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The extracellular matrix (ECM) plays important roles in maintaining physiological structure
and functions of various tissues and organs. Cardiac fibrosis is the excess deposition of
ECM, including both fibrillar (collagens I and III) and non-fibrillar proteins. Characteristics of
fibrosis can vary depending on the pathology, with focal fibrosis occurring following
myocardial infarction (MI), and diffuse interstitial and perivascular fibrosis mainly in non-
ischemic heart diseases. Compliance of the fibrotic tissue is significantly lower than the
normal myocardium, and this can compromise the diastolic, as well as systolic
dysfunction. Therefore, strategies to combat cardiac fibrosis have been investigated.
Upon injury or inflammation, activated cardiac fibroblasts (myofibroblasts) produce more
ECM proteins and cause fibrosis. The activation could be inhibited or the myofibroblasts
could be ablated by targeting their specific expressed proteins. Modulation of tissue
inhibitors of metalloproteinases (TIMPs) and moderate exercise can also suppress cardiac
fibrosis. More recently, sex differences in cardiac fibrosis have come to light with differential
fibrotic response in heart diseases as well as in fibroblast functions in vitro. This mini-review
discusses recent progress in cardiac fibroblasts, TIMPs, sex differences and exercise in
modulation of cardiac fibrosis.
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INTRODUCTION

Extracellular matrix (ECM) functions as a structural support, an extracellular reservoir, and an
interstitial transport system (Fan et al., 2014a; Frangogiannis, 2019). Cardiac ECM proteins are
mainly produced by cardiac fibroblasts. Cardiac fibroblasts can be classified into heterogeneous
subsets based on location, origin and by using gene expression through single-cell RNA sequencing
analysis as reviewed in Tallquist (2020). The ECM can be degraded by matrix metalloproteinases
(MMPs) which is controlled by their inhibitors, primarily tissue inhibitors of metalloproteinases
(TIMPs), and the balance of MMPs and TIMPs maintained the ECM homeostasis in physiological
status (Moore et al., 2012), although MMPs can also contribute to fibrosis (Zile et al., 2014; Takawale
et al., 2015). Fibrosis is excess accumulation of fibrillar and non-fibrillar ECM, such as fibrillar
collagen types I and III, fibronectin, as along with upregulation of matricellular proteins such as
secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin (Chute et al., 2019; de
Boer et al., 2019; Frangogiannis, 2019). Two types of myocardial fibrosis can be identified: the
macroscopic focal fibrotic scar, also known as replacement or reparative fibrosis which is observed in
myocardial infarction (MI); and diffuse interstitial and perivascular fibrosis that is generally detected
in hypertrophic, inflammatory, diabetic cardiomyopathy and the surviving myocardium after MI
(Frangogiannis, 2019; Lopez et al., 2021).
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Focal fibrosis plays an important role in cardiac repair post-MI
due to lack of regenerative capacity of cardiomyocytes, which
maintains the structural integrity of the infarcted heart and
prevents it from rupture, however if not controlled, its
expansion into the non-infarct myocardium can exacerbate
post-MI pathology (de Boer et al., 2019; Frangogiannis, 2019).
Fibrosis also compromises myocardial compliance and is
associated with diastolic dysfunction, contributing to a variety
of heart diseases, including heart failure (de Boer et al., 2019;
Frangogiannis, 2019). Therefore, the anti-fibrotic treatment is an
essential treatment in heart diseases; and some drugs, such as
angiotensin-converting enzyme inhibitors, β-blockers, and
transforming growth factor β1 (TGFβ1) inhibitors such as
pirfenidone, have been applied to directly and/or indirectly
target fibrosis (Graziani et al., 2021; Lopez et al., 2021).
Recently, targeting activated cardiac fibroblasts and TIMPs
have been employed to combat cardiac fibrosis (Purcell et al.,
2018; Aghajanian et al., 2019). Fibroblast functions and cardiac
fibrosis can be influenced by sex differences (Peter et al., 2021).
Sex differences also exist in exercise-associated myocardial
fibrosis (Tahir et al., 2018). Therefore, this mini review
provides a summary of new targets as potential treatments
against fibrosis, and focuses on the roles of cardiac fibroblasts,
TIMPs, sex differences, and exercise in modulation of fibrosis in
heart diseases.

TARGETING ACTIVATED CARDIAC
FIBROBLASTS FOR ANTI-FIBROSIS

In response to injury or inflammation, cardiac fibroblasts are
activated and differentiated into myofibroblasts which increase
synthesis and secretion of ECM proteins leading to fibrosis
(Khalil et al., 2017; Fu et al., 2018; Aujla and Kassiri, 2021).
Activated cardiac fibroblasts (myofibroblasts) express some
proteins such as periostin or fibroblast activation protein

(FSP) which have little to no expression in quiescent
fibroblasts (Kaur et al., 2016; Aghajanian et al., 2019). The
FSP was used as a target of engineered chimeric antigen
receptor (CAR)-T cells, and the CAR-T cells could specifically
eliminate the activated fibroblasts, suppress angiotensin II/
phenylephrine-induced cardiac interstitial fibrosis (Table 1),
and improve cardiac function (Aghajanian et al., 2019). The
ablation of periostin-expressing cardiac fibroblasts with
diphtheria toxin in a mouse MI model also reduced excess
fibrosis but did not affect the scar thickness or the integrity of
the infarct heart, and it increased the proportion and size of
cardiomyocytes in the infarct area and improved cardiac function
post-MI (Kaur et al., 2016). However, cardiac fibroblasts were
found to differentiate into profibrotic myofibroblasts by 3–7 days
post-MI, followed by the form of matrifibrocyte which lost
proliferative capacity and alpha-smooth muscle actin
expression but expressed ECM and tendon genes to support
the mature fibrotic scar by 7–10 days post-MI (Fu et al., 2018). A
subtype of antifibrotic myofibroblasts were also identified in the
day 7 post-MI (Farbehi et al., 2019). Therefore, it is promising to
target and eliminate activated cardiac fibroblasts using CAR-T
cells, but the effects may be limited to specific diseases and the
stage of the disease.

The activation of cardiac fibroblasts could also be suppressed
by macrophage-specific deletion of microRNA-21 which
decreased interstitial fibrosis in mice following pressure
overload (Ramanujam et al., 2021). Deletion of microRNA-21
in macrophages increased M2-polarized macrophages, while
decreased M1-like proinflammatory macrophages which might
disrupted the macrophage-to-fibroblast signaling and activation
of cardiac fibroblasts (Table 1) (Ramanujam et al., 2021).
However, during the proliferative phase of MI, CD226
deletion also increased M2-macrophages and decreased M1-
macrophages, but it resulted in accumulation of myofibroblasts
and collagen deposition in the infarct area, with reduced
interstitial fibrosis in the infarct border area though (Li et al.,

TABLE 1 | Selected animal model studies suggesting promising therapeutic strategies to combat cardiac fibrosis.

Approaches Methods Model References

Ablating activated cardiac fibroblasts CAR-T Ang II/phenylephrine treatment in
mice

Aghajanian et al. (2019)

Suppressing activation of cardiac
fibroblasts

Macrophage specific deletion of microRNA-21 pressure overload in mice Ramanujam et al. (2021)

Targeting TGFβ1 TGFβ1-neutralizing antibody (1D11) pressure overload in mice Kassiri et al. (2009)
MMP inhibition PD166793 pressure overload in mice Kassiri et al. (2005), Kandalam et al.

(2011)
Reduction of MT1-MMP expression pressure overload in mice Zile et al. (2014)

TIMPs Deletion of TIMP1 pressure overload, Ang II treatment
in mice

Takawale et al. (2017b)

TIMP2-contained exosomes Myocardial infarction in mice Ni et al. (2019)
Intracoronary infusion of rTIMP3 ischemia-reperfusion in pigs Barlow et al. (2017)
Myocardial injection of MMP-responsive hydrogel
releasing rTIMP3

Myocardial infarction in pigs Purcell et al. (2018)

Cardiac-restricted overexpression of TIMP4 Pressure overload in mice Yarbrough et al. (2014)
Exercise Moderate-intensity exercise training Aging in mice Pei et al. (2021)

Exercise hypertrophic preconditioning Pressure overload in mice Lin et al. (2021)

Ang II, angiotensin II; CAR-T, chimeric antigen receptor T-cells; MMP, matrix metalloproteinase; MT1-MMP, membrane type 1-MMP; rTIMP3, recombinant tissue inhibitor of
metalloproteinase-3; TGFβ1, transforming growth factor β1.
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2020). Therefore, the regulation of macrophages has different role
in the state of cardiac fibroblasts and fibrosis but is beneficial to
these two animal models, while the genes deleted were different
which might partly cause the difference.

It has also been demonstrated that the activities of
myofibroblasts can be terminated during normal tissue repair
in the ways such as deactivation, apoptosis and immune clearance
of senescent myofibroblasts (Hinz and Lagares, 2020; Merkt et al.,
2021). Myofibroblasts Express higher levels of pro-apoptotic
molecules such as BCL-2 family member BIM than the
quiescent fibroblasts and prime for apoptosis, but they could
evade apoptosis by activating pro-survival signals such as TGFβ1
(Piek et al., 2016; Hinz and Lagares, 2020; Merkt et al., 2021).
Myofibroblasts can also become senescent, and accumulation of
pro-fibrotic senescent myofibroblasts can result in progressive
fibrosis. However, senescence can also keep the cells in a cell cycle
arrest as a protective mechanism against tumorigenesis through
senescence-activating signaling pathways including cyclin-
dependent kinase inhibitors p53 and p21 (Hinz and Lagares,
2020). Inhibition of TGFβ1 activation or promotion of apoptosis
have been investigated to target myofibroblasts as anti-fibrotic
strategies, especially in lung fibrosis and skin scarring (Hinz and
Lagares, 2020).

TIMPS AND CARDIAC FIBROSIS

Besides secreting ECM proteins, cardiac fibroblasts can produce
ECM degrading enzymes (MMPs) and their inhibitors, TIMPs
(TIMP1, TIMP2, TIMP3, and TIMP4) (Fan et al., 2012; Takawale
et al., 2015). MMPs, a family of zinc-dependent proteolytic
enzymes, can be separated into six groups according to their
structure and substrates, including collagenases (MMP1, −8,
−13), gelatinases (MMP2, −9), stromelysins (MMP3, −10,
−11), metrilysins (MMP7, −26), membrane type MMPs (MT-
MMPs, MMP14, −15, −16, −24, −17, and −25), and other MMPs
(Takawale et al., 2015). TIMPs can bind and inhibited activated
MMPs, but TIMP2 can also bind to proMMP2 and form the
MT1-MMP-TIMP2-proMMP2 complex which assists the
cleavage and activation of proMMP2 by a second MT1-MMP
at the cell surface (Strongin et al., 1995; Jackson et al., 2017).
TIMPs can also interact with other proteins and molecules to
regulate cardiac fibrosis, hypertrophy, and angiogenesis (Moore
et al., 2012; Takawale et al., 2015; Jackson et al., 2017).

TIMP1 as an Anti-Fibrosis Target
An increase in TIMP1 expression has been consistently linked to
cardiac fibrosis (Moore et al., 2012). In the heart, TIMP1 can bind
to its receptor CD63 and mediate its association with integrin β1,
followed by activation of Smad2/3 and β-catenin, and
subsequently promoting collagen production and cardiac
fibrosis (Takawale et al., 2017b). Deletion of TIMP1
suppressed mouse myocardial fibrosis induced by transverse
aortic constriction (TAC) or angiotensin II (Table 1), which
might be caused by disrupting the interaction of CD63 and
integrin β1 (Takawale et al., 2017b). Therefore, deletion of
TIMP1 showed anti-fibrotic effect in these two mouse models,

which remains to be confirmed in large animal models and in
humans.

TIMP2 and Cardiac Fibrosis
TIMP2 is a potent inhibitor of MT1-MMP, a well-known
collagenase that is upregulated in heart disease (Takawale
et al., 2014). Loss of TIMP2 (Timp2−/−) leads to severe
myocardial interstitial fibrosis and disorganization of ECM in
mice following pressure overload compared to wild-type (WT)
mice (Kandalam et al., 2011). These mice exhibited non-uniform
ECM remodeling with increased ECM degradation in some areas
and excess fibrillar deposition in other areas of the myocardium
despite comparable mRNA expression of collagen I and III
compared to parallel WT mice (Kandalam et al., 2011). The
increased collagen degradation could be caused by higher
collagenase activities, especially MT1-MMP, in the absence of
TIMP2 (Kandalam et al., 2011). Interestingly, despite its strong
collagenase activities, MT1-MMP overexpression has been
reported to promote cardiac fibrosis through activation of
TGFβ by mediating its proteolytic release from its latent form
in the ECM (Zile et al., 2014). Therefore, the contribution of
MT1-MMP to fibrosis appears to be a balance between its
collagen-degrading and TGFβ-activating functions. General
inhibition of MMPs with PD166793 decreased the total
collagenase activity, as well as MT1-MMP activity, and
reduced cardiac interstitial fibrosis in Timp2−/−-TAC mice
(Table 1) (Kandalam et al., 2011), which is consistent with the
finding that reduction of MT1-MMP expression suppressed
cardiac fibrosis and improved cardiac function in mice after
pressure overload (Table 1) (Zile et al., 2014). In contrast
to the pro-fibrosis effects of TIMP2-deficiency in response to
the mechanical stress induced by pressure overload,
pharmacological induction of fibrosis by angiotensin II
infusion resulted in suppressed cardiac fibrosis in
Timp2−/− mice, which was found to be linked to decreased
collagen cross-linking proteins PLOD1 and LOX (Fan et al.,
2014b). Therefore, the role of TIMP2 in cardiac fibrosis
depends on the type of injury or stimulus.

In a mouse MI model, lack of TIMP2 resulted in augmented
degradation and disorganization of collagen fibers, which might
be caused by elevated total collagenase activity (mainly MT1-
MMP) (Kandalam et al., 2010b). Exosomes derived from TIMP2-
overexpressing human umbilical cord mesenchymal stem
cells can reduce both myocardial fibrosis and apoptosis of
myocytes, and enhance angiogenesis in mice after 30 days
post-MI (Ni et al., 2019). The TIMP2-contained exosomes
could inhibit the proliferation and activation of cardiac
fibroblasts (Ni et al., 2019), which may mediate its anti-
fibrotic effects. However, local myocardial injection of
adenovirus expressing TIMP2 had no significant effect on
cardiac fibrosis following MI; although it suppressed the
expression and activity of MMP2 and MMP9, infiltration
of inflammatory cells, and improved the survival rate and
cardiac function to some extent up to 7 days post-MI
(Ramani et al., 2011). It is worthy to investigate whether
overexpression of TIMP2 could counter fibrosis expansion
post-MI over long-term.
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TIMP3 and Anti-Fibrosis Effects
TIMP3 has a wide range of inhibitive substrates and interactive
molecules (Moore et al., 2012; Fan and Kassiri, 2020). Deficiency
of TIMP3 led to extensive cardiac fibrosis through activation of
TNF-α, TGFβ1 and downstream molecules Smad2/3 after
pressure overload in mice, which could be inhibited by a
TGFβ1 neutralizing antibody (Table 1) (Kassiri et al., 2005;
Kassiri et al., 2009). Deletion of TIMP3 also exacerbated
myocardial fibrosis induced by angiotensin II (Fan et al.,
2014b). The excessive cardiac fibrosis is caused by stabilization
of collagen fibers due to increased SPARC and osteopontin,
without significant changes in collagen de novo synthesis (Fan
et al., 2014b). However, deficiency of TIMP3 reduced collagen
density following MI, leading to increased cardiac rupture and
mortality which was reduced by inhibition of total MMPs
(Kandalam et al., 2010a; Hammoud et al., 2011). Therefore,
lack of TIMP3 has different roles in cardiac fibrosis in
different animal models.

Overexpression of TIMP3 in infarct myocardium suppressed
MMP activity, degradation and disorganization of collagen fibers,
while also promoting angiogenesis post-MI (Takawale et al.,
2017a). As MMP activities increase following MI,
intracoronary- and MMP-degradable hydrogel-mediated
supplementation of TIMP3 protein suppressed the activation
of fibroblasts and cardiac fibrosis in pig ischemia/reperfusion
(I/R) or MI models, and improved cardiac function in both
models (Table 1) (Barlow et al., 2017; Purcell et al., 2018). On
the other hand, the N-terminus of TIMP3 molecule with
preserved MMP-inhibitory activity did not affect the collagen
accumulation in a pig MI model, but the full-length TIMP3
reduced myocardial fibrosis (Lobb et al., 2020). Therefore, MMP-
independent functions of TIMP3 are involved in its anti-fibrotic
functions in the heart. A noninvasive imaging approach with
single-photon emission computed tomography (SPECT)/CT is
also explored in a pig I/R model to monitor the activation of
MMPs, myocardial blood flow and strain (Thorn et al., 2019). It
facilitates the targeted and timely application of TIMP3 in I/R or
MI models and observation of therapeutic effects.

TIMP4 and Cardiac Fibrosis
TIMP4 is expressed in a variety of organs and highly expressed in
the brain and heart (Nuttall et al., 2004). Loss of TIMP4 had no
significant effect on descending aortic binding-induced cardiac
fibrosis in male mice, but enhanced cardiac fibrosis in a TAC
model with both sex which could be reduced by overexpression of
TIMP4 (Table 1) (Koskivirta et al., 2010; Yarbrough et al., 2014),
suggesting an anti-fibrotic function for TIMP4. On the other
hand, lack of TIMP4 decreased the intensity of collagen
fibers and the survival rate following MI which could be
alleviated by inhibition of MMPs or overexpression of
TIMP4 in the mouse MI model (Koskivirta et al., 2010;
Zavadzkas et al., 2014). However, deficiency of TIMP4
enhanced myocardial fibrosis in the I/R model which was
linked to increased MT1-MMP activity and activation of
TGFβ signaling (Takawale et al., 2014). Therefore, the roles
of TIMP4 in cardiac fibrosis may vary with animal models
and the sex. Recent reports also demonstrated that there

were sex differences in cardiac fibrosis which are discussed
in the following section.

SEX DIFFERENCES IN FIBROBLAST
FUNCTION AND CARDIAC FIBROSIS

Male patients with severe aortic stenosis awaiting valve
replacement had more cardiac fibrosis detected by late
gadolinium enhancement (LGE)+ and indexed matrix volume
in cardiac magnetic resonance (CMR) imaging and lower left
ventricle ejection fraction than female patients (Treibel et al.,
2018). However, it has also been reported that female patients
with mild to severe aortic stenosis had more diffuse but similar
focal cardiac fibrosis (LGE) compared to male patients (Tastet
et al., 2020). The difference between these two studies may be
caused by the different severity of aortic stenosis in the patient
population. Female patients with hypertrophic cardiomyopathy
also exhibited more cardiac fibrosis detected by Picro-Sirius Red
staining in cardiac tissue obtained during myectomy or heart
transplantation than male patients (Nijenkamp et al., 2020).
Therefore, there are some discrepancy in cardiac fibrosis
reports between male and female patients which needs more
comparative investigations.

In animal models, there was no significant difference in
cardiac fibrosis between female and male mice after acute
(single dose of isoproterenol 10 mg/kg) or chronic adrenergic
stimulation (infusion of isoproterenol 10 mg/kg/day for 14 days)
(Grant et al., 2020). However, a recent study found that male rats
developed cardiac fibrosis in response to isoproterenol
stimulation (4 mg/kg/day) while the females did not (Peter
et al., 2021). The male rats also exhibited severer cardiac
hypertrophy and mortality than the females. Gonadectomy did
not change cardiac fibrotic response in both sex of rats in
response to isoproterenol treatment, therefore, the sex
hormones did not appear to be the determinants of cardiac
fibrosis although ovariectomized female rats with isoproterenol
had increased mortality (Peter et al., 2021). Interestingly, the
cardiac fibroblasts from male rats were found to have higher
levels of adrenergic receptors β1 and β2 than the female
fibroblasts, which could be responsible for a stronger
activation of male cardiac fibroblasts in response to
isoproterenol stimulation compared to female fibroblasts
(Peter et al., 2021). Therefore, cardiac fibroblasts from
different sexes may respond to injuries or stimulation
differently, and the sex-related differences in cardiac fibrosis
induced by isoproterenol may also vary with species and doses
which demand further comparative studies. In an aging model,
cardiac fibrosis exhibits different patterns between female and
male mice (Achkar et al., 2020). More interstitial fibrosis, but less
perivascular and replacement fibrosis were detected in aged
female compared to aged male hearts (Achkar et al., 2020). It
was further found that collagen III is predominant in female
hearts but collagen I in male hearts (Achkar et al., 2020).
Therefore, targeting cardiac fibrosis in the aging animal model
or patients should be approached with consideration to these sex-
dependent differences.
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EXERCISE AND MYOCARDIAL FIBROSIS

The sex difference also exists in exercise-related cardiac fibrosis.
Endurance exercise was found to be associated with myocardial
fibrosis based on LGE+ in CMR imaging in male triathletes aged 45 ±
10 years, but not in female athletes (Tahir et al., 2018; Tahir et al.,
2020). The triathletes with myocardial focal fibrosis (LGE+) were also
older than LGE-athletes (Tahir et al., 2018; Tahir et al., 2020).
However, even in young athletes, high blood pressure response to
exercise is associatedwith higher incidence of developing hypertension
(Caselli et al., 2019). But lifelong exercise has been found capable to
reduce cardiac stiffness in human (Carrick-Ranson et al., 2019). A
recent animal study found that moderate-intensity exercise training
but not high-intensity interval training reduced cardiac fibrosis
(Table 1) and oxidative stress, improved cardiac function in aged
(32-week-old) male mice (Pei et al., 2021). Exercise hypertrophic
preconditioning in mice could also alleviate cardiac fibrosis (Table 1),
hypertrophy and dysfunction at 1 week and 4 weeks post-TAC (Lin
et al., 2021). Therefore,moderate exercise can decrease cardiac fibrosis,
but endurance exercise can induce cardiac fibrosis to some extent
which may be related to the sex, age, and the exercise intensity.

FUTURE PERSPECTIVES AND
CONCLUSION

Cardiac fibrosis is an adverse pathological process leading to
cardiac dysfunction and heart failure, except some protective role

in the infarct heart. Combating myocardial fibrosis can be
achieved by inhibiting the activation of cardiac fibroblasts
(myofibroblasts), modulation of TIMPs, and moderate
exercise. However, the activated cardiac fibroblasts have
different subtypes and vary with different heart diseases and
disease stages which may hamper the antifibrotic effect by
targeting these cells and it needs further investigation in a
long term and in human disease. Supplementation of TIMPs
has multiple benefits including modulation of fibrosis, promoting
angiogenesis and suppressing inflammatory response in animal
MI models. Despite many promising experimental discoveries,
currently no clinical anti-fibrosis treatment is available.
Importantly, sex differences in different types and stages of
heart diseases should also be considered in developing anti-
fibrosis therapies.
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