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Abstract

Introduction

Inflammation plays a major role in the development of atherosclerosis and cardiovascular

morbidity and mortality in chronic kidney disease (CKD) patients. Toll-like receptor-4 (TLR4)

is a major receptor for lipopolysaccharides (endotoxin) and other ligands involved in the

pathogenesis of inflammation. We determined whether endotoxin levels and the presence

of TLR4 polymorphisms are associated with markers of inflammation and atherosclerosis

among South African CKD patients.

Materials and methods

Endotoxin, lipopolysaccharide binding protein (LBP), serum CD14 (sCD14), interleukin-8

(IL-8), monocyte chemoattractant protein-1 (MCP-1) and carotid intima media thickness

(CIMT) were measured in 160 participants (120 CKD patients and 40 controls). Associations

between endotoxins and CIMT in the presence of sCD14, IL-8 and MCP-1, were assessed

using odds ratios. Participants were screened for the presence of Asp299Gly and Thr399Ile

TLR4 polymorphisms, and CIMT and inflammatory markers were compared between sub-

jects with and without TLR4 polymorphisms.

Results

Endotoxin levels correlated with sCD14 (r = 0.441, p<0.001) and MCP-1 (r = 0.388,

p<0.001) levels while increased CIMT was associated with MCP-1 (r = 0.448, p<0.001),

sCD14 levels (r = 0.476, p<0.001), LBP (r = 0.340, p<0.001), and IL-8 (r = 0.395, p<0.001).

Atherosclerosis was associated with endotoxin levels (odds ratio: 4.95; 95% confidence

interval: 2.52–9.73; p<0.001), and was predicted by higher serum levels of inflammatory
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markers. Analysis of patients with TLR4 polymorphisms showed reduced serum levels of

inflammatory markers and CIMT values compared with the patients carrying the wild type

TLR4 alleles.

Conclusion

The study demonstrated associations between circulating endotoxaemia, systemic inflam-

mation and accelerated atherosclerosis among South African CKD patients, and showed

that the atherogenic predictive power of endotoxaemia was significantly increased by the

presence of elevated levels of inflammatory markers. Additional findings, which must be

confirmed, suggest that TLR4 polymorphisms are associated with low levels of inflammatory

markers and CIMT values.

Introduction

Atherosclerosis is increasingly being recognized as a chronic inflammatory condition and

inflammatory mediators are thought to play a role in the pathogenesis of atherosclerosis [1–6].

Previous studies have shown that elevated endotoxin levels are associated with a risk of athero-

sclerosis [1, 7, 8]. Available evidence suggests that endotoxin may promote accelerated athero-

sclerosis through its ability to induce factors that play an important role in the endotoxin

signalling pathway leading to a persistent chronic inflammatory state [9–11]. Circulating

endotoxin binds to lipopolysaccharide binding protein (LBP), which facilitates binding of lipo-

polysaccharide (LPS) to soluble CD14 (sCD14) via toll-like receptor adaptor molecules, result-

ing in the downstream activation of nuclear factor- κB (NF-κB) and production of pro-

inflammatory mediators [12–14].

Circulating endotoxaemia portends harmful outcomes both on cardiovascular function and

structure, thus driving systemic inflammation, oxidative stress and atherogenesis [15]. Sub-

clinical endotoxaemia significantly contributes to systemic inflammation, and thus, is a strong

risk factor for atherosclerosis and cardiovascular disease [1]. Although, previous studies have

evaluated the association of circulating endotoxaemia with accelerated atherosclerosis, none of

these studies were carried out among indigenous black CKD patients with attendant high car-

diovascular risk [2, 7].

Toll-like receptor-4 (TLR4) is a major receptor for LPS (endotoxin) and other ligands

potentially involved in the pathogenesis of inflammation and vascular remodeling [16–20].

TLR4 is expressed by endothelial cells and monocytes, and its levels are markedly increased in

atherosclerotic lesions, particularly in macrophages and endothelial cells [21, 22]. The respon-

siveness of an individual to LPS via the TLR4 signaling cascades provides an efficient innate

immunity, which offers initial benefit but portends chronic vascular damage and increased

risk of future atherosclerosis [16, 18].

Two common co-segregating missense mutations, A896G and C1196T resulting in the

replacement of aspartic acid by glycine at amino acid position 299 (Asp299Gly) and the substi-

tution of threonine by isoleucine at amino acid position 399 (Thr399Ile), respectively, have

been identified in the human TLR4 gene [23]. These polymorphisms have been linked with

endotoxin hypo-responsiveness and reduced risk of atherogenesis [13].

Although the TLR4 Asp299Gly polymorphism has been associated with reduced CIMT and

lower serum levels of inflammatory cytokines in healthy populations, and reduced risk of
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myocardial infarction in Caucasians [16, 24, 25], to date, these studies have provided diverse

results on the role of the TLR4 polymorphisms in the development of atherosclerosis [16, 24–

30]. In addition, associations between TLR4 polymorphisms and susceptibility for atheroscle-

rosis have not been previously investigated in CKD patients of African ancestry. In this study

we determined the relationship between endotoxin-related inflammation and severity of ath-

erosclerosis in South African CKD patients. Additionally, genotyping of TLR4 variants

(Asp299Gly and Thr399Ile) was employed to investigate whether genetic variants of TLR4

were associated with reduced inflammatory response and susceptibility for atherosclerosis

among indigenous black CKD cohorts.

Materials and methods

The study included 120 CKD patients managed at the Charlotte Maxeke Johannesburg Aca-

demic Hospital (CMJAH). Forty age- and gender-matched black Africans who were staff and

students at CMJAH were recruited as controls. Exclusion criteria included clinical signs of

active or chronic infection, diabetes mellitus, seropositive status for hepatitis B, C and human

immunodeficiency virus (HIV), autoimmune disease, liver dysfunction, malignancy, heart fail-

ure (New York Heart Association; NYHA III-IV) and use of anti-inflammatory or immuno-

suppressive therapy at least three months prior to enrolment. Information regarding age, race

and tobacco smoking were documented. Blood pressure was recorded at the time of clinic vis-

its in the arm with an Accusson mercury sphygmomanometer whilst the patient was in the sit-

ting position. The average of three readings, 5 minutes apart, was taken as the blood pressure

measurement. Mean arterial blood pressure (MABP) was calculated as diastolic blood pressure

plus one third pulse pressure. Waist and hip circumferences were assessed using a tape mea-

sure. Waist-hip ratio (WHR) was calculated as waist measurement divided by hip measure-

ment. This study was approved by the University of the Witwatersrand Human Research

Ethics Committee (Protocol M130127).

Blood sample collection and preparation

Blood for measurement of endotoxin and other inflammatory markers was collected into anti-

coagulant-free tubes after an overnight fast. Blood samples were allowed to clot at room tem-

perature. Serum samples were separated within 30 minutes by centrifugation at 3000 rpm for

10 minutes, transferred into fresh polypropylene tubes and immediately frozen at −80ºC until

ready for assay. Serum calcium, phosphate, creatinine and lipid profile were assayed using

AdviaR 1800 auto-analyzers (Siemens Healthcare Diagnostics Inc, USA).

Endotoxin levels

Using previously described methods [31], serum endotoxin was quantified using the Limulus

amebocyte lysate QCL-1000TM assay (Lonza Walkersville, USA) according to manufacturer’s

instructions.

Lipopolysaccharide binding protein concentrations

Serum levels of LBP were measured using a commercial human LBP ELISA kit, Hycult HK315

(Hycult biotechnology, Uden, the Nertherlands) according to manufacturer’s protocol. Absor-

bance was measured using an ELx800 Universal plate reader (BioTek Instruments, Inc, VT,

USA).
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Serum sCD14, IL-8 and MCP-1 concentrations

Serum sCD14, IL-8 and MCP-1 assays were analyzed using Luminex1 Performance Assay

multiplex kits (R&D Systems, Inc. Minneapolis, USA). Assays were in accordance with the

manufacturer’s instructions. Data were acquired on the Bio-PlexTM 200 system (Bio-Rad,

Texas, USA). Fluorescence intensity for MCP-1, IL-8 and sCD14 were read in the bead region

53, 54 and 59 respectively, and concentrations generated automatically using Bio-Plex man-

ager software, version 5.0 (Bio-Rad Laboratories Inc, Hercules, USA).

DNA extraction and TLR4 genotyping

Genomic DNA was extracted from whole blood using a modified salting out method [32] and

the concentrations determined using a NanoDrop™ spectrophotometer (Thermo Scientific,

Massachusetts, USA). The TLR4 Asp299Gly and Thr399Ile polymorphisms were determined

by utilizing polymerase chain reaction (PCR) which was performed for amplification using

optimised primers sets (TLR4-299; Forward: 5’-GAT TAG CAT ACT TAG ACT ACT
ACC TCC ATG-3’, Reverse: 5’-GAT CAA CTT CTG AAA AAG CAT TCC CAC-3’
and TLR4-399; Forward: 5’-GGT TGC TGT TCT CAA AGT GAT TTT GGG AGA A-3’,

Reverse: 5’-ACC TGA AGA CTG GAG AGT GAG TTA AAT GCT-3’). The PCR was per-

formed using KAPA2G Robust HotStart Ready Mix PCR Kit (Kapa Biosystems, Massachu-

setts, USA) as per the manufacturer’s protocol. The PCR was run on a thermocycler (MJ Mini

Thermal cycler, Bio-Rad, USA) according to manufacturer’s instructions. The PCR conditions

were 3 mins of denaturation at 94˚C, followed by 40 cycles (95˚C for 15 secs, 60˚C for 15 secs,

and 72˚C for 30 secs), and finally 72˚C for 60 secs. The PCR products for Asp299Gly and

Thr399Ile alleles were digested with restriction enzymes NcoI (5’-C/CATGG-3’) and HinfI
(5’-G/ANTC-3’) respectively [33]. All the PCR products were visualized on a 2% agarose

gel stained with ethidium bromide, with the aid of an image analyser (Gel DocTM EZ Imager,

Bio-Rad, USA). All genotypes were assigned by independent investigators who were blinded

to the results of CIMT measurements and markers of immune activation of the participants.

Carotid intima media thickness

Carotid intima media thickness was assessed using high resolution B-mode ultrasonography

with the aid of a L3-11 MHz linear array transducer (Philips Corporation USA) as previously

described [34]. The CIMT was measured in plaque-free areas and all measurements were per-

formed by the same sonographer who was blinded to the clinical details, laboratory data and

results from the genetic analyses of the participants.

Data analysis

Data analyses were performed using the statistical package for social sciences (SPSS) 16 (SPSS,

Inc., Chicago IL). Data were presented as means ± SD or medians and interquartile ranges

(IQR), where appropriate. Categorical data were compared using chi-square test and continu-

ous data using student t-test or Mann-Whitney test. Correlation between continuous variables

was examined by the Spearman’s rank correlation coefficient. Further analysis was performed

after categorising endotoxin levels into two groups (cut-off value of 0.5 EU/ml). The categori-

sation of endotoxin levels (� 0.5 EU/ml and> 0.5 EU/ml) was adopted from a previous study

[2]. In addition, CIMT measurements, sCD14, IL-8 and MCP-1 concentrations were subdi-

vided into two groups according to the median values. Subclinical atherosclerosis was defined

as CIMT > 0.55 mm. Association between endotoxin and atherosclerosis was assessed using

logistic regression analysis.
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To determine whether the baseline IL-8 or MCP-1 or sCD14 levels were an effect modifier

of the relationship of circulating endotoxin to subclinical atherosclerosis, we performed a strat-

ified multivariable logistic regression analysis, aimed at estimating the atherogenic predictive

power of endotoxin in the presence of immune mediators, including IL-8, MCP-1 and sCD14.

The models were adjusted for age, blood pressure, smoking, eGFR and cholesterol. Genotype

frequencies were compared using Fisher’s exact test. A Mann-Whitney test was used to com-

pare levels of markers of inflammation between patients with wild-type TLR4 and those with

Asp299Gly allele alone, as well as those with combined TLR4 mutant alleles. A p-value<0.05

was regarded as statistically significant.

Results

The patients’ characteristics and laboratory data are summarized in Table 1. At baseline, 22.5%

and 23.3% of the CKD patients received angiotensin-II receptor blockers/angiotensin-convert-

ing enzyme inhibitors and statins, respectively. Endotoxin concentrations in CKD patients

were significantly higher than that of the controls (p<0.001). Carotid intima media thickness

was significantly higher among CKD patients compared to the controls (p<0.001). There were

no significant differences in the CIMT values between patients who were treated with ACEI/

ARB/statins and those who did not received the treatment [ACEI/ARB: 0.56 (0.49–0.63) vs

0.56 (0.50–0.65), p = 0.566; statins: 0.58 (0.52–0.68) vs 0.55 (0.49–0.63), p = 0.154]. According

to the American Society of Echocardiography, 25% of CKD patients had high CVD risk

(CIMT values�75th percentile), 46% of patients had average risk for CVD (CIMT values in

the 25th to 75th percentile), while 29% of patients presented with CIMT values lower than 25th

percentile, considered lower CVD risk.

Table 1. Demographic, clinical and laboratory data of the study population.

Parameter Patients (N = 120) Control (N = 40) P value

Age (years; mean ± SD) 41.1 ± 10.2 42.2 ± 10.1 0.573

Sex (Male/Female) 64/56 22/18 0.709

Smoking (Yes/No) 17/103 2/38 0.121

MABP (mmHg) 134.8 (118.8–150.0) 117.0 (107.8–130.6) <0.001

Waist-Hip ratio 0.91 (0.87–0.96) 0.88 (0.83–0.93) 0.122

eGFR (ml/min/1.73m2) 9.0 (4.0–44.0) 96.5 (83.0–119.0) <0.001

Total cholesterol (mmol/L) 4.20 (3.43–5.18) 4.00 (3.33–4.88) 0.519

HDL (mmol/L) 1.20 (0.90–1.40) 1.25 (1.03–1.40) 0.421

LDL (mmol/L) 2.30 (1.80–3.00) 2.20 (1.60–2.98) 0.456

TG (mmol/L) 1.20 (0.80–1.70) 0.95 (0.63–1.60) 0.172

Endotoxin (EU/ml) 0.54 (0.37–0.73) 0.33 (0.26–0.41) <0.001

LBP (μg/ml) 131 (104–165) 91 (76–110) <0.001

sCD14 (μg/ml) 1.74 (1.35–2.25) 1.15 (1.04–1.41) <0.001

LBP/sCD14 ratio 78.9 (65.4–91.6) 70.9 (60.0–95.4) 0.987

IL-8 (pg/ml) 8.92 (5.06–21.12) 4.69 (3.14–7.21) <0.001

MCP-1 (pg/ml) 9.00 (4.88–16.75) 3.63 (2.22–7.09) <0.001

CIMT (mm) 0.56 (0.50–0.64) 0.46 (0.42–0.51) <0.001

MABP, mean arterial blood pressure; eGFR, estimated glomerular filtration rate (CKD-EPI); HDL, high density lipoprotein; LDL, low density lipoprotein; TG,

triglyceride; LBP, lipopolysaccharide binding protein; sCD14, serum CD14I; IL-8, interleukin-8; MCP-1, monocyte chemoattractant protein-1. Result analyzed using

Mann-Whitney test, with Chi-Square test for nonparametric data. Continuous data were expressed as mean ± SD or median (IQR) and categorical data as percentages.

https://doi.org/10.1371/journal.pone.0232741.t001
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Endotoxin levels, inflammatory markers and CIMT

Endotoxin levels showed a positive correlation with sCD14 (r = 0.441, p<0.001) and MCP-1

(r = 0.388, p<0.001). Serum LBP showed a positive correlation with sCD14 (r = 0.605,

p<0.001) and MCP-1 (r = 0.429, p<0.001). Carotid intima media thickness was also associated

with MCP-1 (r = 0.448, p<0.001), sCD14 levels (r = 0.476, p<0.001), LBP (r = 0.340,

p = 0.001), and IL-8 (r = 0.395, p<0.001). Eight patients had carotid plaques; and endotoxin

levels were significantly higher among patients with carotid plaques compared to those with-

out plaques (median 0.75 EU/ml; IQR 0.49–1.06 EU/ml versus median 0.53 EU/ml; IQR 0.33–

0.71 EU/ml, p = 0.002).

Atherosclerotic risk and inflammatory markers

Overall, circulating endotoxin levels were associated with increased risk of atherosclerosis

[odds ratio: 4.95; 95% confidence interval: 2.52–9.73; p<0.001], with a more than four-fold

increase in the risk of subclinical atherosclerosis among those with high endotoxin levels (> 0.5

EU/ml) compared with the reference group of patients with low endotoxin levels (� 0.5 EU/

ml). Table 2 displays the results of the logistic regression analysis examining the association of

subclinical atherosclerosis with combinations of endotoxin and IL-8 or MCP-1 or sCD14 stra-

tum. In the fully adjusted model, patients with coexisting high endotoxin levels and high IL-8

levels or MCP-1 or sCD14 presented with significantly elevated risks of atherosclerosis. How-

ever, the risk of atherosclerosis in patients with high endotoxin levels was not influenced by

the presence of high IL-8 or MCP-1 or sCD14 levels. Likewise, the risk of atherosclerosis in

patients with low endotoxin levels was not influenced by exposure to high levels of IL-8 or

MCP-1 or sCD14.

TLR4 genotype distribution

The TLR4 Asp299Gly and Thr399Ile alleles were successfully genotyped in all, except for 4 of

the samples in CKD patient group. Co-segregation of the Asp299Gly and Thr399Ile alleles was

observed in 5 patients and 1 control, while 4 subjects (2 patients and 2 controls) had an isolated

Asp299Gly polymorphism. The genotype distribution of wild-type TLR4 (AA genotype) did

not show a significant difference among the patients and control subjects (93.9% vs 92.5%;

P = 0.497). The occurrence of the G alleles was low (Table 3).

The heterozygous Asp299Gly (AG) allele was present in 7 patients and 3 controls, with

minor allele frequency (MAF) of 3% and 3.8% respectively. The frequency of the variant geno-

type (CT) for TLR4 Thr399Ile allele was 4.3% in the patients and 2.5% in controls (MAF 2.2%

and 1.3% respectively), whereas the CC genotype was prevalent in both the patient (96%) and

control (98%) groups. The TLR4 Thr399Ile allele was present in only 6 of the genotyped sub-

jects. The genotype of TLR4 polymorphisms in the studied population was in Hardy-Weinberg

equilibrium (Asp299Gly: χ2 = 0.113; P = 0.736 for patients and χ2 = 0.061; p = 0.805 for con-

trols; Thr399Ile: χ2 = 0.056; P = 0.812 for patients and χ2 = 0.006; P = 0.936 for controls). The

GG and TT genotypes for Asp299Gly and Thr399Ile alleles, respectively, were not detected in

the studied population.

TLR4 polymorphisms, inflammatory markers and CIMT

Compared with the carriers of the wild-type TLR4, CKD patients with only the Asp299Gly

allele and those with the combined Asp299Gly/Thr399Ile alleles had significantly lower serum

levels of inflammatory markers and reduced CIMT values (Table 4). However, no association

was observed between TLR4 polymorphisms and traditional risk factors for atherosclerosis.
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Discussion

We demonstrated that serum levels of inflammatory markers were markedly elevated in CKD

patients compared with the controls, and positively correlated with CIMT, a surrogate marker

of atherosclerosis. Furthermore, in support of previous studies that showed that LBP (marker

of circulating endotoxaemia) was an independent predictor of atherosclerosis, this present

study also established an association between elevated LBP levels and CIMT [35, 36]. Taken

together, these findings indicate that low-grade inflammation is related to atherogenesis, and

as previously reported may trigger a cascade of accelerated atherosclerosis in CKD patients [2].

In addition, we demonstrated that risk of atherosclerosis was associated with circulating

endotoxaemia, and further analysis revealed that the risks were predicted by elevated levels of

inflammatory markers suggesting that the severity of systemic inflammation plays a critical

role in predicting the atherogenic potential of circulating endotoxaemia in CKD patients. This

Table 2. Association of interleukin-8, monocyte chemoattractant protein-1 and serum CD14 levels with risk of early atherogenesis.

Categories Serum concentration of immune

mediators (Median; IQR)

Patients with subclinical

atherosclerosis

Odds ratio (95%

CI)

P value Adjusted Odds ratio�

(95% CI)

P value

Interleukin-8

Endotoxin� 0.5 EU/ml

Interleukin-8� 7.99

pg/ml

4.8 (3.8–6.5) 14/36 1.0 (Reference

group)

1.0 (Reference group)

Interleukin-8 > 7.99

pg/ml

17.5 (10.5–38.8) 11/19 3.7 (1.0–13.7) 0.047 2.3 (0.5–11.1) 0.307

Endotoxin > 0.5 EU/ml

Interleukin-8� 7.99

pg/ml

4.6 (3.6–6.5) 9/20 2.3 (0.7–7.4) 0.152 1.9 (0.5–7.4) 0.341

Interleukin-8 > 7.99

pg/ml

20.9 (13.4–122.8) 36/45 11.5 (4.3–31.2) <0.001 8.5 (2.7–26.3) <0.001

MCP-1

Endotoxin� 0.5 EU/ml

MCP-1� 8.46 pg/ml 4.4 (2.1–6.6) 13/36 1.0 (Reference

group)

1.0 (Reference group)

MCP-1 > 8.46 pg/ml 15.1 (11.4–18.9) 12/19 6.0 (1.7–21.2) 0.007 3.4 (0.8–15.6) 0.113

Endotoxin > 0.5 EU/ml

MCP-1� 8.46 pg/ml 5.8 (4.1–6.6) 9/21 3.0 (0.9–9.6) 0.064 2.3 (0.6–8.5) 0.213

MCP-1 > 8.46 pg/ml 15.6 (10.8–20.1) 36/44 15.6 (5.4–45.2) <0.001 11.8 (3.5–40.5) <0.001

Serum CD14

Endotoxin� 0.5 EU/ml

Serum

CD14� 1.7 μg/ml

1.2 (1.0–1.4) 16/39 1.0 (Reference

group)

1.0 (Reference group)

Serum

CD14 > 1.7 μg/ml

2.1 (1.9–2.4) 9/16 2.2 (0.6–8.7) 0.250 1.3 (0.3–6.1) 0.730

Endotoxin > 0.5 EU/ml

Serum

CD14� 1.7 μg/ml

1.5 (1.1–1.6) 7/18 1.6 (0.5–4.9) 0.449 1.4 (0.4–4.9) 0.644

Serum

CD14 > 1.7 μg/ml

2.2 (2.0–2.6) 38/47 10.9 (4.1–29.4) <0.001 7.7 (2.6–23.4) <0.001

Odds ratios, 95% confidence interval and p-values were derived from logistic regression analyses of subclinical atherosclerosis on endotoxin as well as interleukin-8,

monocyte chemoattractant protein-1 and sCD14.

�Adjusted for Age, blood pressure, smoking, eGFR and cholesterol.

CIMT = carotid intima media thickness; CI = confidence interval, MCP-1 = monocyte chemoattractant protein-1

https://doi.org/10.1371/journal.pone.0232741.t002
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observation corroborated previous reports that identified increased levels of neopterin and sol-

uble interleukin-2 receptors as independent predictors of vascular risk in a prospective popula-

tion based study [37].

Even though our study is underpowered, we observed that the heterozygous Asp299Gly

allele was associated with lower levels of inflammatory markers and reduced CIMT values,

thus corroborating the findings of previous studies by Kiechl et al [16] and Ameziane et al

[25]. On further analysis, our results suggest that the TLR4 polymorphisms seem to exact a

major effect among patients with combined TLR4 Asp299Gly and Thr399Ile polymorphisms.

Based on this observation, we hypothesize that TLR4 Asp299Gly and Thr399Ile polymor-

phisms may have a synergistic effect in our CKD patients.

Table 3. Genotype and allele frequencies of TLR4 polymorphisms in patients and controls.

Genotype Patients, N = 116a Controls, N = 40 OR (95% CI)

Asp299Gly

AA (wild-type) 109 (94%) 37 (92.5%)

AG 7 (6.0%) 3 (7.5%)

GG 0 (0%) 0 (0%)

Frequency of the Gly allele, (%) 3.0 3.8 1.06 (0.70–1.62) p = 0.497

Thr399Ile

CC (wild-type) 111 (95.7%) 39 (97.5%)

CT 5 (4.3%) 1 (2.5%)

TT 0 (0%) 0 (0%)

Frequency of the Ile allele, (%) 2.2 1.3 0.89 (0.61–1.28) p = 0.513

OR = odds ratio; CI = confidence interval.
a Four specimens were not genotyped in patient group

https://doi.org/10.1371/journal.pone.0232741.t003

Table 4. Relationship between TLR4 polymorphisms, traditional risk factors, CIMT and inflammatory markers in CKD patients.

Variables Wild-Type TLR4

(N = 109)

TLR4 Asp299Gly

+ Variant (N = 7)

TLR4 Asp299Gly+, Thr399Ile

+ Variants (N = 5)

P-value

Wild-Type vs.

Asp299Gly variant

Wild-Type vs. Combined TLR4

Variants Group

Age (Years);

Mean ± SD

41.6 ± 10.0 40.1 ± 15.6 35.6 ± 16.4 0.894 0.253

Smoking (Yes/No) 15/94 2/5 2/3 0.285 0.109

Cholesterol

(mmol/L)

4.20 (3.40–5.20) 4.40 (3.35–4.80) 4.40 (3.20–4.50) 0.958 0.972

HDL (mmol/L) 1.20 (0.90–1.40) 1.10 (0.95–1.30) 1.10 (1.00–1.30) 0.641 0.829

LDL (mmol/L) 2.30 (1.80–3.00) 2.70 (1.80–3.15) 2.70 (1.80–3.00) 0.655 0.668

TG (mmol/L) 1.20 (0.80–1.70) 1.10 (0.85–1.30) 1.00 (0.70–1.20) 0.475 0.225

MABP (mmHg) 143.0 (130.3–157.3) 137.0 (110.7–143.7) 137.0 (111.0–143.3) 0.181 0.350

Waist-Hip ratio 0.92 (0.87–0.96) 0.89 (0.84–0.92) 0.86 (0.81–0.89) 0.286 0.072

CIMT (mm) 0.57 (0.50–0.65) 0.49 (0.45–0.53) 0.49 (0.47–0.53) 0.009 0.028

IL-8 (pg/ml) 9.36 (5.58–22.33) 4.83 (2.90–6.26) 3.09 (2.70–4.83) 0.007 0.004

MCP-1 (pg/ml) 9.19 (5.12–17.03) 6.69 (2.87–7.45) 3.61 (2.12–7.67) 0.046 0.039

sCD14 (μg/ml) 1.76 (1.39–2.27) 1.30 (1.07–1.65) 1.30 (0.96–1.45) 0.047 0.054

LBP (μg/ml) 131.3 (108.4–165.9) 112.6 (76.1–118.7) 81.7 (70.5–113.6) 0.061 0.087

TLR4 = Toll-like receptor 4; HDL = High density lipoprotein; LDL = Low density lipoprotein; IL-8 = Interleukin-8; TG = Triglycerides; MABP = Mean arterial blood

pressure; CIMT = Carotid intima media thickness; MCP-1 = Monocyte chemoattractant protein-1; sCD14 = Serum CD14; LBP = Lipopolysaccharide binding protein

https://doi.org/10.1371/journal.pone.0232741.t004
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Although the mechanisms by which TLR4 Asp299Gly and Thr399Ile polymorphisms medi-

ate their synergistic effects are yet to be fully elucidated, newer evidence suggests that both the

Asp299Gly and Thr399Ile mutations are within the fourth exon of the TLR4 gene, regulating a

ligand-binding region and a coreceptor-binding region, respectively [38]. These two amino

acid residues have been proposed to lie on the same side of the TLR4 molecule [39]. It has also

been suggested that the Asp299Gly/Thr399Ile double mutant modifies an immunodominant

epitope that, in turn, results in reduced expression of mutant TLR4 molecules [40]. Thus, it is

possible that reduced expression of mutant TLR4 molecules, which might lead to attenuated

TLR4 receptor signaling, could bring about the combined effect of TLR4 Asp299Gly and

Thr399Ile polymorphisms observed in this study. Moreover, in TLR4 models, it has also been

demonstrated that double mutant transfected cells showed a consistently greater hypo-respon-

siveness to low dose endotoxin than cells with either of the single polymorphic TLR4 variants

[40]. It is also possible that individuals carrying both mutated genotypes of TLR4 alleles, which

might be in linkage disequilibrium with mutations in the regulatory region of the TLR4 gene,

could develop subnormal TLR4-mediated responses. Nevertheless, to elucidate the precise

underlying mechanism would require further study on the stoichiometry, structure, and sig-

naling of the TLR4/MD-2/CD14 complexes, which is beyond the scope of the present study.

The genotype frequencies of the Asp299Gly and Thr399Ile alleles observed in our study

were similar to those reported by previous studies carried out in South African populations

[41–43]. This study confirms and extends the findings of these previous studies, indicating

that homozygote Asp299Gly and Thr399Ile polymorphisms are not common in the South

African population.

Remarkably, we observed that only 6 of our cohorts had the heterozygous Thr399Ile poly-

morphism. This result further confirms the findings of Ferwerda et al. [44] who reported that

the TLR4 Thr399Ile polymorphism is prevalent in the European population, but is almost in

non-existent in the African populations, and this finding may help to explain our inability to

demonstrate any association between the isolated Thr399Ile allele and a decreased risk of ath-

erosclerosis in this study.

This study has its limitations: firstly, the descriptive and cross-sectional nature of this study

does not allow for evaluation of cause-and-effect relationship between endotoxaemia-related

inflammation and atherosclerosis. A prospective epidemiological study is needed to determine

the contributory role of systemic inflammation on the risk of incident atherosclerosis in the

South African CKD population. Secondly, our sample size was relatively small; a larger sample

size comprising CKD populations from different ethnic groups would provide a more accurate

reference database, given the spectrum of genetic diversity across the Southern African sub-

region. The results of the TLR4 genotyping should therefore be confirmed in a larger CKD

population from different ethnic groups to determine if the findings of this study are generaliz-

able. Finally, our genotype analysis was restricted to the 2 common TLR4 SNPs. It is possible

that we may have missed some novel polymorphisms that are unique to the South African pop-

ulation and would only be detected by whole genome sequencing analysis. Future studies aim-

ing to sequence the whole genome using methods designed to assess variants that are specific

for African populations would be a suitable alternative method for addressing this problem.

In conclusion, we demonstrated associations between circulating endotoxaemia, systemic

inflammation and accelerated atherosclerosis among South African CKD patients. Our find-

ings showed that the atherogenic predictive power of endotoxin was significantly increased by

the presence of elevated serum levels of inflammatory mediators in South African CKD

patients and that TLR4 polymorphisms are associated with low levels of inflammatory markers

and CIMT values. These findings have two implications. First, endotoxin may function as a

pro-inflammatory mediator of accelerated atherosclerosis in black South African CKD
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patients. Second, our findings provide support for a paradigm shift in the search for possible

therapeutic targets to reduce atherosclerotic CVD in CKD patients. These might include pre-

vention of endotoxaemia either through treating foci of endotoxin in CKD patients including

periodontal disease, catheters and vascular access or by reducing translocation of endotoxin

from the gut through reduction of gut venous congestion and/or oedema.
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