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Inspiratory muscle training (IMT) has been studied as a rehabilitation tool and ergogenic
aid in clinical, athletic, and healthy populations. This technique aims to improve
respiratory muscle strength and endurance, which has been seen to enhance respiratory
pressure generation, respiratory muscle weakness, exercise capacity, and quality of life.
However, the effects of IMT have been discrepant between populations, with some
studies showing improvements with IMT and others not. This may be due to the use
of standardized IMT protocols which are uniformly applied to all study participants
without considering individual characteristics and training needs. As such, we suggest
that research on IMT veer away from a standardized, one-size-fits-all intervention,
and instead utilize specific IMT training protocols. In particular, a more personalized
approach to an individual’s training prescription based upon goals, needs, and desired
outcomes of the patient or athlete. In order for the coach or practitioner to adjust
and personalize a given IMT prescription for an individual, factors, such as frequency,
duration, and modality will be influenced, thus inevitably affecting overall training load
and adaptations for a projected outcome. Therefore, by integrating specific methods
based on optimization, periodization, and personalization, further studies may overcome
previous discrepancies within IMT research.

Keywords: training prescription, performance, respiratory muscle strength, respiratory muscle endurance,
pulmonary function

INTRODUCTION

Inspiratory muscle training (IMT) has been thoroughly investigated over several decades as a
rehabilitation tool (Gosselink et al., 2011; Smart et al., 2013; Cahalin and Arena, 2015; Menezes
et al., 2016; Shei et al., 2016b; Charususin et al., 2018a; Shei and Mickleborough, 2019) and
ergogenic aid (Sheel, 2002; Illi et al., 2012; HajGhanbari et al., 2013; Karsten et al., 2018; Shei, 2018)
in healthy, clinical, and athletic populations, with generally positive findings. IMT is an intervention
aimed to strengthen the inspiratory muscles, primarily the diaphragm and other inspiratory
muscles such as the external intercostals, scalenes, and sternocleidomastoid (Celli, 1986; Sheel,
2002; Ratnovsky and Elad, 2005; Dominelli and Sheel, 2012; Illi et al., 2012; HajGhanbari et al., 2013;
Shei et al., 2016b; Reid et al., 2018; Walterspacher et al., 2018; Ando et al., 2020; Derbakova et al.,
2020). In clinical populations, IMT may aid in overcoming disease-associated pathologies related
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to the pulmonary system, such as respiratory muscle weakness,
altered operating lung volumes, and expiratory flow limitation,
thus improving clinical status, exercise capacity, and quality of
life (Aaron et al., 1992a,b; Lisboa et al., 1994, 1997; Johnson
et al., 1995; Kosmas et al., 2004; Calverley and Koulouris,
2005; Dhand, 2005; McConnell, 2005; Turner et al., 2012;
Laviolette et al., 2014; Price et al., 2014; Weatherald et al.,
2017; Moore et al., 2018; Chung et al., 2021). Conversely, in
healthy and athletic populations, IMT can enhance respiratory
muscle function, translating into a potential ergogenic benefit
even in the absence of pulmonary system abnormalities. Several
seminal studies have documented significant respiratory muscle
fatigue during exercise (Johnson et al., 1992; Harms et al.,
1997, 1998; St Croix et al., 2000) and observed a respiratory
muscle metaboreflex (Harms et al., 1997, 1998; Witt et al.,
2007). The respiratory muscle metaboreflex is a phenomenon
where blood is shunted away from locomotor muscles and
toward respiratory muscles in response to a large increase in
the work of breathing (Dominelli et al., 2017; Sheel et al.,
2018). More recently, the role of the respiratory muscles
during exercise and the occurrence of respiratory muscle fatigue
during and after exercise has been an area of focus (Dempsey
et al., 2006, 2012; Aliverti, 2016; Oueslati et al., 2018). Thus,
even in non-clinical populations, IMT may enhance respiratory
muscle function.

Many different forms of IMT have been developed, including
pressure-based and volume-based loading protocols. Typically,
these protocols require subjects to inspire against a resistance
or maintain a prescribed level of minute ventilation to load the
respiratory muscles and produce a training adaptation. IMT (1)
promotes diaphragm hypertrophy (Enright et al., 2006; Downey
et al., 2007; Shei, 2018; Shei et al., 2018); (2) increases the
proportion of type I fibers and the size of type II fibers in the
external intercostal muscles (Huang et al., 2003); (3) attenuates
the respiratory muscle metaboreflex (Sheel, 2002; Gething et al.,
2004; Enright et al., 2006; Witt et al., 2007; McConnell, 2009;
Turner et al., 2012, 2016; Raux et al., 2013, 2016; Price et al.,
2014; Lomax et al., 2017); (4) decreases inspiratory muscle
motor drive with preserved pressure generation (Huang et al.,
2003; Price et al., 2014; Ramsook et al., 2017); (5) improves
respiratory muscle economy (Enright et al., 2006; Turner et al.,
2012; Held and Pendergast, 2014; Shei et al., 2016a,b; Shei, 2018);
6) decreases the rating of perceived breathlessness or rating of
perceived exertion (Sheel, 2002; Gething et al., 2004; Downey
et al., 2007; McConnell, 2009; Price et al., 2014; Lomax et al.,
2017; Ramsook et al., 2017); (7) reduces the work of breathing
(Gething et al., 2004; McConnell, 2009; Turner et al., 2012; Price
et al., 2014; Shei et al., 2016a,b); (8) improves respiratory muscle
endurance (Gething et al., 2004; Enright et al., 2006; McConnell,
2009; Price et al., 2014; Sales et al., 2016; Shei et al., 2016a,b);
(9) improves ventilatory efficiency (Sheel, 2002; Gething et al.,
2004; Enright et al., 2006; Turner et al., 2012; Bernardi et al.,
2014; Price et al., 2014; Lomax et al., 2017; Salazar-Martínez
et al., 2017); (10) reorganizes respiratory muscle recruitment
pattern (Enright et al., 2006; Walterspacher et al., 2018);
(11), improves breathing pattern during exercise hyperpnea
(Charususin et al., 2016); and (12) reduces cytokine release

(Mills et al., 2013, 2014). While some of these adaptations are
well-characterized, others are postulated to occur with published
studies showing conflicting results. For example, while Ray et al.
(2010) observed a reduction in work of breathing following IMT,
Langer et al. (2018) did not. Putatively, not all these proposed
adaptations may be observed in all populations who undertake
IMT, and population-specific and individual-specific variations
could reasonably be expected. Collectively, these adaptations
may underpin exercise enhancement or functional improvement
in athletic and clinical populations. More recently, IMT has
been studied in occupational settings, such as military and
emergency services and recreational settings, which require
personnel and participants to exercise while carrying a load
on the thoracic cavity (e.g., protective equipment, backpacks
to transport gear and provisions, etc.) (Sperlich et al., 2009;
Faghy et al., 2016; Shei et al., 2017, 2018; Shei, 2018; Hinde
et al., 2020). In this application, IMT appears to be effective
in improving work and exercise capacity, and is likely due,
in part, to the higher ventilatory demand and workload due
to load carriage. Thus, enhancements in respiratory muscle
function here again optimize performance. A summary of
physiological adaptation to IMT and applications of IMT is given
in Figure 1.

INCONSISTENCIES IN INSPIRATORY
MUSCLE TRAINING

In spite of these findings, translation of physiological adaptations
into clinically or competitively meaningful improvements for
clinical and athletic populations has not been uniformly observed
(McConnell, 2012; Patel et al., 2012). Contributing factors
to these heterogeneous findings likely include variations in
the study population, study sample size, training protocol
(intensity, duration, frequency, rest intervals, etc.), whether
training was completed at rest or during concurrent exercise,
training type (pressure-threshold, flow-resistive, normocapneic
hyperpnea, etc.), among other factors (Illi et al., 2012; Patel
et al., 2012; HajGhanbari et al., 2013; Formiga et al., 2018;
Shei, 2018; Larribaut et al., 2020). A separate consideration
is the ability to reliably evaluate respiratory muscle functional
outcomes, such as strength, endurance, activation pattern, etc.,
to appreciate the potential benefits associated with respiratory
muscle training. Most commonly, maximal inspiratory and
expiratory mouth pressures (PImax, PEmax, respectively) are used
to assess respiratory muscle strength. Other measures, including
but not limited to transdiaphragmatic pressure, sustained
maximal inspiratory pressure (SMIP), respiratory muscle power
output, fatigue index, inspiratory duty cycle, minute ventilation,
breathing frequency, and tidal volume, have also been used
to assess respiratory muscle function. Presently however, there
is no consensus as to which measures are most appropriate
in the context of evaluating responses to IMT. While it is
reasonable to tailor outcome measures to the stated goals
of each study, developing a core set of common measures
would be a prudent step forward in enhancing the rigor of
future IMT studies.
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FIGURE 1 | Summary of clinical, occupational, environmental, and sport application of IMT as well as a brief overview of physiological adaptations induced by IMT.

Several recent reviews concluded that matching the IMT
training prescription to the ventilatory demands of the exercise
task likely optimize the ergogenic effect of IMT (HajGhanbari
et al., 2013; Shei, 2018). This recommendation for IMT training
specificity highlights the need to critically examine the training
protocols which have been tested and to evaluate whether the
training load imposed by these protocols sufficiently overloads
the respiratory muscle to induce meaningful training adaptations
(Formiga et al., 2018; Larribaut et al., 2020). Indeed, the concept
of training specificity, in which the training stimulus is matched
as closely as possible to the criterion task, has long been
understood and adopted in the field of sport science (Hawley,
2008). Yet, the majority of IMT research has used fixed protocols,
some of which were developed for clinical populations (Johnson
et al., 1998; Villafranca et al., 1998; Weiner et al., 1999, 2000)
but broadly applied to healthy and athletic populations. One of
the most common pressure-threshold IMT protocols involves
completing 30 breaths, twice daily at 50% of a subject’s PImax,
five times a week for 6 weeks (Romer et al., 2002a,b; Kilding
et al., 2010; Turner et al., 2012). While many variations exist
and prescribe varying numbers of repetitions, frequencies, and

durations, IMT training “intensities” are still largely based on a
percentage of PImax or SMIP. Acknowledging that for research
purposes, standardizing intervention protocols is necessary for
experimental control and uniformity between subjects, from
a practitioner’s standpoint, this approach may not be optimal
for producing training adaptations in real-world settings. As
such, we propose that further consideration be given to the
training aspect of IMT.

TRAINING PRESCRIPTION
CONSIDERATIONS

Coaches and practitioners routinely tailor training programs
to suit the goals and needs of individual athletes and
constantly make adjustments based on numerous factors,
including the athlete’s response to training, injuries, illnesses,
and environmental factors, to name a few. The training
prescription is seldom uniform and typically contains varied
workouts, commonly organized into micro-, meso-, and mega-
cycles in a periodized fashion (Issurin, 2010; Kiely, 2018;
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Bompa and Buzzichelli, 2019). In this light, perhaps it is time
to investigate IMT as a training tool, rather than a research
intervention, and consider periodization of IMT and varying
individual training sessions to achieve a specific training goal
(aerobic, threshold, neuromuscular, anaerobic, etc.) much like
sports training varies workout prescription to achieve training
adaptations. In order to achieve this, particular consideration
will need to be given to the context or application of IMT, i.e.,
rehabilitation vs. ergogenic aid for sport performance. Within
these contexts, factors, such as frequency, duration, and modality
(which affect overall training load) will influence how the coach
or practitioner adjusts the given IMT prescription.

Training load is perhaps the most important factor in
optimizing IMT prescription. While historic protocols are
somewhat individualized in that the “intensity” prescribed is
based on an individual’s PImax or SMIP, the percentage of
PImax or SMIP is often arbitrarily selected and then fixed at
that level. Careful consideration of the training goals, such as
improving respiratory muscle strength vs. endurance, might lead
one to prescribe a higher “intensity” for a strength-oriented
training session or a lower “intensity” for endurance-oriented
sessions, to allow a subject to complete more repetitions or
a longer training session. Within training load, the number
of repetitions could also be adjusted according to the goals
of an individual training session. Special consideration should
be given for training toward a pre-defined “task failure,” as
some studies have shown that in limb locomotor resistance
training, a larger training effect is produced when training is
conducted to task failure (Burd et al., 2010; Schoenfeld et al.,
2015, 2016). As previously suggested, in the context of IMT,
task failure may be defined by using a pre-specified threshold
of inspiratory pressure, volume, or minute ventilation, or failure
to achieve a prescribed breathing frequency, tidal volume, or
both (Shei, 2020). Using a pre-defined task failure threshold
could help ensure that each training session provides a sufficient
training stimulus to induce adaptations which in turn may
enhance the efficacy of IMT. This is particularly important for
populations requiring a higher training load to produce training
adaptations in the respiratory muscles, such as swimmers and
other aquatic-based athletes, including SCUBA divers (Lindholm
et al., 2007; Mickleborough et al., 2008; Shei et al., 2016a,b;
Vašíčková et al., 2017; Lomax et al., 2019; Yañez-Sepulveda
et al., 2021). Moreover, this approach could help match the IMT
training prescription to the ventilatory demands of the athlete
or patient’s goals, whether that is sustained hyperpnea during
prolonged exercise or improving the ability to complete activities
of daily living.

Aside from the broader considerations of training frequency,
intensity, and periodization, critically evaluating the specific
training mode will also be crucial to optimizing future IMT
prescription and research. Several recent areas of investigation
have garnered growing interest, which merits further discussion.
First, there is increasing interest in concurrent exercise and
IMT, i.e., rather than completing IMT at rest, the athlete or
patient uses the IMT device while simultaneously completing
another exercise, such as running or cycling (Hellyer et al., 2015;
Granados et al., 2016; McEntire et al., 2016; Porcari et al., 2016;

Shei, 2018; Shei et al., 2018). To date, only a small number of
studies have investigated concurrent IMT and exercise. However,
early findings suggest that IMT performed during concurrent
cycling exercise results in greater diaphragm activation, as
demonstrated by electromyography (EMG), and that concurrent
training improves both ventilatory threshold and respiratory
compensation threshold, and power output at these thresholds
(Hellyer et al., 2015; Porcari et al., 2016). Using an IMT device
during exercise may cause mild hypoxemia, possibly due to
inadequate hyperventilation (Granados et al., 2016). Factors, such
as the breathing pattern that can be sustained against the external
resistance may influence whether exercise hyperpnea with
concurrent IMT may be adequate. It is also possible that a relative
hypoventilation relative to work rate could lead to a decrease
in work rate intensity to preserve arterial blood gases, rather
than causing hypoxemia. Relative hypoventilation in this context
may also induce hypercapnia, which could limit performance but
also represent an additional training stimulus. Considering these
factors, it is certainly possible that concurrent IMT and exercise
may compromise endurance exercise performance and workload
during a given training session. Thus, any compromise in the
ability to sustain a given workload resulting from simultaneously
using an IMT device should be weighed against the potential
benefits of loading the respiratory muscles with the IMT device.
As previously discussed, even in this context, consideration
should be given to the selected load and duration of training
for concurrent IMT and exercise. A recent study employing an
inspiratory load of 15% of PImax concurrently during exercise
training found no difference between concurrent IMT plus
exercise training and exercise training alone after 3 weeks of
training. After 6 weeks of training, however, the concurrent
training produced an ∼8% improvement 5-mile cycling time
trial performance (McEntire et al., 2016). Therefore, even given a
relatively low resistive load, concurrent IMT and exercise training
over a longer period may still induce appreciable respiratory
muscle adaptations and subsequent performance benefits.

Next, the lung volume(s) at which IMT is completed are also
important to consider, as highlighted by a recent publication
by Van Hollebeke et al. (2020). In this study, 48 healthy
volunteers were randomly assigned to perform either pressure-
threshold IMT initiated from residual volume (RV) or functional
residual capacity (FRC), or tapered flow resistive loading initiated
from RV. The authors found that only training initiated from
FRC resulted in consistent improvements in respiratory muscle
function at higher lung volumes, whereas improvements after
the standard protocol initiated from RV were restricted to PImax
gains at lower lung volumes. Thus, considering the operating
lung volumes of the athlete or patient’s activities may be an
important factor when deciding the lung volumes at which IMT
should be initiated.

Finally, work led by Dominelli et al. (2015a,b), Molgat-Seon
et al. (2018a,b), Welch et al. (2018a,b), Geary et al. (2019),
and Archiza et al. (2021) has shown apparent sex differences in
respiratory muscle fatigability and workload, which is important
to consider in the context of IMT. Due in part to anatomical
differences, such as smaller airway diameter and smaller thoracic
volume compared to males, females generally have a higher work
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of breathing when minute ventilation, operating lung volume,
breathing frequency, and tidal volume are matched (Dominelli
et al., 2019). More recent evidence suggests that females are
more resistant to respiratory muscle fatigue compared with males
(Welch et al., 2018a; Geary et al., 2019), although this difference
in respiratory muscle fatigability does not appear to influence
exercise performance (Welch et al., 2018b). Despite this, because
of the comparatively higher respiratory muscle fatigue resistance
in females, it may be that females require a higher prescribed IMT
training load compared with males in order to induce training
adaptations. Interestingly, however, a recent investigation of
respiratory muscle endurance training (RMET) in healthy active
men and women found a greater ergogenic effect of RMET on
cycling time trial performance in women compared to men, an
effect which was even more pronounced in hypoxia (Chambault
et al., 2021). It is possible then, that females may not in fact
require a higher prescribed training workload, and that there may
in fact be a sex-specific differential response to RMET. Regardless,
further investigation on sex differences in both IMT prescription
and response is warranted.

Most respiratory muscle training paradigms have focused on
IMT in patients with pulmonary disease [e.g., asthma, chronic
obstructive pulmonary disease (COPD)] or respiratory muscle
weakness (e.g., multiple sclerosis, Parkinson’s disease) with
expectations to improve ventilatory capacity. While expiration
during resting is passively mediated by the recoil of the
lung and thorax, forced expiration and expiration during
exercise requires expiratory muscle activation, which requires
muscles of the abdominal wall, in particular the transverse
abdominis and the internal and external oblique muscles,
as well as internal intercostals. Expiratory muscles, especially
the upper airway musculature, play an essential role during
phonation, airway clearance and expectoration. Therefore,
interest in expiratory muscle strength training (EMT) has
developed, particularly for improving non-ventilatory functions,
such as coughing, speaking, and swallowing. A number of
studies have shown that EMT is effective in increasing the
strength of the expiratory muscles resulting in augmenting
the expiratory driving pressure used for cough, speech, or
swallow (Kim and Sapienza, 2005). EMT elicits similar responses
to IMT in the expiratory muscle system, and similar to
IMT, improvement of the maximal expiratory pressure is
the hallmark parameter of effective EMT. Interestingly, EMT
leads to improved maximal inspiratory pressure, indicating
involvement of the inspiratory muscles in the process of
expiration, whereas IMT does not improve maximal expiratory
pressure (McConnell, 2013).

While the ergogenic benefits of either IMT or EMT alone
have clearly been established, combined IMT/EMT have not been
widely reported. However, a number of studies have highlighted
the possibly overlooked ergogenic potential of combined
IMT/EMT in patients with Duchenne muscular dystrophy or
spinal cord muscular atrophy (Gozal and Thiriet, 1999), multiple
sclerosis (Ray et al., 2013) and COPD (Weiner et al., 2003). These,
and other studies, indicate that combined IMT/EMT may at least
be equally effective to either method alone, and might be the
preferred method of RMT in respiratory muscle disorders in

which training of both muscle groups is of greater importance,
such as in COPD and neuromuscular disorders.

A few studies have investigated the effect of combined
IMT/EMT on respiratory muscle function and exercise
performance in healthy individuals. Griffiths and McConnell
(2007) showed that 4 weeks of IMT and EMT increased
inspiratory and expiratory mouth pressures, respectively.
However, only IMT improved rowing performance, while EMT
and combined IMT/EMT did not improve rowing performance
(Griffiths and McConnell, 2007). Amonette and Dupler (2002)
using combined IMT/EMT for 4 weeks showed that this type of
training, although increasing strength of the respiratory muscles
as seen by increases in expiratory mouth pressures, produced
no changes in pulmonary function or VO2max (Amonette and
Dupler, 2002). However, this study was limited by a low sample
size (eight subjects in the treatments group and four subjects in
the control group).

FUTURE DIRECTIONS AND
CHALLENGES

Future studies in IMT should aim to address the considerations
discussed here, and in particular, consider a more personalized
or “precision” approach to tailoring training prescription to the
individual needs and goals of the patient or athlete (Figure 2).
Inherent in specifying treatment objectives is distinguishing
between athletes and clinical populations. Whereas, athletes may
seek to improve ventilatory efficiency or lessen diaphragmatic
fatigue, the aim for COPD patients may be to lessen dyspnea
or improve strength of the inspiratory muscles. While it will
certainly be challenging to achieve an individualized approach
while retaining adequate experimental control, developing
and validating innovative methodologies better suited to
individualized training will aid in determining whether such an
approach is feasible and effective. Such approaches might use
targeted training intensities for a fixed or variable period of
time, and the timing of progression to different intensities could
be dictated by a pre-defined, but uniformly applied protocol.
These “checkpoints” for progression could be based on changes
in PImax, the ability to complete a given set of training breaths,
or the ability to complete a progressive test, such as the test of
incremental respiratory endurance (TIRE) regimen. The TIRE
regimen is a common protocol in flow-resistive IMT, such as with
the RT2 and PrO2 devices (Mickleborough et al., 2008; Shei et al.,
2016a, 2018; Hursh et al., 2019). Similarly, training groups could
be enrolled at similar points in their training cycles to adapt a
periodized approach to IMT into research studies and real-world
application. These novel approaches will require testing and
validation, but should they bear fruit, these innovations can help
usher in a new era of IMT research that addresses fundamental
questions regarding how to optimize training prescription and
the consequent adaptations and benefits.

Aside from adjusting training protocols, future studies also
need to consider what endpoints are most relevant, how to
adequately power and control studies (for example, achieving
a proper placebo control and double-blinding studies), how
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FIGURE 2 | Comparison of the current paradigm for IMT prescription vs. a proposed future paradigm in which load and intensity are varied, training is periodized,
and frequency is varied. The latter constitutes a more individualized training prescription akin to how sport coaches prescribe training to their athletes.

to balance baseline participant characteristics, what sample
size is needed, and how to design and execute multicenter
studies. As highlighted by Patel and colleagues (Patel et al.,
2012), a large, randomized, placebo-controlled, double-blinded,
multicenter, akin to what a Phase 3 pivotal trial would be
for pharmacological interventions, would be a significant step
forward in elucidating and validating any potential efficacy
resulting from IMT. Recognizing that even within homogenous
groups responders and non-responders appear, large-scale
projects should also be paired with methodological designs
equipped to analyze individual responses—which assumes
individual variability will be both present and relevant—as
has been demonstrated recently (Hecksteden et al., 2018).
While such studies are costly, complex, and require a robust
network of qualified investigators, the data from such trials have

become the standard for determining the safety and efficacy of
medical interventions.

To the best of the authors’ knowledge, only three large
randomized controlled trials studying IMT have been completed,
all in the COPD patient population (Beaumont et al., 2018;
Charususin et al., 2018b; Schultz et al., 2018). However, while
these studies enrolled 611 (Schultz et al., 2018), 219 (Charususin
et al., 2018b), and 150 patients (Beaumont et al., 2018) patients
respectively, they were all single-center studies. All three studies
found that IMT enhanced respiratory muscle function, and
while one study found reductions in dyspnea symptom scores
during endurance cycling (Charususin et al., 2018b), the other
two found no benefit of IMT on quality of life or dyspnea
(Beaumont et al., 2018; Schultz et al., 2018), and none of the
studies observed improvements in 6-min walk distance. These
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studies suggest that there may not be a positive benefit from
IMT. In contrast, however, a smaller study by some of the same
authors of the large, multicenter randomized controlled trials
found that IMT in COPD patients with low maximal inspiratory
pressures did improve dyspnea and exercise endurance, which
was associated with a reduced diaphragm activation relative to
maximum (Langer et al., 2018). Discrepant findings between
these three studies may be due to a number of factors including
the baseline characteristics of the patients, whether physiological
and perceptual improvements (respiratory muscle function,
dyspnea, etc.) translate into functional improvements, whether
the training protocol provided an adequate training stimulus,
and whether training was sustained for a sufficient time. A key
difference between the three large studies (Beaumont et al.,
2018; Charususin et al., 2018b; Schultz et al., 2018) and the
smaller study (Langer et al., 2018) is how the intervention
and control interventions were provided. In the larger studies
the intervention was general exercise training plus IMT, and
control was general exercise training plus sham IMT, whereas
the smaller study investigated the effect of IMT as a standalone
intervention vs. sham IMT. The second difference is that the
constant work rate endurance test was used as an outcome
in smaller study. Another factor that is frequently overlooked
is that “sham” IMT against relatively low resistances could
have effects on respiratory muscle function especially in frail
populations, such as many older patients with chronic diseases
or patients admitted to the ICU. Thus, questions remain
regarding whether more nuanced and progressive individualized
training prescriptions may produce different outcomes given the
physiological plausibility behind putative IMT benefits. Perhaps
then, it is time to consider adopting new approaches to IMT
research to tailor the right intervention to the right population
and optimize treatment/training effects, and determine whether
there is, or is not, a true benefit of IMT.

CONCLUSION

In summary, despite decades of research on IMT, with some
studies showing clear benefit and others showing no benefit, it
is uncertain why some populations respond to IMT, and some
do not. While there are certainly inherent differences in study
populations and how IMT is being applied (i.e., as a rehabilitative
tool, or for endurance exercise, or team sport exercise), questions
regarding how training prescription has historically been done
and whether that approach truly optimizes the response to IMT
remain. It is time to consider new approaches to IMT that better
match how practitioners in sport and exercise training design and
apply training plans for athletes. By integrating these methods,
such as periodization, better optimization of training load, and
considering other factors, such as concurrent IMT and exercise
training or the lung volumes at which IMT is completed, future
studies may overcome previous shortcomings by providing a
tailored, personalized approach that addresses the needs of the
individual athlete or patient.
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