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The haematopoietic system is established during embryonic life through a ser-

ies of developmental steps that culminates with the generation of haematopoi-

etic stem cells. Characterisation of the transcriptional network that regulates

blood cell emergence has led to the identification of transcription factors

essential for this process. Among the many factors wired within this complex

regulatory network, ETV2, SCL and RUNX1 are the central components.

All three factors are absolutely required for blood cell generation, each one

controlling a precise step of specification from the mesoderm germ layer to

fully functional blood progenitors. Insight into the transcriptional control of

blood cell emergence has been used for devising protocols to generate blood

cells de novo, either through reprogramming of somatic cells or through for-

ward programming of pluripotent stem cells. Interestingly, the physiological

process of blood cell generation and its laboratory-engineered counterpart

have very little in common.
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In adult organisms, the haematopoietic system is sus-

tained throughout life by a pool of haematopoietic

stem cells (HSCs) that resides in the complex microen-

vironment of the bone marrow [1]. This pool of HSCs

maintains itself through self-renewal; it is not clear,

however, whether HSCs are slowly cycling, or mostly

quiescent with only a subset of cycling HSCs [2].

Under homeostatic conditions, HSCs give rise to all

blood cells of the erythroid, myeloid and lymphoid lin-

eages through a discreet series of differentiation steps

leading to fully mature blood cells. This equilibrium

between self-renewal and differentiation is carefully

controlled by the bone marrow microenvironment and

is critical to the sustained production of all blood cells.

Any alteration in this balancing act such as in certain

haematological disorders leads to bone marrow failure,

a condition in which HSCs become exhausted [3]. Left

untreated, this is unfortunately a terminal illness as

there is no de novo generation of HSCs in adult organ-

isms. HSCs are only generated de novo during embry-

onic development when the haematopoietic system is

first established.

Embryonic emergence of the
haematopoietic system

During embryonic development, the haematopoietic

system emerges in sequential waves, each characterised

by its specific timing, location and type of progenitors

generated. Soon after gastrulation, mesoderm

Abbreviations

EHT, endothelium-to-haematopoietic transition; ESCs, embryonic stem cells; HE, haemogenic endothelium; HSCs, haematopoietic stem

cells; HSPCs, haematopoietic stem and progenitor cells.
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progenitors within the primitive streak migrate to the

developing yolk sac to form mesodermal masses that,

by E7.5 in the mouse embryo, form blood islands

composed of primitive erythrocytes surrounded by

endothelial cells [4]. This first wave of haematopoiesis

also gives rise to megakaryocytes [5], macrophages and

tissue-resident macrophages such as microglia of the

brain [6]. This first wave is closely followed by a sec-

ond wave of precursor emergence within the yolk sac

vasculature of E8.5 mouse embryos. At this stage, ery-

thro-myeloid progenitors are produced which, upon

maturation, generate definitive erythrocytes, and all

types of myeloid cells [7]. The generation of lymphoid

progenitors shortly follows and occurs both within the

yolk sac and the embryo proper by E9.0–9.5 [8,9]. The

first HSCs, capable of adult engraftment, are only

detected by E10.5, emerging from the major arteries of

the developing embryo [10,11]. HSCs are found in the

yolk sac and placenta later on, but it is still not clear

whether they arise autonomously within those sites or

if they are transported there from their site of emer-

gence via the circulation [12,13]. Newly formed HSCs

migrate to the liver where considerable expansion

takes place [14]; from E14.5 onwards, HSCs start

colonising the spleen, and ultimately the bone marrow,

where they will reside thereafter [15].

Endothelial origin of all blood cells

Seminal observations dating back from the early 19th

century suggested a very close lineage relationship

between endothelium and blood cells during embry-

onic development, coining terms such as haematoblast

[16], haemocytoblast [17] or haemangioblast [18]. The

endothelial origin of blood cells was formally demon-

strated decades later with the advance of experimental

approaches allowing cellular marking [19] and lineage

tracing [20]. All blood cells are derived from FLK1-

expressing mesoderm [21] through endothelium inter-

mediates; whether these FLK1 mesoderm precursors

can be termed haemangioblast remains a matter of

debate discussed elsewhere [22]. Endothelium giving

rise to blood cells are defined as haemogenic endothe-

lium (HE) and are found at all sites of blood cell

emergence. Through a process of endothelium-to-

haematopoietic transition (EHT), HE subsets were

shown to generate primitive erythrocytes [23], erythro-

myeloid progenitors [24], B lymphocytes [9] and HSCs

[25]. This EHT process is akin to the well-charac-

terised epithelial to mesenchyme transition and entails

a differentiation process involving dramatic morpho-

logical and transcriptional changes. In the literature,

the definition of HE is often associated with the

potential to generate both endothelial and haematopoi-

etic cells. However, the current lack of specific markers

hinders the distinction between HE and non-HE.

Thus, at present, it is not possible to determine, and

therefore to claim, that HE generates endothelium.

Rather, HE can only be identified retrospectively, once

it has produced blood cells.

Transcriptional control of mesoderm
specification to endothelium and
haemogenic endothelium

ETV2

Once mesoderm is formed, the first known transcrip-

tion factor regulating further specification towards

haematopoiesis is the ETS family member ETV2. This

ETS transcription factor is expressed between embry-

onic day E6.5 and E9.5 in the mouse embryo, with an

expression pattern primarily restricted to the yolk sac,

where its expression marks all nascent endothelium

[26]. Remarkably, ETV2 deficiency leads to a complete

absence of all blood cells and organised vasculature

[27]. However, the conditional deletion of ETV2 in

FLK1-expressing cells [28] or TIE2-expressing cells

[29] does not affect blood cell emergence or vascula-

ture organisation. This suggests that ETV2 acts as a

temporal switch for these lineages, during early embry-

onic development, at the onset of FLK1 expression.

Analysis of the downstream targets of ETV2 impli-

cated in these developmental processes established this

transcription factor as a master regulator of both

blood and endothelium programs (Fig. 1), regulating

the expression of genes such as Sox7, Scl or Gata2

[30–32]. Using embryonic stem cells (ESCs) in vitro

differentiation to study haematopoietic specification,

Wareing et al. observed that the expression of SCL

was sufficient to fully restore blood cell emergence in

Etv2�/� cells [28], demonstrating the unique role of

ETV2 in switching on the haematopoietic program via

SCL; similar observations were made using the Zebra-

fish model system [33].

It is interesting to note that the function of ETV2 is

not fully conserved across evolution: the Etsrp/ER71

Zebrafish homolog is required for vascular develop-

ment and myeloid lineages but is dispensable for

erythroid lineages [34] while the ER71 Xenopus homo-

log is only required for vascular development and does

not control blood cell emergence [35]. The work of Liu

and colleagues suggests that FLI1, another member of

the ETS family, orchestrates the earliest stage of

mesoderm specification to the cardiovascular system

in Xenopus and Zebrafish and that ETV2 acts
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downstream of FLI1 in these model organisms [36]. In

an in vitro mouse ESC model of blood cell emergence,

the expression of FLI1 in ETV2�/� FLK1 mesoderm

was, however, unable to restore haematopoiesis [28],

demonstrating that in the mouse system the function

of these two ETS factors is not interchangeable. The

reason behind the progressive changes in ETV2 and

FLI1 functions during evolution remains to be deter-

mined.

SCL

As discussed above, directly downstream of ETV2, the

basic Helix-loop-helix transcription factor SCL (also

known as TAL1) controls blood cell emergence

(Fig. 1). SCL was originally identified at breakpoint of

chromosomal translocations associated with the occur-

rence of leukaemias [37,38] and was later shown,

through knockout approaches, to be indispensable for

the generation of all blood cells in vivo [39,40] and

in vitro [41,42]. In Scl�/� embryos, vascular develop-

ment is not as dramatically affected as observed in

Etv2�/� embryos, but SCL deficiency does lead to

remodelling defects in the yolk sac vascular network

[43,44]. Similar to ETV2, the expression of SCL is only

temporally required for blood cell emergence as its

conditional deletion in TIE2-expressing cells does not

affect blood cell emergence [45]. In line with this

restricted temporal requirement, in vitro studies have

demonstrated the critical role of SCL for the forma-

tion of haemangioblast [46] and HE [47]. As discussed

elsewhere, SCL is also an important player in adult

haematopoiesis and erythropoiesis [48].

SCL functions within multi-factor complexes con-

taining LMO2, E2A, LDB1, FLI1 and GATA2

[49,50]. The genome-wide analysis of SCL targets via

chromatin immunoprecipitation has revealed a large

number of downstream transcriptional targets, includ-

ing many genes with known implication in both

endothelial and haematopoietic cell fate, including

many transcription factors such as Sox7, Sox17,

Gata1, Gata2, Erg, Fli1 or Myb [51–53]. Among those,

Runx1 has been recurrently identified as a critical

downstream transcriptional target of SCL at the onset

of blood cell emergence [54–56].

Cardiac versus haematopoietic fate

Both ETV2 and SCL are critical transcriptional activa-

tors of the haematopoietic and endothelial programs,

and while they are actively promoting these cell fates,

experimental evidence suggests that they are also

actively repressing the cardiomyocyte fate (Fig. 1). In

an ESCs differentiation system promoting cardiac,

endothelial and haematopoietic lineage specification,

the enforced expression of ETV2 was shown to inhibit

the specification of cardiac mesoderm, which gives rise

to cardiomyocytes and smooth muscle cells [57]. This

was shown to occur via inhibition of the Wnt sig-

nalling pathway. Similar findings were also observed in

Zebrafish embryos, in which ETV2 deficiency led to

increase formation of cardiomyocytes [58]. Additional

studies further established that the transcriptional inhi-

bition of ETV2 expression was a necessary step for

cardiac specification [59]. In a similar line of investiga-

tion, several studies demonstrated the repressive role

of SCL on cardiomyocyte specification through enhan-

cer competitive occupancy [53,60] and recruitment of

Polycomb repressive complexes [52] to cardiomyocyte

specific genes. It is not clear if both mechanisms of

ETV2

SCL

GATA2 FLI1

RUNX1 CBFβ

GFI1

GFI1B

Hematopoie�c Program

Endothelium Program

SOX7

SOX17

ETS

FOX

LSD1

Cardiac Program

Fig. 1. Schematic representation of the

transcription factor network controlling

endothelium and haematopoietic

specification. Transcription factors are

depicted in blue, positive activities are

depicted in red and repressive activities in

green.
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cardiomyocyte lineage repression function in concert

or whether they are each active at different stages of

the process. Single-cell transcriptomic analysis of Scl�/�

early embryos suggest that the primary role of SCL is

blood specification and that cardiomyocyte specifica-

tion might be a later event in cells unable to give rise

to blood due to SCL deficiency [61]. Together, these

findings suggest complex and stepwise mechanisms in

which cell-fate specification to endothelium, blood and

cardiomyocytes are controlled by positive and negative

transcriptional inputs. How ETV2 and SCL each con-

tribute to the repression of cardiomyocyte fate and

whether they act in a cascade of events or merely in

reinforcing each other activity still remains to be estab-

lished.

Transcriptional control of
endothelium-to-haematopoietic
transition

While the generation of HE depends on the program

initiated by the ETV2/SCL transcriptional cascade,

blood cell emergence from HE is controlled by

RUNX1 [47,62]. Similar to Scl, Runx1 was initially

identified at breakpoints of chromosomal transloca-

tions in haematopoietic malignancies [63]. Through

knockout approaches, RUNX1 was shown to control

definitive haematopoiesis emergence (Fig. 1), its dele-

tion only sparing primitive erythrocytes [64–66]. To

date, it is not known whether tissue-resident macro-

phages of the brain, emerging alongside primitive ery-

throcytes, depend or not on RUNX1 for their

formation. The conditional deletion of Runx1 at speci-

fic stages of development further refined our under-

standing of its requirement for blood cell emergence.

RUNX1 function was shown to be essential in VE-

cadherin or TIE2-expressing endothelium but no

longer required in Vav-expressing newly formed blood

cells [62,67], pinpointing RUNX1 specific and critical

role at the HE stage. Similar to SCL, RUNX1 is also

required at later stages of haematopoietic commitment

to specific lineages, such as megakaryocytes or T and

B cells [68].

The Runx1 locus encodes several isoforms (Runx1a,

b and c) that are differentially expressed from alterna-

tive promoters during embryonic development and in

adult haematopoiesis (Fig. 2) [69–72]. The proximal

promoter P2 controls the transcription of Runx1a and

Runx1b while the distal promoter P1 drives Runx1c

expression. At the protein level, RUNX1b and

RUNX1c only differ by a few amino acids in the N-

terminal region; the functionality of this difference

remains unclear. Runx1a encodes a truncated version

of RUNX1b and may act as an inhibitor of the two

other isoforms [73], but little is known about the role

of Runx1a. Upon enforced expression, this isoform

was shown to enhance haematopoiesis [74–76]; addi-

tionally, Runx1a was shown to be overexpressed in

haematological malignancies [77,78]. In the mouse

embryo, Runx1b is the first isoform expressed in HE

prior to the endothelium-to-haematopoietic transition;

Runx1c becomes expressed in newly formed blood pro-

genitors [79]. As mentioned above, Runx1 complete

knockout blocks the emergence of all definitive blood

cells; in contrast, the specific deletion of the Runx1c

isoform only marginally affects haematopoiesis

[69,72,79]. Due to the locus structure (Fig. 2), it is not

feasible to delete only the Runx1b isoform to test its

specific requirement in blood cell generation; however,

both Runx1b and Runx1c isoforms are largely func-

tionally interchangeable, as they both equally restore

the defects observed in Runx1 complete knockout

embryos [80,81]. It is thought that the timing and

expression level of Runx1b driven by the proximal pro-

moter are the most critical parameters determining its

essential role during endothelial-to-haematopoietic

transition [71,82].

RUNX1 transcriptional activity is mediated by a

close interaction with its co-factor CBFb, which con-

fers increased DNA binding affinity and enhances

RUNX1 stability by preventing degradation [83–85].

Transcriptional targets of RUNX1 at the onset of

blood specification have been determined using gen-

ome-wide approaches both in vitro [51,86,87] and

in vivo [88]. At the HE stage, RUNX1 was shown to

regulate the expression of genes involved in adhesion

and migration, suggesting a unique role of RUNX1 in

positioning of the HE population within the vascular

compartment [87]. Upon endothelial-to-haematopoietic

transition, RUNX1 was shown to activate the blood

program, in collaboration with other transcriptional

players such as SCL, GATA2 or FLI1. Genome-wide

analysis of the dynamics of transcription factor bind-

ing on target genes revealed that an important func-

tion of RUNX1 is to reshape the epigenetic landscape

through the assembly of haematopoiesis-specific bind-

ing patterns [89].

Among the many transcriptional targets of RUNX1

identified at this stage of blood cell development, the

transcriptional repressors GFI1 and GFI1B hold a

special function [86,90]. Through gain-and-loss of

function approaches both in vitro and in vivo, it was

shown that GFI1 and GFI1B actively downregulate

the endothelial program in HE (Fig. 1). Through the

recruitment of the chromatin-modifying protein LSD1,

a member of the CoREST repressive complex, GFI1/
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GFI1B epigenetically silences the endothelial program,

allowing the emergence of blood cells. In effect,

RUNX1 has a dual activity in repressing the endothe-

lial program while promoting the haematopoietic pro-

gram. This dual function is highly reminiscent of the

functions of ETV2 and SCL in the repression of car-

diac specification and concomitant promotion of

endothelial and HE programs.

Endothelial and haematopoietic
programs: a balancing act

Specification of the vascular system which entails vas-

culogenesis and angiogenesis is controlled by key tran-

scription factors of the SOXF, ETS and FOX families

[91,92]. Among the SOXF factors, both SOX7 and

SOX17 have been implicated in the regulation of HE

and early haematopoietic specification. SOX17 was

shown to mark HE [93] as well as newly formed HSCs

[94] and, upon enforced expression, to maintain HSCs

undifferentiated over several passages in vitro [95].

Similarly, SOX7 was shown to mark HE and upon

enforced expression to block the transition from

endothelium-to-haematopoiesis and to promote HE

proliferation [96,97]. Further insight into the molecular

mechanism underlying this block revealed that SOX7

physically interacts with RUNX1 in HE and prevents

RUNX1 from switching on the blood program and

switching off the endothelium program [98]. This is

thought to create a meta-stable HE state, poised to

give rise to haematopoietic cells upon disruption of the

SOX7/RUNX1 interaction. Which signalling pathways

or factors disrupt this equilibrium remains to be inves-

tigated. Interestingly, SOX17 was also shown to

impact RUNX1 activity by actively repressing Runx1

transcription [99].

From all the studies of blood cell emergence from

HE, it is clear that the tight control of RUNX1

activity is one of the most critical parameters. Two

recent studies have explored the plasticity of endothe-

lium and its capacity at generating blood cells

[100,101]. In both studies, it was shown that during

embryonic development, there is a short window of

time in which ectopic RUNX1 expression will promote

blood cell emergence from non-HE. Together, these

studies suggest that haemogenic competency in

endothelial progenitors must be restrained through the

active silencing of Runx1 expression.

Reprogramming and forward
programming for blood cell
generation

Understanding the transcriptional network that leads to

the formation of haematopoietic stem and progenitor

cells (HSPCs) should provide the critical knowledge

required for generating these cells via reprogramming or

forward programming. It is thought that mastering the

de novo generation of HSPCs from unlimited cell

sources (somatic or pluripotent) will provide tailor-

made cell populations usable in the clinic to cure a large

range of haematological and autoimmune diseases

[102,103]. Many studies have explored the reprograming

of somatic cells to blood cells using a variety of tran-

scription factors (Table 1) [104–112]. Similarly, forcing

pluripotent stem cells to adopt a HSC or in vivo engraft-

ing blood progenitor identity upon differentiation has

been achieved via forward programming mediated by

transcription factors (Table 2) [108,113–116]. In most

studies, the experimental approaches were very similar

with lentiviral or retroviral vectors used for expressing

potential reprogramming factors in the cell populations

of choice. The factors conferring reprogramming were

identified from an initial pool of selected transcription

factors typically involved in HSC specification or self-re-

newal. When large panels of factors were tested, factors

1 2 3 4 6 7A 7B 85

P1 P2

Runx1a

Runx1b

Runx1c

Runt Domain TAD

Fig. 2. Schematic representation of the mouse Runx1 locus. Coding exons are represented as blue blocks, untranslated regions as orange

blocks. P1, distal promoter; P2, proximal promoter; Runt domain, DNA binding domain; TAD, trans-activation domain.
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effective at reprogramming were identified via selective

functional assays in vivo or in vitro. In most studies, the

requirement of each identified factor was further deter-

mined by individual removal from the reprogramming

pool. While all studies reported the generation of blood

progenitors as measured by clonogenic replating assays,

the generation of cells with long-term in vivo engraft-

ment was by far not as successful. While all the studies

reported in Tables 1 and 2 describe the conversion of

somatic cells into blood progenitors, the further

characterisation of the reprogrammed blood progeni-

tors and their biological output varied quite widely. The

study by Pulecio et al. [107] described the reprogram-

ming of fibroblasts to unipotent monocyte-like progeni-

tors. The study performed by Pereira et al. [105] showed

the generation of blood progenitors with myeloid-re-

stricted potential. In their study, Szabo et al. repro-

grammed fibroblasts to progenitors endowed with

myeloid and erythroid potential in vitro but in vivo

engraftment was mostly limited to myeloid and no

Table 1. Summary of studies reporting the reprogramming of somatic cells to HSPCs.

Reprogrammed

population Reprogramming factors

Expression

system Species

In vitro

clonogenicity

Long-term

engraftmenta References

Fibroblasts OCT4 Lentivirus Human Yes Limitedd Szabo et al.,

2010 [104]

Fibroblasts Gata2, Gfi1b, cFos, Etv6 LentiviruRetrovirus Mouse Limitedb No Pereira et al.,

2013 [105]

Fibroblasts Erg, Gata2, Lmo2, Runx1c, Scl Lentivirus Mouse Yes No Batta et al.,

2014 [106]

Fibroblasts SOX2, miR125b LentiviruRetrovirus Human Limitedc Not tested Pulecio et al.,

2014 [107]

Fibroblasts Scl, Lmo2,Gata2, Ptx2, Sox7,MycN TransposonPiggy

Bac

Mouse Yes Not tested Vereide et al.,

2014 [108]

Committed blood

progenitors

Run1t1, Hlf, Lmo2, Prdm5, Pbx1,

Zfp37, Mycn, Meis1

Lentivirus Mouse Yes Yes Riddel et al.,

2014 [109]

Endothelial cells FOSB, GFI1, RUNX1, SPI1 Lentivirus Human Yes Yes Sandler et al.,

2014 [110]

Fibroblasts Scl, Lmo2, Runx1, Bmi1 LentiviruRetrovirus Mouse Yes No Cheng et al.,

2016 [111]

Endothelial cells Fosb, Gfi1, Runx1, Spi1 Lentivirus Mouse Yes Yes Lis et al., 2017

[112]

a Long-term in vivo engraftment means at least 6 months engraftment of all haematopoietic lineages with secondary engraftment. b Repro-

grammed cells only gave rise to very few myeloid colonies in CFU assays. c Reprogrammed cells only gave rise to monocyte-like cells.
d Reprogrammed cells gave rise mostly to myeloid with low-CD45 expression level in primary engraftment and very limited secondary

engraftment.

Table 2. Summary of studies reporting the forward programming of ESCs to HSPCs.

Reprogrammed

population Reprogramming factors Expression system Species

In vitro

clonogenicity

Long-term

engraftmenta References

ESC-derived

cells

Hoxb4 IntegratedInducible Mouse Yes Yes Kyba et al., 2004

[113]

ESC-derived

cells

Cdx4 IntegratedInducible Mouse Yes Yes Wang et al.,

2005 [114]

ESC-derived

cells

ERG, HOXA9, RORA, SOX4, MYB Lentivirus Human Yes Short-termb Doulatov et al.,

2013 [115]

ESC-derived

cells

Scl, Lmo2,Gata2, Pitx2, Sox7,

MycN

TransposonPiggy

Bac

Mouse Yes Not tested Vereide et al.,

2014 [108]

ESC-derived

cells

ERG, HOXA5, HOXA9, HOXA10,

LCOR, RUNX1, SPI1

Lentivirus Human Yes Yes Sugimura et al.,

2017 [116]

a Long-term in vivo engraftment means at least 6 months engraftment of all haematopoietic lineages with secondary engraftment. b Repro-

grammed progenitors only provided short-term in vivo engraftment for myeloid and erythroid lineages.

3309FEBS Letters 593 (2019) 3304–3315 ª 2019 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

S. Menegatti et al. Blood cell generation



lymphoid potential was observed either in vitro or

in vivo [104]. In the study by Batta et al. [106], fibrob-

lasts were reprogrammed to blood progenitors with ery-

throid, myeloid, and lymphoid potential that conferred

short-term in vivo engraftment. The only successful

reprogramming approaches towards the generation of

blood progenitors with long-term in vivo engraftment

used starting cell populations with a close relationship

to HSC. Riddel et al. [109] reprogrammed committed

lymphoid and myeloid progenitors to HSCs. Sandler

and Lis studies demonstrated long-term multilineage

repopulation (with the exception of T cells for Sandler)

using human and murine endothelial cells, respectively,

as starting material for reprogramming [110,112]. Sugi-

mura and collaborators obtained long-term multilineage

repopulation by expressing a set of seven transcription

factors in haematopoietic cells emerging from HE dur-

ing the in vitro differentiation of human pluripotent

stem cells [116]. A possible explanation for the success-

ful reprogramming of those cells to HSCs is that

endothelium and committed blood progenitors are more

amenable to reprogramming towards HSC due to their

specific chromatin landscape, likely quite divergent from

fibroblast chromatin configuration. To date, it is

unknown if the combination of factors used in those

studies could reprogram somatic cells more distantly

related to the blood lineage.

One striking observation, when surveying these stud-

ies, is the wide range and variety of transcription fac-

tors used for programming (Tables 1 and 2). There is

clearly no consensus towards a subset of defined fac-

tors promoting blood specification. A few of the listed

studies used RUNX1 (5 out of 14 studies) or SCL (4

out of 14 studies), but these two master regulators of

blood cell emergence seem dispensable for reprogram-

ming or forward programming. It can be argued, how-

ever, that either the reprogrammed population already

expressed these factors, as for example in the case of

the Riddell study [109], or that Scl and Runx1 are

switched on as downstream transcriptional targets of

the factors used for reprogramming. An interesting

observation is the frequent use of homeotic/homeobox

genes as reprogramming factors (5 out of 14 studies),

suggesting the important role for re-patterning, re-

specification or enhanced self-renewal.

Overall, it seems that the reprogramming of somatic

cells to HSPCs does not follow the orderly transcrip-

tional path of developmental haematopoiesis and that

multiple combination of factors can promote blood

specification in somatic cells. However, one needs to

consider that different somatic cell landscapes may

require different driving forces to push them towards

HSPCs. Additionally, the HSPCs derived from these

reprogramming experiments might be qualitatively

very different from each other. To date, side-by-side

comparisons of reprogramming protocols have not

been published. Forward programming of pluripotent

stem cells represent a different challenge as this con-

sists in pushing undifferentiated cells towards a lineage

of choice. It is noteworthy that most of these studies

employ homeotic genes to drive forward programming.

While great progress has been made towards the

de novo generation of HSPCs via reprogramming, it

remains uncertain whether these protocols can be

translated to the clinic, given the expression of poten-

tial harmful factors (some of them known to confer

leukaemias) or the random genomic insertion of exoge-

nous factors that may activate harmful genes.

Conclusion and perspective

We have come a long way in understanding how blood

cell emergence is controlled at the molecular level and

what are the main players in this developmental pro-

cess. However, there are still many unanswered ques-

tions: what differentiates HE from non-HE at the

molecular level? How is the level of RUNX1 regulated

during the transition from HE to haematopoietic cells?

Are there different types of HE, is the microenviron-

ment critical in conferring specificity to HE or is it a

combination of both? Will we be able to use all this

basic knowledge towards the clinic for the benefit of

patients?
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