently, Roche Diagnostics launched Elecsys ProGRP test for a more 

precise diagnosis of SCLC from patients’ serum and plasma.  

The access of resected tumor material enables a comprehensive cancer-cell related diagnostics and 

molecular profiling. In the past, numerous microarray-based profiles were reported after millennium. 

Diagnostic and prognostic gene signatures using gene expression microarrays were outlined in  

Tables A1 and A2. Based on transcriptional profiles lung adenocarcinomas were stratified in molecular 

subgroups proposing diverse cellular characteristics and prognosis [18,39–43]. Gene expression 

patterns were associated with diverse adenocarcinoma subtypes named bronchioid, squamoid, and 

magnoid, dependent on transcriptomic similarities with histologically defined bronchioalveolar 

carcinoma, squamous cell carcinoma, and large-cell carcinoma [41]. These expression profiles were 

further investigated across six independent studies and about 1,000 patients [44]. Here, distinct 

molecular alterations, mutations, copy number variation and methylation could be assigned to these 

intrinsic subtypes with implications for further therapy modalities. Another study differentiated 

between two different molecular subtypes with respect to a prognostic 193-gene signature [42]. 

Recently, architectural classification of invasive pulmonary adenocarcinomas described five 

predominant patterns and has been shown to be a stage-independent predictor of survival [45,46].  

Few molecular markers like TTF-1 have been investigated across IASLC/ATS/ERS adenocarcinoma 
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architectures and were associated with disease recurrence [47,48]. The occurrence of different 

histological pattern in one tumor impedes the evaluation of the predominant architecture. Moreover, 

the histopathological AC patterns do not directly correspond with the molecular subtypes mentioned 

above. However, gene expression analysis of distinct architectural patterns upon tissue microdissection 

is under way to select for specific signatures and novel targets.  

Similar subtype analyses were done for squamous cell carcinomas of the lung predicting different 

survival outcomes [19,49,50]. The stratification of four different SCC gene expression subtypes named 

primitive, classical, secretory and basal generated by a nearest-centroid predictor from microarray data 

was reproducible across independent microarray and RNA sequencing datasets including about  

600 SCCs [50,51]. The primitive subtype was associated with the worst survival outcome. Furthermore, 

gene expression patterns in distinct molecular subtypes were attributed to the activation status of 

biological and cellular processes, and oncogenic pathways. A better understanding of the relationship 

between histopathological diversification of lung tumors, molecular characteristics and disease 

outcome will contribute to molecular pathology and biomarker development in the future.  

Nowadays, comprehensive genomic and transcriptomic sequencing allows an integrative analysis of 

gene expression, mutations, copy number variations and DNA methylation to assign more complex 

signatures in tumor subgroups [44,51]. In lung cancer clinics, invasive tissue sampling challenges the 

evaluation of tumor histology. Especially in small biopsy samples from advanced tumors, specific 

biomarkers and signatures would be highly useful to guide tumor stratification and outcome prediction. 

For example, a histology expression predictor for adenocarcinoma, carcinoid, small cell carcinoma, 

and squamous cell carcinoma was developed using RT-qPCR in FFPE samples [52]. Direct comparison 

between molecular predictor and pathologist indicated similar accuracy and precision of the biomarker 

approach. Several qPCR- and microarray-based studies identified miRNA patterns specific for lung 

cancer subtypes. For example, stratification of adenocarcinoma and SCC histology was done by a  

34-miRNA panel measured in FFPE specimen from 205 male smokers [53]. Moreover, two small 

miRNA panels measured in FFPE samples and bronchial brushing lung specimens have been  

reported to discriminate SCLC from NSCLC, and SCC from adenocarcinoma (AUC = 0.94–0.99), 

respectively [54]. Similar accuracy has been achieved by an overlapping 8-miRNA panel measured in 

preoperative cytologic samples [55]. Ongoing comprehensive screening for specific gene expression 

signatures, driver mutations and other genomic alterations are promising to identify biomarkers and 

targets for therapeutic intervention in distinct tumor architectures. 

3.2. Gene Signatures Associated with Disease Prognosis and Outcome 

In the cited microarray studies above, differences between histological and molecular tumor subgroups 

were often characterized by large gene signatures, which are helpful for the understanding of tumor 

progression and differentiation but very challenging for the translation into molecular diagnostics.  

In addition, the tumor-intrinsic subclasses are not implicitly associated with disease outcome. At early 

tumor stage, stringent signatures are needed to predict individual relapse risk and survival, and to 

support further therapy decisions. Several microarray study reports stated diverse prognostic gene 

signatures in adenocarcinoma [39,56–59], SCC [49,60], or NSCLC in general [58,61–67]. Prognostic 

classifier was usually generated from a single microarray dataset by applying a Cox model (endpoints 
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survival time or relapse time) to a training set, and validated in an independent test set or by  

leave-one-out-cross-validation. Thus, most of the signatures are linked to the local study protocols 

including patient cohort selection, starting biomaterial, microarray platform and statistics, variables, 

which explain the large divergence of contributing genes and the challenge of reproducibility.  

The accuracy and robustness of few gene signatures were successfully tested across independent 

microarray datasets and study centers. Based on multi-site microarray profiles from 442 adenocarcinomas, 

it has been shown that the predictive value of gene signatures can profit from the addition of clinical 

covariates [56]. The large collection of microarray datasets from lung cancer tissues provides a 

valuable source for the selection and validation of clinically relevant gene signatures. This is also 

reflected by numerous meta-analysis studies integrating public microarray data for searching and 

validating prognostic gene sets [42,68–74]. For example, a 64-gene signature predicting survival of 

stage I NSCLC patients was derived from a consensus expression set of 4,905 genes across seven 

different microarray datasets [72]. 

Small prognostic and predictive gene sets in early-stage NSCLC were described to be applicable to 

standardized analytical techniques like qPCR technology [63,75–82]. Chen and colleagues validated a 

five-gene signature (DUSP6, MMD, STAT1, ERBB3, and LCK) for relapse-free and overall survival 

across 271 stage I-III NSCLC tumors [77]. It was proposed to test in prospective, large-scale, multicenter 

studies if patients with a high-risk gene signature might benefit from adjuvant therapy. Furthermore, a 

14-gene quantitative PCR assay on formalin-fixed paraffin-embedded tissue predicting survival in 

resected stage I adenocarcinoma was developed in a cohort of 361 patients and validated in two 

independent cohorts comprising nearly 1,439 patients [83]. Of note, this assay was successful in 

ethnically distinct cohorts including US and Chinese lung cancer patients.  

Moreover, several prognostic miRNA signatures in lung cancer tissues have been described [53,84–86]. 

For example, a five miRNA signature (let-7a, miR-221, miR-137, miR-372, and miR-182*) was 

generated from fresh frozen tumor tissues of a training set (n = 56) and tested in two independent 

patient cohorts (n = 118) to be associated with survival and cancer relapse in NSCLC patients [86]. 

Similarly, Landis and colleagues reported another five miRNA signature (miR-25, miR-34c-5p,  

miR-191, let-7e, and miR-34a) measured in FFPE tissues predicting survival (p = 0.017) in squamous 

cell carcinoma patients [53]. Two further prognostic miRNA signatures were proposed after 

microarray profiling of tissues from 527 stage I NSCLC patients dependent on the inclusion of AC and 

SCC subtypes [84]. As outline for gene signatures above, diverse miRNA signatures are likely reasoned 

by differences in the selected patient cohorts, biomaterials, platform technologies and statistics.  

Of note, five frequently reported miRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155 and let-7a)  

could not be confirmed as prognostic or predictive biomarker in a large cohort (IALT trial) including 

639 patients with resectable NSCLC receiving adjuvant chemotherapy [87]. A future diagnostic test 

based on tissue sections has to consider feasible tissue repository in the clinics, and valid standards to 

evaluate biomarker molecule quality and tumor cell content. 

Distinct circulating miRNA signatures were detected in serum or plasma from early-stage NSCLC 

patients and associated with recurrence risk and survival [88–90]. For example, a signature of four 

‘high-risk’ serum miRNAs (miR-486, miR-1, miR-499, miR-30d) was reported to predict overall 

survival in NSCLC patients (n = 303) after surgery and adjuvant chemotherapy [88]. For advanced 

NSCLC, a combined 17-miRNA signature was able to calculate a 2.5-fold increased risk of death 
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between low- and high-risk score patients [91]. The usage of specific blood biomarkers for risk 

assessment would facilitate diagnostics, especially for inoperable NSCLC patients where the access of 

representative tumor tissue is difficult.  

4. Predictive Biomarkers for Lung Cancer Therapies  

4.1. Prognostic and Predictive Biomarkers for Systemic Therapies 

Adjuvant therapies are recommended for patients with operable lung cancer dependent on tumor 

staging. However, the stratification of those patients is still not accurate with regard to the relapse risk 

and individual response. In other words, no clinical parameter or biomarker is available to predict 

complete cure after removal of early-stage lung tumor, or to calculate effectiveness of adjuvant 

chemotherapy in preventing disease relapse. Numerous prognostic signatures in tumor tissues or 

patient surrogates of early disease patients were generated to potentially improve therapy management 

if adapted to clinical routine. It has been shown that single biomarkers often failed to efficiently 

predict therapy response. The well-studied DNA repair genes ERCC1 and RRM1 as predictive 

biomarkers for chemotherapy did not enter clinical routine [92]. Weakness in the performance of 

detection methods and the intratumoral heterogeneity of biomarkers limited the value of single biomarkers 

like ERCC1 [93,94]. Cross-validation analysis of Mucin by immunohistochemistry staining in 780 patients 

indicated that the biomarker was not predictive for overall survival after chemotherapy [95]. Similarly, 

the presence of KRAS mutations was not recommended to select patient for adjuvant chemotherapy [96]. 

In advanced NSCLC patients, the immunohistochemical status of beta-3 tubulin was not predictive for 

the benefit of ixabepilone- or paclitaxel-containing regimens reported in a phase II study [97].  

In SCLC patients, a combination of serum biomarkers like nucleosomes, NSE, ProGRP and CYFRA 

21-1 achieved up to 47% sensitivity at 95% specificity to predict insufficient response to first-line 

chemotherapy [98].  

Of note, several prognostic signatures reviewed in the paragraph before were addressed to the need 

of adjuvant chemotherapy in early-stage lung cancer patients. For example, a 15-gene signature in 

tumor tissues from stage IB and II NSCLC patients was reported to predict the benefit from adjuvant 

chemotherapy [66]. An ongoing NCI observation study is recorded to further validate this signature in 

FFPE specimen by using quantitative nuclease protection and NanoString assays. Moreover, a 12-gene 

signature predicting the benefit from adjuvant chemotherapy with cisplatin/ vinorelbine was identified 

by integrative analysis of genetic aberration, genome-wide RNAi data, and mRNA expression data, 

and successfully validated in two independent datasets [99]. Both retrospective studies integrated 

published microarray data in order to validate their predictive gene signatures. The variable validation 

success rates might be reasoned by different microarray platforms, gene probe qualities, and heterogeneous 

patient cohorts. 

Biomarker studies accompanying radiotherapy or immunotherapy are rare. Several studies suggested 

putative biomarkers to predict the response or toxicity upon radiotherapy [100–103]. For example,  

a gene expression classifier was calculated to predict radiosensitivity by comparing microarray 

expression profiles of the NCI 60 cell line panel and clonogenic survival assay outcome after 2 Gy of  

radiation [103]. In NSCLC patients, a blood biomarker panel (CRP, LDH, Osteopontin, CA-9 IL-6,  
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IL-8, CEA, CYFRA 21-1, and α-2M) has been successfully tested to predict survival after (chemo-) 

radiotherapy [104], and a prospective clinical trial has been currently started to correlate blood 

biomarkers with overall survival. Similarly, a decrease of serum ProGRP has been associated with 

response to chemo- and radio-chemotherapy in SCLC [105]. So far, the activation status of oncogenic 

drivers like EGFR is most conclusive to contribute to radiotherapy efficacy [106]. It has been shown 

that targeting EGFR pathway increased radiosensitivity of tumor cell [107,108]. In contrast, radiation 

itself may activate diverse oncogenic pathways and benefit disease relapse [109]. Therefore, it is 

important to better understand the interaction between radiotherapy and oncogenic signaling in tumor 

cells. Based on phase II trials including melanoma and NSCLC patients treated with immunotherapeutic 

recombinant MAGE-A3 protein, an 84-gene gene signature was associated with clinical response [110]. 

The further validation of this gene signature was announced for two phase III trials. Diverse immune 

signatures were compared and further dissected for their contribution of the tumor genome, host 

genetic background and environmental factors [111,112]. The increasing number of clinical trials 

focusing on immunotherapies may strongly benefit from valid predictive biomarkers.  

4.2. Prognostic and Predictive Biomarkers for Targeted Therapies 

Substantial progress has been achieved in the field of targeted therapies for lung cancer. At advanced 

inoperable tumor stage, molecular pathology plays an increasing role for tumor characterization, target 

identification and individualized therapy options. The era of high-throughput tumor genome sequencing 

and personalized medicine enables a further classification into molecular subtypes based on activated, 

therapeutically targetable oncogenes. So far, more than 50% of adenocarcinoma and squamous cell 

carcinoma can be characterized by mutations, fusion genes or amplifications leading to driver 

activation with potentially effective targeted drugs [113]. Tumor histology guides driver mutation 

testing and the ability of targeted therapy approaches. For lung adenocarcinoma, EGFR mutation and 

ALK rearrangement testing is recommended, KRAS mutation testing is suggested by the NCCN 

guidelines [35]. The biomarker testing is further specified by frequent mutations and reliable analytical 

techniques [114]. Tumors with EGFR mutations preferentially respond to EGFR tyrosine kinase 

inhibitors (TKIs), tumors with ALK rearrangements are associated with response to crizotinib [115,116]. 

The value of the most frequently mutated gene KRAS as predictive biomarker for EGFR-TKI insensitivity 

is controversially discussed [117,118]. Further targeted drugs are investigated in clinical trials for 

molecular subtypes harboring BRAF, PIK3CA or HER2 mutations, ROS1 or RET rearrangements, or  

c-MET amplification [113]. In about 35% of squamous cell carcinoma, aberrant FGFR1, PDGFRA, 

AKT1 or DDR2 are putative drug targets for individualized therapy schemes.  

In a simplified diagnostic scenario, genomic alterations in lung cancer are tested for relevant drivers 

in order to apply suitable drugs. Back to reality, the assessment of an individual drug scheme is 

impeded by limited predictive value of present biomarkers, less robust testing techniques, pressure of 

therapy timing, and subsequently initial and acquired resistance. For example, a significant number of 

EGFR wild-type tested lung cancer patients respond to EGFR-TKIs [119]. In contrast, 30%–40% of 

patients with EGFR-mutated tumors do not respond to this therapy, and most of the responders 

develop resistance after few months [35]. Based on specific peaks in mass spectrometry, a commercial 

serum/plasma-based assay (VeriStrat
®

) was developed to predict response to EGFR TKI therapy, and 
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retrospectively tested in 441 patients of the BR.21 phase III trial comparing outcome of erlotinib 

versus placebo treatment [120]. In this study the test was prognostic for progression-free and overall 

survival, but was not able to predict for differential survival benefit from erlotinib. The stratification of 

patients for EGFR-TKI drug sensitivity depends on the mutation type of the target itself, the activation 

status of EGFR downstream actors and potential bypass signaling [121]. A better understanding of the 

acquired resistance mechanism can disclose novel therapy options using combinatorial treatments to 

prevent bypass signaling, or to assess a suitable therapy after relapse against the novel acquired 

molecular subtype [122]. Thus, additional predictive biomarkers are urgently needed to improve 

patient stratification and to suggest targets for mono- or combinatorial therapies for the primary tumor 

and after disease relapse.  

Microarrays have been used to identify gene signatures associated with driver mutations and 

response to targeted therapies [123–126]. A 76-gene signature associated with epithelial-mesenchymal 

transition was generated from gene expression profiles of cell lines and tissues of NSCLC patients, and 

proposed to predict resistance to EGFR and PI3K inhibitors [124]. Recently, a 47-gene signature 

associated with sorafenib sensitivity was retrospectively analyzed based on the BATTLE trial [123]. 

The signature was reported to serve as additional biomarker for the definition of a subgroup of patients 

with tumors wild-type for EGFR that may benefit from sorafenib treatment. Furthermore, a large gene 

set derived from microarrays well stratified lung adenocarcinomas in one ALK-mutated and two 

EGFR/KRAS/ALK-mutation negative subgroups [125]. Based on distinct profiles, novel target 

candidates have been identified in patients of a triple-negative subgroup with worse prognosis. Large 

comprehensive genomic studies in lung cancer are ongoing to precisely define clinically relevant 

tumor subtypes by combining histopathology, mutation status, DNA copy number variation, gene and 

protein expression, and disease outcome. Future lung cancer diagnosis and therapy will benefit from a 

continuous histological and molecular characterization of the tumor, and its diversity and mutability 

during an individual disease course, to be one step ahead of the beast.  

5. Conclusions and Outlook  

In the last years, the number of clinical trials accompanied by biomarker studies has been 

continuously increasing [3]. The implementation of novel therapies more and more depend on a parallel 

development of biomarkers for patient stratification. So far, the translation of promising findings from 

biomarker research studies into valid test assays is an exceptional case for lung cancer. None of the 

aforementioned diagnostic or prognostic biomarkers and signatures is implemented in actual lung 

cancer clinical practice guidelines [127]. For advanced lung cancer, immunohistochemistry staining of 

protein markers can help to assess tumor histology in small biopsies and limited biomaterial [35].  

In the case of non-squamous NSCLC EGFR and ALK testing are recommended by the NCCN 

guidelines to stratify patients for targeted therapy approaches, and hopefully represent the starting 

point for a wide range of targeted therapy options in future.  

The progress in chip-based molecular stratification of breast cancer patients for therapeutic 

intervention indicates the potential of molecular diagnostics for cancer patient care [128–130].  

An evaluation of six different genomic tests also emphasizes the need of large prospective randomized 

trial and the potential benefit of integrated clinicopathological factors [130]. The controversial debates 
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and the reservation against genomic tests may also reflect social-economic challenges and competition 

with well-established clinicopathological standards. In the context of intratumoral heterogeneity and 

clonal selection throughout disease course, it is very likely that a combination of molecular biomarkers 

and clinicopathological factors can increase the power of diagnostic tests and therapy decision.  

The knowledge about histopathological and molecular subtypes cleared the way for genomic testing 

of specific drivers beneficial for a small subset of affected lung cancer patients. In contrast, the 

statistical requirements for diagnostic and prognostic molecular biomarkers in most of the studies 

included both a high sensitivity and specificity in an epidemiologically or clinically defined risk 

population. Of course, a high specificity is very important to avoid a large number of suspicious cases, 

which would not be manageable in further clinical programs. However, do we really need a high 

sensitivity? If a biomarker approach for early diagnosis would be able to shift one third of advanced 

lung cancer diagnoses towards a potentially curable stage, this would have dramatic consequences on 

therapy options and cancer mortality. The numerous preclinical and clinical studies reporting 

diagnostic, prognostic, and predictive biomarkers and signatures well reflect the huge activity in the 

fields of tumor detection, prognostic stratification and molecular subtyping. So far, the clinical utility 

of many reported microarray-based prognostic gene signatures in lung cancer is questionable [131]. 

The future translation of genomic tests into clinical practice will strongly depend on the answer to the 

unambiguous clinical question, the inclusion criteria of the target population, the availability of 

required biomaterial, robust analytical techniques and standards, and the validation of the biomarker 

assay in large, prospective, randomized trials. 
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Appendix 

Table A1. Gene expression microarray studies describing gene clusters or gene signatures in lung cancer or NSCLC. 

Clinical focus Tumor Type Biomaterial Gene signature  Screening Validation Technology References 

Diagnosis NSCLC Blood cells 484-feature classifier n = 77 n = 156 Illumina microarrays [17] 

Diagnosis Lung cancer 
normal large-airway 

epithelial cells 
80-gene signature n = 77 n = 52 Affymetrix microarrays [26] 

Risk, Smoking Lung cancer 
non-tumor lung 

tissue 
599-feature set n = 344 n = 509 Affymetrix microarrays [24] 

Prognosis NSCLC Tissues 
6-gene signature, 

clinical covariates 
n = 56 n = 59 Affymetrix microarrays [67] 

Prognosis NSCLC Tissues 72-gene signature n = 103 n = 69 
Agilent oligo 

microarray 
[64] 

Prognosis NSCLC Tissues 17-gene signature n = 91 public dataset; Potti, 2006 Affymetrix microarrays [62] 

Prognosis; 

Chemotherapy 

prediction 

NSCLC Tissues 15-gene signature n = 133 

public datasets; Potti, 2006;  

Raponi, 2006; Shedden, 2008;  

Roepman, 2009; qPCR (n = 30) 

Affymetrix microarrays [66] 

Prognosis NSCLC Tissues 
4-gene signature,  

clinical covariates 
n = 27 n = 138 Affymetrix microarrays [63] 

Prognosis NSCLC Tissues 59-gene signature n = 55 
public datasets;  

Bhattacharjee, 2001; Bild, 2006 
Affymetrix microarrays [65] 

Prognosis NSCLC Tissues 450-gene signature n = 196 

public datasets; Bild, 2006;  

Raponi, 2006; Shedden, 2008;  

Zhu, 2010; Hou, 2010 

Affymetrix microarrays [61] 

Prognosis NSCLC Tissues 5-gene signature n = 125 
n = 60; public datasets;  

Beer, 2002 

cDNA microarray,  

qPCR arrays 
[77] 

In vitro model; 

Pathway  
Lung cancer Cell lines, Tissues 

Oncogenic pathway 

signatures 

cell line, lung cancer 

(n = 111) 
none Affymetrix microarrays [132] 
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Table A2. Gene expression microarray studies describing gene clusters or gene signatures in adenocarcinoma or squamous cell carcinoma. 

Clinical focus Tumor Type Biomaterial Gene signature  Screening Validation Technology References 

AC-Subtypes; Prognosis Lung cancer–AC Tissues Gene clusters n = 139 none Affymetrix microarrays [18] 

AC-Subtypes; Prognosis Lung cancer–AC Tissues Gene clusters n = 67 none cDNA microarray [40] 

AC-Subtypes; Prognosis NSCLC–AC Tissues Gene clusters n = 149 none Agilent oligo microarray [43] 

AC-Subtypes; Prognosis AC Tissues 50-gene signature n = 43 n = 43 Affymetrix microarrays [39] 

Prognosis AC Tissues 54-gene signature n = 48 n = 95 Agilent oligo microarray [57] 

Prognosis AC Tissues 
Gene classifiers;  

clinical covariates 
n = 256 n = 186 Affymetrix microarrays [56] 

Prognosis AC Tissues 82-feature signature n = 60 n = 57 Agilent oligo microarray [59] 

Prognosis AC Tissues 3-gene signature n = 82 

public datasets; 

Bhattacharjee, 2001; 

Shedden, 2008 

Illumina microarrays [58] 

Integrative analysis AC Tissues None n = 75 none Affymetrix microarrays [133] 

Integrative analysis AC Tissues 
EGFR and KRAS 

associated gene signatures 
n = 193 none Affymetrix microarrays [126] 

Genomic subtypes AC Tissues Gene signatures n = 226 none Affymetrix microarrays [125] 

SCC-Subtypes; Prognosis NSCLC–SCC Tissues Gene clusters n = 48 none cDNA microarray [19] 

SCC-Subtypes; Prognosis NSCLC–SCC Tissues 
Gene clusters,  

50-gene signature 
n = 129 n = 36 Affymetrix microarrays [49] 

SCC-Subtypes; Prognosis SCC Tissues Subtype predictor public datasets; Bild, 2006; 

Lee, 2008; Raponi, 2006; 

Roepman, 2009 

n =56 Agilent oligo microarray [50] 

SCC-Subtypes SCC Tissues Subtype predictor Wilkerson, 2010 n = 178 Agilent oligo microarray [51] 

Prognosis SCC Tissues 111-gene signature n = 51 n = 58 Operon oligo microarray [60] 
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